首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Muscarinic toxin 7 (MT7) is a mamba venom protein antagonist with extremely high selectivity for the M1 muscarinic acetylcholine receptor. To map the sites for the interaction of MT7 with muscarinic receptors we have used chimeric M1:M3 receptors and site-directed mutagenesis of the M3 and M4 receptor subtypes. Two Glu residues in M1, one in extracellular loop 2 and one in extracellular loop 3, were found to be important for the high affinity binding of MT7. Substitution of the corresponding Lys residues in the M3 receptor with Glu converted the M3 mutant to an MT7 binding receptor, albeit with lower affinity compared with M1. A Phe --> Tyr substitution in extracellular loop 2 of M3 together with the 2 Glu mutations generated a receptor with an increased MT7 affinity (apparent Ki = 0.26 nM in a functional assay) compared with the M1 receptor (apparent Ki = 1.31 nM). The importance of the identified amino acid residues was confirmed with a mutated M4 receptor constructs. The results indicate that the high selectivity of MT7 for the M1 receptor depends on very few residues, thus providing good prospects for future design and synthesis of muscarinic receptor-selective ligands.  相似文献   

2.
Background information. The idea that GPCRs (G‐protein‐coupled receptors) may exist as homo‐ or hetero‐oligomers, although still controversial, is now widely accepted. Nevertheless, the functional roles of oligomerization are still unclear and gaining greater insight into the mechanisms underlying the dynamics of GPCR assembly and, in particular, assessing the effect of ligands on this process seems important. We chose to focus our present study on the effect of MT7 (muscarinic toxin 7), a highly selective allosteric peptide ligand, on the oligomerization state of the hM1 (human M1 muscarinic acetylcholine receptor subtype). Results. We analysed the hM1 oligomerization state in membrane preparations or in live cells and observed the effect of MT7 via four complementary techniques: native‐PAGE electrophoresis analysed by both Western blotting and autoradiography on solubilized membrane preparations of CHO‐M1 cells (Chinese‐hamster ovary cells expressing muscarinic M1 receptors); FRET (fluorescence resonance energy transfer) experiments on cells expressing differently tagged M1 receptors using either an acceptor photobleaching approach or a novel fluorescence emission anisotropy technique; and, finally, by BRET (bioluminescence resonance energy transfer) assays. Our results reveal that MT7 seems to protect the M1 receptor from the dissociating effect of the detergent and induces an increase in the FRET and BRET signals, highlighting its ability to affect the dimeric form of the receptor. Conclusions. Our results suggest that MT7 binds to a dimeric form of hM1 receptor, favouring the stability of this receptor state at the cellular level, probably by inducing some conformational rearrangements of the pre‐existing muscarinic receptor homodimers.  相似文献   

3.
Muscarinic toxins (MTs) are snake venom peptides found to selectively target specific subtypes of G-protein-coupled receptors. In here, we have attached a glycosylphosphatidylinositol (GPI) tail to three different toxin molecules and evaluated their receptor-blocking effects in a heterologous expression system. MT7-GPI remained anchored to the cell surface and selectively inhibited M(1) muscarinic receptor signaling expressed in the same cell. To further demonstrate the utility of the GPI tail, we generated MT3- and MTα-like gene sequences and fused these to the signal sequence for GPI attachment. Functional assessment of these membrane-anchored toxins on coexpressed target receptors indicated a prominent antagonistic effect. In ligand binding experiments the GPI-anchored toxins were found to exhibit similar selection profiles among receptor subtypes as the soluble toxins. The results indicate that GPI attachment of MTs and related receptor toxins could be used to assess the role of receptor subtypes in specific organs or even cells in vivo by transgenic approaches.  相似文献   

