首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spinal stability and passive-active load partitioning under dynamic squat and stoop lifts were investigated as the ligamentous stiffness in flexion was altered. Measured in vivo kinematics of subjects lifting 180 N at either squat or stoop technique was prescribed in a nonlinear transient finite element model of the spine. The Kinematics-driven approach was utilized for temporal estimation of muscle forces, internal spinal loads and system stability. The finite element model accounted for nonlinear properties of the ligamentous spine, wrapping of thoracic extensor muscles and trunk dynamic characteristics while subject to measured kinematics and gravity/external loads. Alterations in passive properties of spine substantially influenced muscle forces, spinal loads and system stability in both lifting techniques, though more so in stoop than in squat. The squat technique is advocated for resulting in smaller spinal loads. Stability of spine in the sagittal plane substantially improved with greater passive properties, trunk flexion and load. Simulation of global extensor muscles with curved rather than straight courses considerably diminished loads on spine and increased stability throughout the task.  相似文献   

2.
A dynamic biomechanical evaluation of lifting maximum acceptable loads   总被引:2,自引:0,他引:2  
A biomechanical evaluation of the job-related stresses imposed upon a worker is a potential means of reducing the high incidence rates of manual material handling injuries in industry. A biomechanical model consisting of seven rigid links joined at six articulations has been developed for this purpose. Using data from cinematographic analysis of lifting motions the model calculates: (1) body position from articulation angles, (2) angular velocities and accelerations, (3) inertial moments and forces, and (4) reactive moments and forces at each articulation, including the L5/S1 joint. Results indicated effects of the common task variables. Larger load and box sizes increased the rise times and peak values of both vertical ground reaction forces and predicted L5/S1 compressive forces. However, boxes with handles resulted in higher L5/S1 compressive forces than for boxes without handles. Also, in lifting the larger boxes the subjects did not sufficiently compensate with reduced box weights in order to maintain uniform L5/S1 compressive forces. Smoothed and rectified EMG of erector spinae muscles correlated significantly with L5/S1 compressive forces, while predicted and measured vertical ground reaction forces also correlated significantly, indicating the validity of the model as a tool for predicting job physical stresses.  相似文献   

3.
Asymmetrical lifting and lowering are predominant activities in the workplace. Mechanical causes are suggested for many back injuries and the dynamic conditions within which spine loading occurs are related to spine loading increase. More data on tridimensional biomechanical lumbar spine loading during asymmetrical lifting and lowering are needed. A tridimensional dynamic multisegment model was developed to compute spinal loading for asymmetrical box-handling situations. The tridimensional positions of the anatomical markers were generated by a direct linear transformation algorithm adapted for the processing of data from two real and two virtual views (mirrors). Two force platforms measured the external forces. Five male subjects performed three variations (slow, fast and accelerated) of asymmetric lifting and two variations (slow and fast) of asymmetric lowering. The torsional, extension/flexion and lateral bending net muscular moments at the L5/S1 joint were computed and peak values selected for statistical analysis. For the lifting task, the fast and accelerated conditions showed significant increases over the slow condition for torsion, extension/flexion and lateral-bending moments. The accelerated condition also showed significant increases over the fast condition for extension. A comparison between lifting and lowering tasks showed equivalent loadings for torsion and extension. The moments were compared to average maximal values measured on equivalent male subject populations by isokinetic dynamometry. This showed torsional and extension values of 30 and 83% of the maximal possible subject capacity, respectively. These results demonstrated that dynamic factors do influence the load on the spine and highlighted the influence of both lifting and lowering on the loading of the spine. This suggested that for a more complete analysis of asymmetrical handling, the maximal velocity and acceleration produced during lifting should be included.  相似文献   