4.
To investigate the pharmacological effect of a novel compound YM796, we performed radioligand binding experiments and correlative biochemical experiments using the transfected murine fibroblast B82 cells which expressed the m1 and m2 muscarinic receptor genes (cloned cell lines designated as LK3-3 and M2LKB2-2, respectively). [3H](-)methyl-3-quinuclidinyl benzilate [( 3H](-)MQNB) binding in these transfected cell lines was inhibited by different optical isomers of YM796 and other muscarinic drugs, atropine, pirenzepine, AF-DX 116, as well as selected agonists. (-)YM796, (+)YM796 and (+/-)YM796 inhibited [3H](-)MQNB binding in LK3-3 cells with Ki values of 16.4 microM, 30.1 microM and 21.8 microM and in M2LKB2-2 cells with Ki values of 52.0 microM, 108 microM and 77.1 microM, respectively. From functional assays we found the two isomers, (-)YM796 and (+)YM796 had different intrinsic activities for the M1 and M2 muscarinic receptors. (-)YM796 revealed agonistic activity: stimulation of [3H]IP1 accumulation in LK3-3 cells with an EC50 value of 26.5 microM, which was less efficacious (the Emax value was 5.6 times basal) than carbachol, a full agonist (the Emax value was 17.2 times basal). Interestingly, (-)YM796 did not show significant inhibition of cAMP formation in M2LKB2-2 cells except at extremely high concentrations (greater than 1mM). (+)YM796 exhibited no significant efficacy for the M1 and M2 muscarinic receptors. These results suggest that (-)YM796 represents a muscarinic partial agonist with functional selectivity for the M1 muscarinic receptors whereas (+)YM796 shows no efficacy for either M1 or M2 muscarinic receptors in these transfected cells.  相似文献   

5.
Protein engineering approaches are often a combination of rational design and directed evolution using display technologies. Here, we test "loop grafting," a rational design method, on three-finger fold proteins. These small reticulated proteins have exceptional affinity and specificity for their diverse molecular targets, display protease-resistance, and are highly stable and poorly immunogenic. The wealth of structural knowledge makes them good candidates for protein engineering of new functionality. Our goal is to enhance the efficacy of these mini-proteins by modifying their pharmacological properties in order to extend their use in imaging, diagnostics and therapeutic applications. Using the interaction of three-finger fold toxins with muscarinic and adrenergic receptors as a model, chimeric toxins have been engineered by substituting loops on toxin MT7 by those from toxin MT1. The pharmacological impact of these grafts was examined using binding experiments on muscarinic receptors M1 and M4 and on the α(1A)-adrenoceptor. Some of the designed chimeric proteins have impressive gain of function on certain receptor subtypes achieving an original selectivity profile with high affinity for muscarinic receptor M1 and α(1A)-adrenoceptor. Structure-function analysis supported by crystallographic data for MT1 and two chimeras permits a molecular based interpretation of these gains and details the merits of this protein engineering technique. The results obtained shed light on how loop permutation can be used to design new three-finger proteins with original pharmacological profiles.  相似文献   

6.
为了探讨胚胎干细胞分化心肌细胞(ESCM)毒蕈碱受体的表达规律及β肾上腺素能系统对M2受体表达的影响,采用10-4 mol/L维生素C体外诱导小鼠M13胚胎干细胞分化为心肌细胞,用RT-PCR检测到分化后的细胞表达心肌细胞特异性基因Nkx2.5和β肌球蛋白重链;用免疫荧光法检测到分化后的细胞表达心肌细胞特异性标志物α辅肌动蛋白.小鼠胚胎干细胞分化前表达M1和M2毒蕈碱受体,在分化过程中,M1受体表达逐渐下降, M2受体表达在第3 d显著下降,此后表达逐渐增加,在第14 d达到高峰;Western印迹结果显示,异丙肾上腺素明显抑制M2受体的表达,选择性β1肾上腺素受体拮抗剂CGP20712A明显上调其表达,而选择性β2肾上腺素受体拮抗剂 ICI118551对其表达无影响.本实验表明,小鼠胚胎干细胞分化心肌细胞表达毒蕈碱受体, β肾上腺素能系统对M2受体表达有调控作用.  相似文献   

7.
One immunological component of asthma is believed to be the interaction of eosinophils with parasympathetic cholinergic nerves and a consequent inhibition of acetylcholine muscarinic M2 receptor activity, leading to enhanced acetylcholine release and bronchoconstriction. Here we have used an in vitro model of cholinergic nerve function, the human IMR32 cell line, to study this interaction. IMR32 cells, differentiated in culture for 7 days, expressed M2 receptors. Cells were radiolabeled with [3H]choline and electrically stimulated. The stimulation-induced release of acetylcholine was prevented by the removal of Ca2+. The muscarinic M1/M2 receptor agonist arecaidine reduced the release of acetylcholine after stimulation (to 82 +/- 2% of control at 10(-7) M), and the M2 receptor antagonist AF-DX 116 increased it (to 175 +/- 23% of control at 10(-5) M), indicating the presence of a functional M2 receptor that modulated acetylcholine release. When human eosinophils were added to IMR32 cells, they enhanced acetylcholine release by 36 +/- 10%. This effect was prevented by inhibitors of adhesion of the eosinophils to the IMR32 cells. Pretreatment of IMR32 cells with 10 mM carbachol, to desensitize acetylcholine receptors, prevented the potentiation of acetylcholine release by eosinophils or AF-DX 116. Acetylcholine release was similarly potentiated (by up to 45 +/- 7%) by degranulation products from eosinophils that had been treated with N-formyl-methionyl-leucyl-phenylalanine or that had been in contact with IMR32 cells. Contact between eosinophils and IMR32 cells led to an initial increase in expression of M2 receptors, whereas prolonged exposure reduced M2 receptor expression.  相似文献   