4.
Sudden, unexpected loading on the low back is associated with a high incidence of low back pain. Experiments in which sudden loading was applied during standing revealed increased compression forces on the spine and increased trunk angle, which may cause injury to the spine and hence explain this association. During a more dynamic daily activity, i.e. lifting, this could not be demonstrated, which may be due to experimental constraints. We therefore reinvestigated the loading of the low back when subjects were lifting an unexpectedly heavy object. Ten males lifted boxes, weighing 1.6 or 6.6 kg, at a self-selected lifting velocity. In some trials the mass of these boxes was unexpectedly increased by 10 kg. The ground reaction forces, body movements and trunk muscle activity were measured and from these, the L5/S1 torques and compression forces were estimated. Underestimation of the mass did not lead to an increase in low back loading. This finding was independent of the mass the subjects were expecting to lift. In conclusion, no evidence was found to support inference regarding causality of the association between sudden loading and low back pain during whole body lifting movements.  相似文献   

5.
It is believed that nurses risk the development of back pain as a consequence of sudden loadings during tasks in which they are handling patients. Forward dynamics simulations of sudden loads (applied to the arms) during dynamic lifting tasks were performed on a two-dimensional whole-body model. Loads were in the range of -80 kg to 80 kg, with the initial load being 20 kg. Loading the arm downwards with less than that which equals a mass of 20 kg did not change the compressive forces on the spine when compared to a normal lifting motion with a 20 kg mass in the hands. However when larger loads (40 kg to 80 kg extra in the hands) were simulated, the compressive forces exceeded 13,000 N (above 3400 N is generally considered a risk factor). Loading upwards led to a decrease in the compressive forces but to a larger backwards velocity at the end of the movement. In the present study, it was possible to simulate a fast lifting motion. The results showed that when loading the arms downwards with a force that equals 40 kg or more, the spine was severely compressed. When loading in the opposite direction (unloading), the spine was not compressed more than during a normal lifting motion. In practical terms, this indicates that if a nursing aide tries to catch a patient who is falling, large compressive forces are applied to the spine.  相似文献   

6.
In our laboratory, we have developed a prototype of a personal lift augmentation device (PLAD) that can be worn by workers during manual handling tasks involving lifting or lowering or static holding in symmetric and asymmetric postures. Our concept was to develop a human-speed on-body assistive device that would reduce the required lumbar moment by 20-30% without negative consequences on other joints or lifting kinematics. This paper provides mathematical proof using simplified free body diagrams and two-dimensional moment balance equations. Empirical proof is also provided based on lifting trials with nine male subjects who executed sagittal plane lifts using three lifting styles (stoop, squat, free) and three different loads (5, 15, and 25kg) under two conditions (PLAD, No-PLAD). Nine Fastrak sensors and six in-line strap force sensors were used to estimate the reduction of compressive and shear forces on L4/L5 as well as estimate the forces transferred to the shoulders and knees. Depending on lifting technique, the PLAD applied an added 23-36Nm of torque to assist the back muscles during lifting tasks. The peak pelvic girdle contact forces were estimated and their magnitudes ranged from 221.3+/-11.2N for stoop lifting, 324.3+/-17.2N for freestyle lifts to 468.47+/-23.2N for squat lifting. The PLAD was able to reduce the compression and shear forces about 23-29% and 7.9-8.5%, respectively.  相似文献   

7.
With mechanical loading as the main risk factor for LBP, exoskeletons (EXO) are designed to reduce the load on the back by taking over part of the moment normally generated by back muscles. The present study investigated the effect of an active exoskeleton, controlled using three different control modes (INCLINATION, EMG & HYBRID), on spinal compression forces during lifting with various techniques.Ten healthy male subjects lifted a 15 kg box, with three lifting techniques (free, squat & stoop), each of which was performed four times, once without EXO and once each with the three different control modes. Using inverse dynamics, we calculated L5/S1 joint moments. Subsequently, we estimated spine forces using an EMG-assisted trunk model.Peak compression forces substantially decreased by 17.8% when wearing the EXO compared to NO EXO. However, this reduction was partly, by about one third, attributable to a reduction of 25% in peak lifting speed when wearing the EXO. While subtle differences in back load patterns were seen between the three control modes, no differences in peak compression forces were found. In part, this may be related to limitations in the torque generating capacity of the EXO. Therefore, with the current limitations of the motors it was impossible to determine which of the control modes was best. Despite these limitations, the EXO still reduced both peak and cumulative compression forces by about 18%.  相似文献   

8.
After spinal surgery, physiotherapeutic exercises are performed to achieve a rapid return to normal life. One important aim of treatment is to regain muscle strength, but it is known that muscle forces increase the spinal loads to potentially hazardous levels. It has not yet been clarified which exercises cause high spinal forces and thus endanger the surgical outcome. The loads on vertebral body replacements were measured in 5 patients during eleven physiotherapeutic exercises, performed in the supine, prone, or lateral position or on all fours (kneeling on the hands and knees). Low resultant forces on the vertebral body replacement were measured for the following exercises: lifting one straight leg in the supine position, abduction of the leg in the lateral position, outstretching one leg in the all-fours position, and hollowing the back in the all-fours position. From the biomechanical point of view, these exercises can be performed shortly after surgery. Implant forces similar or even greater than those for walking were measured during: lifting both legs, lifting the pelvis in the supine position, outstretching one arm with or without simultaneously outstretching the contralateral leg in the all-fours position, and arching the back in the all-fours position. These exercises should not be performed shortly after spine surgery.  相似文献   

9.
A combined approach involving optimization and the finite element technique was used to predict biomechanical parameters in the lumbar spine during static lifting in the sagittal plane. Forces in muscle fascicles of the lumbar region were first predicted using an optimization-based force model including the entire lumbar spine. These muscle forces as well as the distributed upper body weight and the lifted load were then applied to a three-dimensional finite element model of the thoracolumbar spine and rib cage to predict deformation, the intradiskal pressure, strains, stresses, and load transfer paths in the spine. The predicted intradiskal pressures in the L3-4 disk at the most deviated from the in vivo measurements by 8.2 percent for the four lifting cases analyzed. The lumbosacral joint flexed, while the other lumbar joints extended for all of the four lifting cases studied (rotation of a joint is the relative rotation between its two vertebral bodies). High stresses were predicted in the posterolateral regions of the endplates and at the junctions of the pedicles and vertebral bodies. High interlaminar shear stresses were found in the posterolateral regions of the lumbar disks. While the facet joints of the upper two lumbar segments did not transmit any load, the facet joints of the lower two lumbar segments experienced significant loads. The ligaments of all lumbar motion segments except the lumbosacral junction provided only marginal moments. The limitations of the current model and possible improvements are discussed.  相似文献   

10.
Mechanical loading of the low back during lifting is a common cause of low back pain. In this study two-handed lifting is compared to one-handed lifting (with and without supporting the upper body with the free hand) while lifting over an obstacle. A 3-D linked segment model was combined with an EMG-assisted trunk muscle model to quantify kinematics and joint loads at the L5S1 joint. Peak total net moments (i.e., the net moment effect of all muscles and soft tissue spanning the joint) were found to be 10+/-3% lower in unsupported one-handed lifting compared to two-handed lifting, and 30+/-8% lower in supported compared to unsupported one-handed lifting. L5S1 joint forces also showed reductions, but not of the same magnitude (18+/-8% and 15+/-10%, respectively, for compression forces, and 15+/-17% and 11+/-14% respectively, for shear forces). Those reductions of low back load were mainly caused by a reduction of trunk and load moment arms relative to the L5S1 joint during peak loading, and, in the case of hand support, by a support force of about 250 N. Stretching one leg backward did not further reduce low back load estimates. Furthermore, one-handed lifting caused an 6+/-8 degrees increase in lateral flexion, a 9+/-5 degrees increase in twist and a 6+/-6 degrees decrease in flexion. Support with the free hand caused a small further increase in lumbar twisting. It is concluded that one-handed lifting, especially with hand support, reduces L5S1 loading but increases asymmetry in movements and moments about the lumbar spine.  相似文献   