8.
9.
Studies of the physiological actions of melatonin have been hindered by the lack of specific, potent and subtype selective agonists and antagonists. In the present study, we describe the utility of a melanophore cell line from Xenopus laevis for exploring structure-activity relationships among novel melatonin analogues and report a novel MT2-selective agonist (IIK7) and MT2-selective receptor antagonist (K185). IIK7 is a potent melatonin receptor agonist in the melanophore model, and in NIH3T3 cells expressing human mt1 and MT2 receptor subtypes. In radioligand binding experiments IIK7 is 90-fold selective for the MT2 subtype. K185 is devoid of agonist activity, but acts as a competitive melatonin antagonist in melanophores. A low concentration (10(-9) M) antagonizes melatonin inhibition of forskolin stimulation of cyclic AMP in NIH3T3 cells expressing human MT2 receptors, but has no effect in cells expressing mt1 receptors. In binding assays, K185 is 140-fold selective for the MT2 subtype.  相似文献   

10.
beta-Arrestins regulate the functioning of G protein-coupled receptors in a variety of cellular processes including receptor-mediated endocytosis and activation of signaling molecules such as ERK. A key event in these processes is the G protein-coupled receptor-mediated recruitment of beta-arrestins to the plasma membrane. However, despite extensive knowledge in this field, it is still disputable whether activation of signaling pathways via beta-arrestin recruitment entails paired activation of receptor dimers. To address this question, we investigated the ability of different muscarinic receptor dimers to recruit beta-arrestin-1 using both co-immunoprecipitation and fluorescence microscopy in COS-7 cells. Experimentally, we first made use of a mutated muscarinic M(3) receptor, which is deleted in most of the third intracellular loop (M(3)-short). Although still capable of activating phospholipase C, this receptor loses almost completely the ability to recruit beta-arrestin-1 following carbachol stimulation in COS-7 cells. Subsequently, M(3)-short was co-expressed with the M(3) receptor. Under these conditions, the M(3)/M(3)-short heterodimer could not recruit beta-arrestin-1 to the plasma membrane, even though the control M(3)/M(3) homodimer could. We next tested the ability of chimeric adrenergic muscarinic alpha(2)/M(3) and M(3)/alpha(2) heterodimeric receptors to co-immunoprecipitate with beta-arrestin-1 following stimulation with adrenergic and muscarinic agonists. beta-Arrestin-1 co-immunoprecipitation could be induced only when carbachol or clonidine were given together and not when the two agonists were supplied separately. Finally, we tested the reciprocal influence that each receptor may exert on the M(2)/M(3) heterodimer to recruit beta-arrestin-1. Remarkably, we observed that M(2)/M(3) heterodimers recruit significantly greater amounts of beta-arrestin-1 than their respective M(3)/M(3) or M(2)/M(2) homodimers. Altogether, these findings provide strong evidence in favor of the view that binding of beta-arrestin-1 to muscarinic M(3) receptors requires paired stimulation of two receptor components within the same receptor dimer.  相似文献   

11.
Transactivation of epidermal growth factor receptor (EGFR) by G protein-coupled receptors (GPCRs) has been attributed to the activation of matrix metalloproteases (MMPs) and the release of EGF family ligands such as HB-EGF. This mode of transactivation leads to signalling downstream of EGFR which is indistinguishable from that induced by the ligand. Here we provide evidence that in the COS-7 cell model EGFR transactivation via the muscarinic M2 receptor (M2R) is independent of MMPs and results in an incomplete EGFR signalling including ERK and Akt but not PLCgamma1. Using dominant-negative mutants of c-Src and Fyn and Src-deficient SYF cells as well as by co-immunoprecipitation studies, we can demonstrate that the M2R-mediated transactivation of EGFR specifically involves Fyn but not c-Src or Yes. This specific role of Fyn can be verified in SH-SY5Y human neuroblastoma cells with endogenously expressed M2 receptors.  相似文献   