11.
In this study, we explore the relationship between moments in the frontal and sagittal planes, generated by a lifting task, vs the electromyographic (EMG) activity of right and left trunk muscle groups. In particular, we postulate that the functional dependence between erector spinae muscle activity and the applied lifting moments about the spine is as follows: the sum of left and right erector spinae processed EMG depends on the sagittal plane moment, and the difference of left and right erector spinae processed EMG depends on the frontal plane moment. A simple out-of-sagittal plane physical model, treating the lumbar spine as a two degree-of-freedom pivot point is discussed to justify these hypotheses. To validate this model, we collected surface EMG and lifting moment data for ten males performing a grid of frontal and sagittal plane lifting tasks. A digital RMS-to-DC algorithm was developed for processing raw EMG. For these tests, we measured EMG for the left and right erector spinae and for the left and right external oblique muscles. The processed EMG signals of the left and right erector spinae muscles are summed and differenced for comparison to the measured sagittal and frontal plane moments. A linear correlation (r2) of 0.96 was obtained for the sum of erector spinae EMG vs the sagittal plane moment; a corresponding value of r2 = 0.95 was obtained for the difference vs the frontal plane moment. No correlations (r2 less than 0.004) was found for the sagittal plane moment and the difference of the left and right erector spinae EMG, and the frontal plane moment and the sum of the left and right erector spinae EMG.  相似文献   

12.
Compression on the lumbar spine is 1000 N for standing and walking and is higher during lifting. Ex vivo experiments show it buckles under a vertical load of 80-100 N. Conversely, the whole lumbar spine can support physiologic compressive loads without large displacements when the load is applied along a follower path that approximates the tangent to the curve of the lumbar spine. This study utilized a two-dimensional beam-column model of the lumbar spine in the frontal plane under gravitational and active muscle loads to address the following question: Can trunk muscle activation cause the path of the internal force resultant to approximate the tangent to the spinal curve and allow the lumbar spine to support compressive loads of physiologic magnitudes? The study identified muscle activation patterns that maintained the lumbar spine model under compressive follower load, resulting in the minimization of internal shear forces and bending moments simultaneously at all lumbar levels. The internal force resultant was compressive, and the lumbar spine model, loaded in compression along the follower load path, supported compressive loads of physiologic magnitudes with minimal change in curvature in the frontal plane. Trunk muscles may coactivate to generate a follower load path and allow the ligamentous lumbar spine to support physiologic compressive loads.  相似文献   

13.
OpenSim offers a valuable approach to investigating otherwise difficult to assess yet important biomechanical parameters such as joint reaction forces. Although the range of available models in the public repository is continually increasing, there currently exists no OpenSim model for the computation of intervertebral joint reactions during flexion and lifting tasks. The current work combines and improves elements of existing models to develop an enhanced model of the upper body and lumbar spine. Models of the upper body with extremities, neck and head were combined with an improved version of a lumbar spine from the model repository. Translational motion was enabled for each lumbar vertebrae with six controllable degrees of freedom. Motion segment stiffness was implemented at lumbar levels and mass properties were assigned throughout the model. Moreover, body coordinate frames of the spine were modified to allow straightforward variation of sagittal alignment and to simplify interpretation of results. Evaluation of model predictions for level L1–L2, L3–L4 and L4–L5 in various postures of forward flexion and moderate lifting (8 kg) revealed an agreement within 10% to experimental studies and model-based computational analyses. However, in an extended posture or during lifting of heavier loads (20 kg), computed joint reactions differed substantially from reported in vivo measures using instrumented implants. We conclude that agreement between the model and available experimental data was good in view of limitations of both the model and the validation datasets. The presented model is useful in that it permits computation of realistic lumbar spine joint reaction forces during flexion and moderate lifting tasks. The model and corresponding documentation are now available in the online OpenSim repository.  相似文献   

14.
The purpose of this study was to examine how wave-induced platform motion effects postural stability when handling loads. Twelve participants (9 male, 3 female) performed a sagittal lifting/lowering task with a 10 kg load in different sea conditions off the coast of Halifax, Nova Scotia, Canada. Trunk kinematics and foot center of force were measured using the Lumbar Motion Monitor and F-Scan foot pressure system respectively. During motion conditions, significant decreases in trunk velocities were accompanied by significant increases in individual foot center of pressure velocities. These results suggest that during lifting and lowering loads in moving environments, the reaction to the wave-induced postural disturbance is accompanied by a decrease in performance speed so that the task can be performed more cautiously to optimize stability.  相似文献   

15.
Low back injury is associated with sudden movements and loading. Trunk motion after sudden loading depends on the stability of the spine prior to loading and on the trunk muscle activity in response to the loading. Both factors are not axis-symmetric. Therefore, it was hypothesized that the effects on trunk dynamics would be larger after an asymmetric than after a symmetric perturbation. Ten subjects lifted a crate in which, prior to lifting, a mass was displaced to the front or to the side without the subjects being aware of this. Crate and subject movements, crate reaction forces and muscle activity were recorded. From this, the stability prior to the perturbation was estimated, and the trunk angular kinematics and moments at the lumbo-sacral joint were calculated. Both perturbations only minimally affected the trunk kinematics, although the stability of the spine prior to the lifting movement was higher in the sagittal plane than in the frontal plane. In both conditions the stability appeared to be sufficient to absorb the applied perturbation.  相似文献   

16.
There is limited information in the literature related to the lower back loading in patients with LBP, particularly those with non-chronic LBP. Toward addressing such a research gap, a case-control study was conducted to explore the differences in lower back mechanical loads between a group of females (n = 19) with non-chronic, non-specific LBP and a group of asymptomatic females (n = 19). The differences in lower back mechanical loads were determined when participants completed one symmetric lowering and lifting of a 4.5 kg load at their preferred cadence. The axial, shearing, and moment components of task demand at the time of peak moment component as well as measures of peak trunk kinematics were analyzed. Patient vs. asymptomatic group performed the task with smaller peak thoracic rotation and peak lumbar flexion. While no differences in the moment component of task demand on the lower back between the patients and controls were found, the shearing (40–50 age group) and axial components of task demand were, respectively, larger and smaller in patients vs. controls. Whether alterations in lower back loads in patients with non-chronic LBP are in response to pain or preceded the pain, the long-term exposure to abnormal lower back mechanics may adversely affect spinal structure and increase the likelihood of further injury or pain. Therefore, the underlying reason(s) as well as the potential consequence(s) of such altered lower back mechanics in patients with non-chronic LBP should to be further investigated.  相似文献   

17.
The objective of this study was to investigate the low-back loading during common patient-handling tasks. Ten female health care workers without formal training in patient handling performed nine patient-handling tasks including turning, lifting and repositioning a male stroke patient. The low-back loading was quantified by net moment, compression, and shear forces at the L4/L5 joint, measured muscle activity (EMG) in erector spinae muscles and rate of perceived exertion (RPE; Borg scale). The experiments were videotaped with a 50Hz video system using five cameras, and the ground and bedside reaction forces of the health care worker were recorded by means of force platforms and force transducers on the bed. The biomechanical load was calculated using a dynamic 3D seven-segment model of the lower part of the body, and the forces at the L4/L5 joint were estimated by a 14 muscles cross-sectional model of the low back (optimisation procedure). Compression force and torque showed high task dependency whereas the EMG data and the RPE values were more dependent on the subject. The peak compression during two tasks involving lifting the patient (4132/4433N) was significantly higher than all other tasks. Four tasks involving repositioning the patient in the bed (3179/3091/2932/3094N) did not differ, but showed higher peak compression than two tasks turning the patient in the bed (1618/2197N). Thus, in this study the patient-handling tasks could be classified into three groups-characterised by lifting, repositioning or turning-with different levels of peak net torque and compression at the L4/L5 joint.  相似文献   