12.
Slessareva JE  Graber SG 《Biochemistry》2003,42(24):7552-7560
The molecular basis for selectivity of M1 and M2 muscarinic receptor coupling to heterotrimeric G proteins has been studied using receptors expressed in Sf9 cell membranes and reconstituted with purified chimeric G(alpha) subunits containing different regions of Gi1alpha and Gq(alpha). The abilities of G protein heterotrimers containing chimeric alpha subunits to stabilize the high-affinity state of the receptors for agonist and to undergo receptor stimulated guanine nucleotide exchange was compared with G protein heterotrimers containing either native Gi1alpha or Gq(alpha). The data confirm the importance of the proper context of the C-terminus of Galpha by demonstrating that the C-terminus of Gi1alpha, when placed in the context of Gq(alpha), prevents coupling to muscarinic M1 receptors, while the C-terminus of Gq(alpha), when placed in the context of Gi1alpha, prevents coupling to muscarinic M2 receptors. However, C-terminal amino acids of Gq(alpha) placed in the context of Gi1alpha were not sufficient to allow M1 receptor coupling, nor were C-terminal amino acids of Gi1alpha placed in the context of Gq(alpha) sufficient for M2 receptor coupling. The unique six amino acid N-terminal extension of Gq(alpha) when added to the N-terminus of Gi1alpha neither prevented M2 receptor coupling nor permitted M1 receptor coupling. A Gi1alpha-based chimera containing both N- and C-terminal regions of Gq(alpha) gained the ability to productively couple M1 receptors suggesting that the proper context of both N- and C-termini is required for muscarinic receptor coupling.  相似文献   

13.
R K Goyal 《Life sciences》1988,43(26):2209-2220
Muscarinic receptors in the gastrointestinal tract are present on enteric neurons, presynaptic and prejunctional axonal endings, intramural endocrine cells as well as directly on effector cells such as smooth muscle and glandular and epithelial cells. Neural M1 stimulatory receptors are present on myenteric and submucous neurons, while neural M2 inhibitory receptors are present on their axonal endings. Muscle M2 and glandular M2 receptors are stimulatory. Functional and ligand binding studies show that there is heterogeneity among different muscarinic receptors in the gastrointestinal tract. The neural M1 muscle M2 and glandular M2 receptors are distinct from each other, but presynaptic and prejunctional M2 receptors appear to be similar to muscle M2 receptors. The relationship of the gut muscarinic receptors to the structurally-defined muscarinic receptors in the brain is unclear. However, they appear to be different from cardiac M2 and brain M2 receptors.  相似文献   

14.
As a decrease in cholinergic neurons has been observed in Alzheimer's Disease (AD), therapeutic approaches to AD include inhibition of acetylcholinesterase to increase acetylcholine levels. Evidence suggests that acetylcholine release in the CNS is modulated by negative feedback via presynaptic M2 receptors, blockade of which should provide another means of increasing acetylcholine release. Structure-activity studies of [4-(phenylsulfonyl)phenyl]methylpiperazines led to the synthesis of 4-cyclohexyl-alpha-[4-[[4-methoxyphenyl]sulfinyl]-phenyl]-1-piperazin eacetonitrile. This compound, SCH 57790, binds to cloned human M2 receptors expressed in CHO cells with an affinity of 2.78 nM; the affinity at M1 receptors is 40-fold lower. SCH 57790 is an antagonist at M2 receptors expressed in CHO cells, as the compound blocks the inhibition of adenylyl cyclase activity mediated by the muscarinic agonist oxotremorine. This compound should be useful in assessing the potential of M2 receptor blockade for enhancement of cognition.  相似文献   

15.
The bladder urothelium not only provides a diffusion barrier but it also serves a sensor function and releases signalling molecules that are considered to act in a paracrine and autocrine fashion, e.g. by acetylcholine. Its actions are conferred by two classes of receptors, i.e. G-protein-coupled muscarinic receptors (MR) and ionotropic nicotinic receptors (nAChR). In this study we set out to determine the expression and distribution of all MR subtypes (M1R-M5R) and nAChR alpha-subunits 7, 9 and 10 in the human urothelium by means of RT-PCR and immunohistochemistry, respectively. Real-time RT-PCR revealed a rank order of MR subtype expression of M2R>M3R=M5R>M4R=M1R. Immunohistochemistry demonstrated differential distribution patterns with M1R being restricted to basal cells, M2R nearly exclusively found in umbrella cells, whereas M3R and M4R were homogenously distributed and M5R was seen in a decreasing gradient from luminal to basal. As for nAChR alpha-subunits, rank order of expression is alpha7>alpha10>alpha9, and they were observed throughout the urothelium with a gradient decreasing from luminal to basal in intensity. In conclusion, the human urothelium carries multiple cholinergic receptor subtypes, with predominant expression of M2R, M3R and alpha7-nAChR. Their distribution as well as that of the less expressed subtypes is layer-specific in the urothelium. In view of the multiplicity of pathways to which different cholinergic receptor subtypes are coupled, we propose that this layer-specific distribution serves to stratify cholinergic regulation of human urothelial function.  相似文献   

16.
Muscarinic acetylcholine receptors (mAChRs) have five subtypes and play crucial roles in various physiological functions and pathophysiological processes. Poor subtype specificity of mAChR modulators has been an obstacle to discover new therapeutic agents. Muscarinic toxin 7 (MT7) is a natural peptide toxin with high selectivity for the M1 receptor. With three to five residues substituted, M3, M4, and M5 receptor mutants could bind to MT7 at nanomolar concentration as the M1 receptor. However, the structural mechanisms explaining MT7–mAChRs binding are still largely unknown. In this study, we constructed 10 complex models of MT7 and each mAChR subtype or its mutant, performed molecular dynamics simulations, and calculated the binding energies to investigate the mechanisms. Our results suggested that the structural determinants for the interactions on mAChRs were composed of some critical residues located separately in the extracellular loops of mAChRs, such as Glu4.56, Leu4.60, Glu/Gln4.63, Tyr4.65, Glu/Asp6.67, and Trp7.35. The subtype specificity of MT7 was attributed to the non‐conserved residues at positions 4.56 and 6.67. These structural mechanisms could facilitate the discovery of novel mAChR modulators with high subtype specificity and enhance the understanding of the interactions between ligands and G‐protein‐coupled receptors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
We report a novel signaling pathway linking M2 muscarinic receptors to metabotropic ion channels. Stimulation of heterologously expressed M2 receptors, but not other Gi/Go-associated receptors (M4 or alpha2c), activates a calcium- and voltage-independent chloride current in Xenopus oocytes. We show that the stimulatory pathway linking M2 receptors to these chloride channels consists of Gbeta gamma stimulation of phosphoinositide 3-kinase gamma (PI-3Kgamma), formation of phosphatidylinositol 3,4,5-trisphosphate (PIP3), and activation of atypical protein kinase C (PKC). The chloride current is activated in the absence of M2 receptor stimulation by the injection of PIP3, and PIP3 current activation is blocked by a pseudosubstrate inhibitory peptide of atypical PKC but not other PKCs. Moreover, the current is activated by injection of recombinant PKCzeta at concentrations as low as 1 nM. M2 receptor-current coupling was disrupted by inhibiton of PI-3K and by injection of beta gamma binding peptides, but it was not affected by expression of dominant negative p85 cRNA. We also show that this pathway mediates M2 receptor coupling to metabotropic nonselective cation channels in mammalian smooth muscle cells, thus demonstrating the broad relevance of this signaling cascade in neurotransmitter signaling.  相似文献   