18.
Response surface methodology is used to establish robust and user-friendly predictive equations that relate responses of a complex detailed trunk finite element biomechanical model to its input variables during sagittal symmetric static lifting activities. Four input variables (thorax flexion angle, lumbar/pelvis ratio, load magnitude, and load position) and four model responses (L4–L5 and L5–S1 disc compression and anterior–posterior shear forces) are considered. Full factorial design of experiments accounting for all combinations of input levels is employed. Quadratic predictive equations for the spinal loads at the L4–S1 disc mid-heights are obtained by regression analysis with adequate goodness-of-fit (R2>98%, p<0.05, and low root-mean-squared-error values compared with the range of predicted spine loads). Results indicate that intradiscal pressure values at the L4–L5 disc estimated based on the predictive equations are in close agreement with available in vivo data measured under similar loadings and postures. Combinations of input (posture and loading) variable levels that yield spine loads beyond the tolerance compression limit of 3400 N are identified using contour plots. Ergonomists and bioengineers, faced with the dilemma of using either complex but more accurate models on one hand or less accurate but simple models on the other hand, have thereby easy-to-use predictive equations that quantifies spinal loads and risk of injury under different occupational tasks of interest.  相似文献   

19.
Axial compression on the spine could reach large values especially in lifting tasks which also involve large rotations. Experimental and numerical investigations on the spinal multi motion segments in presence of physiological compression loads cannot adequately be carried out due to the structural instability and artefact loads. To circumvent these problems, a novel wrapping cable element is used in a nonlinear finite element model of the lumbosacral spine (L1-S1) to investigate the role of moderate to large compression loads on the lumbar stiffness in flexion and axial moments/rotations. The compression loads up to 2,700 N was applied with no instability or artefact loads. The lumbar stiffness substantially increased under compression force, flexion moment, and axial torque when applied alone. The presence of compression preloads significantly stiffened the load-displacement response under flexion and axial moments/rotations. This stiffening effect was much more pronounced under larger preloads and smaller moments/rotations. Compression preloads also increased intradiscal pressure, facet contact forces, and maximum disc fibre strain at different levels. Forces in posterior ligaments were, however, diminished with compression preload. The significant increase in spinal stiffness, hence, should be considered in biomechanical studies for accurate investigation of the load partitioning, system stability, and fixation systems/disc prostheses.  相似文献   

20.
Reliable computation of spinal loads and trunk stability under whole body vibrations with high acceleration contents requires accurate estimation of trunk muscle activities that are often overlooked in existing biodynamic models. A finite element model of the spine that accounts for nonlinear load- and direction-dependent properties of lumbar segments, complex geometry and musculature of the spine, and dynamic characteristics of the trunk was used in our iterative kinematics-driven approach to predict trunk biodynamics in measured vehicle's seat vibrations with shock contents of about 4g (g: gravity acceleration of 9.8m/s(2)) at frequencies of about 4 and 20Hz. Muscle forces, spinal loads and trunk stability were evaluated for two lumbar postures (erect and flexed) with and without coactivity in abdominal muscles. Estimated peak spinal loads were substantially larger under 4Hz excitation frequency as compared to 20Hz with the contribution of muscle forces exceeding that of inertial forces. Flattening of the lumbar lordosis from an erect to a flexed posture and antagonistic coactivity in abdominal muscles, both noticeably increased forces on the spine while substantially improving trunk stability. Our predictions clearly demonstrated the significant role of muscles in trunk biodynamics and associated risk of back injuries. High-magnitude accelerations in seat vibration, especially at near-resonant frequency, expose the vertebral column to large forces and high risk of injury by significantly increasing muscle activities in response to equilibrium and stability demands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号