18.
Stimulation of muscarinic receptors increases phosphoinositide (PI) hydrolysis in 132-1N1 human astrocytoma cells. To evaluate the subtype of receptors which mediate PI hydrolysis in 132-1N1 cells, the effects of: a) the nonselective M1 agonist, carbachol; b) the selective M1 agonist, 4-hydroxy-2-butynyl-trimethylammonium chloride-m-chlorocarbinilate (McN-343); c) the nonselective antagonists, atropine and scopolamine; d) the relatively selective M1 antagonist, pirenzepine; e) the relatively selective M2 antagonists, AF-DX 116 (11-2-diethylaminomethyl-1-piperidinylacetyl-5, 11-dihydro-6H-pyrido-2,3-b-1,4-benzodiazepine-6-one) and methoctramine and f) the relatively selective M3 antagonist, hexahydrosila-difenidol (HHSiD) on PI hydrolysis in 132-1N1 cells were studied. The cell pools of inositol-phospholipids were prelabelled by incubating 132-1N1 cells in a low inositol containing medium (CMRL-1066) supplemented with [3H]inositol (2 microCi/ml) for 20-24 hours at 37 degrees C. The cells were washed and resuspended in a physiological salt solution, and PI hydrolysis was measured by accumulation of [3H]inositol-1-phosphate (IP) in the presence of 10 mM LiCl. Carbachol produced time and concentration dependent PI hydrolysis (EC50, 37 microM). McN-A343 did not cause significant hydrolysis of PI in 132-1N1 cells indicating that the receptor was not of M1 type. All the above muscarinic antagonists caused a concentration dependent decrease in the level of IP in response to carbachol (100 microM). The rank order of their affinities (pA2 values) was: atropine (8.8) > HHSiD (7.6) > pirenzepine (6.8) > methoctramine (6.0) > AF-DX 116 (5.8). This rank order supports the concept that M3 (other names, M2 beta, glandular M2) receptors are linked to PI hydrolysis in 132-1N1 cells. HHSiD, which is selective for M3 receptors of the smooth muscle has higher affinity for muscarinic receptors in 132-1N1 cells than AF-DX 116 which is selective for M2 receptors in cardiac tissue. If the receptor in 132-1N1 cells had been M2, part of the rank order for affinities would have been methoctramine > AF-DX 116 > HHSiD > pirenzepine. From all of these observations, the muscarinic receptor for PI hydrolysis in 132-1N1 cells is tentatively characterized as of M3 type.  相似文献   

19.
Abstract: Previous studies have shown that PC12 cells depend on growth factors for their survival. When deprived of growth factors, the cells undergo a dying process termed "apoptosis" (programed cell death). We show here that muscarinic agonists inhibited the apoptotic death of growth factor-deprived PC12M1 cells (PC12 cells stably expressing cloned m1 muscarinic acetylcholine receptors). This protective effect of the muscarinic agonists was observed in both proliferating and neuronal PC12M1 cells, was blocked by the muscarinic antagonist atropine, and was not observed in PC12 cells lacking m1 receptors. Muscarinic receptors therefore mediate inhibition of apoptosis in these cells. In addition to its effect on survival, the muscarinic agonist oxotremorine induced inhibition of DNA synthesis as well as growth arrest of exponentially growing PC12M1 cells at the S and G2/M phases of the cell cycle. Muscarinic receptors in these cells may therefore mediate inhibition of cell cycle progression.  相似文献   

20.
Molecular cloning and expression of a fifth muscarinic acetylcholine receptor   总被引:13,自引:0,他引:13  
A cDNA of 2149 base pairs with an incomplete open reading frame (ORF) encoding amino acids 1-516 of a 531-amino acid protein highly homologous to muscarinic receptors was cloned from a rat brain cDNA library. The complete ORF was then deduced from a DNA fragment cloned from a rat genomic library. This ORF was subcloned into the eukaryotic expression vector p91023(B) under control of the adenovirus major late promoter and co-transfected with the thymidine kinase selection marker into muscarinic receptor-negative, thymidine kinase-negative murine L cells. Stable transformants were selected and tested for acquisition of muscarinic receptors by following appearance of specific binding sites for the muscarinic ligand [3H] N-methylscopolamine. Two cell lines, LM5.36 and LM5.40, were cloned and shown to express typical muscarinic receptor sites, thus confirming that the newly cloned ORF encodes a muscarinic receptor, the rat M5 muscarinic acetylcholine receptor. Tests for activities showed it to stimulate phosphoinositide hydrolysis in intact cells, without affecting positively or negatively adenylyl cyclase activity. The M5 receptor contains two putative glycosylation sites at its amino terminus and, based on hydropathicity analysis, is predicted to span the plasma membrane seven times. Like 17 other receptors of this class, the M5 receptor has 19 conserved amino acids, among which are 4 prolines located in the 4th, 5th, 6th, and 7th predicted transmembrane regions, conferring possible bends to these helices, and 2 cysteines, one in the 1st and the other in the 2nd extracellular loop, possibly providing for a disulfide bond. Similarity in amino acid composition and in patterns of antagonist binding and biologic effects suggest the M5 receptor to be M1-like.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号