首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
MicroRNAs (miRNAs) are ~22-nt small non-coding RNAs that regulate the expression of specific target genes in many eukaryotes. miRNAs have been shown to play important roles in stem cell maintenance, cell fate determination, and differentiation. Planarians are capable of regenerating entire body plans from tiny fragments; this regenerative capacity is facilitated by a population of pluripotent stem cells known as neoblasts. Planarians have been a classic model system for the study of many aspects of stem cell biology. However, very limited knowledge on miRNA involved in this regulatory mechanism exists. This study profiles the expression of miRNAs in the normal and regenerative tissues of planarians using miRCURY LNA array technology. Thirteen miRNAs showed significant differences in expression between these two tissues. To further confirm our results, we examined the expression of two miRNAs by qRT-PCR. Results show that some known miRNAs may play key roles in the regulatory mechanisms of regeneration. Our findings can be utilized in future research on miRNA function.  相似文献   

3.
Genome organization and characteristics of soybean microRNAs   总被引:3,自引:0,他引:3  
  相似文献   

4.
5.
6.
7.
8.
9.
MicroRNAs (miRNAs) are a class of endogenous non-protein-coding small RNAs that are evolutionarily conserved and widely distributed among species. Their major function is to negatively regulate target gene expression. A single miRNA can regulate multiple target genes, indicating that miRNAs may regulate multiple signaling pathways and participate in a variety of physiological and pathological processes. Currently, approximately 50% of identified human miRNA-coding genes are located at tumor-related fragile chromosome regions. Abnormal miRNA expression and/or mutations have been found in almost all types of malignancies. These abnormally expressed miRNAs play roles similar to tumor suppressor genes or oncogenes by regulating the expression and/or function of tumor-related genes. Therefore, miRNAs, miRNA target genes, and the genes regulating miRNAs form a regulatory network with miRNAs in the hub. This network plays a pivotal role in tumorigenesis and tumor development.  相似文献   

10.
MicroRNAs (miRNAs) are endogenous, small non‐coding RNAs known to regulate expression of protein‐coding genes. A large proportion of miRNAs are highly conserved, localized as clusters in the genome, transcribed together from physically adjacent miRNAs and show similar expression profiles. Since a single miRNA can target multiple genes and miRNA clusters contain multiple miRNAs, it is important to understand their regulation, effects and various biological functions. Like protein‐coding genes, miRNA clusters are also regulated by genetic and epigenetic events. These clusters can potentially regulate every aspect of cellular function including growth, proliferation, differentiation, development, metabolism, infection, immunity, cell death, organellar biogenesis, messenger signalling, DNA repair and self‐renewal, among others. Dysregulation of miRNA clusters leading to altered biological functions is key to the pathogenesis of many diseases including carcinogenesis. Here, we review recent advances in miRNA cluster research and discuss their regulation and biological functions in pathological conditions.  相似文献   

11.
MicroRNAs (miRNA) are a class of noncoding RNA molecules that regulate gene expression by an RNA-interfering pathway through cleavage or inhibition of the translation of target mRNA. The 254 cattle miRNA candidates found by homology searching frequently clustered at certain chromosomes, and some are possibly expressed from more than one genomic locus. They were partially verified by cloning from a small cattle RNA library, where 31 distinct miRNAs were identified: 18 previously registered in the database of miRBase, 11 novel and homologous to known mammalian miRNAs, and 2 potentially novel without homology to any known miRNAs. Partial miRNA expression was detected by RT-PCR in cattle tissues, such as brain, liver, lung, and heart; some were expressed in all tissues and others in a specific tissue. Sequence alignments revealed that many had end variants, most of which differed in the 3′ end; a small number differed in the 5′ end. This indicates that the same miRNA gene can be individually modified in the process of miRNA biogenesis and could have a different role in regulating target gene expression.  相似文献   

12.
A whole-genome RNAi Screen for C. elegans miRNA pathway genes   总被引:1,自引:0,他引:1  
Parry DH  Xu J  Ruvkun G 《Current biology : CB》2007,17(23):2013-2022
BACKGROUND: miRNAs are an abundant class of small, endogenous regulatory RNAs. Although it is now appreciated that miRNAs are involved in a broad range of biological processes, relatively little is known about the actual mechanism by which miRNAs downregulate target gene expression. An exploration of which protein cofactors are necessary for a miRNA to downregulate a target gene should reveal more fully the molecular mechanisms by which miRNAs are processed, trafficked, and regulate their target genes. RESULTS: A weak allele of the C. elegans miRNA gene let-7 was used as a sensitized genetic background for a whole-genome RNAi screen to detect miRNA pathway genes, and 213 candidate miRNA pathway genes were identified. About 2/3 of the 61 candidates with the strongest phenotype were validated through genetic tests examining the dependence of the let-7 phenotype on target genes known to function in the let-7 pathway. Biochemical tests for let-7 miRNA production place the function of nearly all of these new miRNA pathway genes downstream of let-7 expression and processing. By monitoring the downregulation of the protein product of the lin-14 mRNA, which is the target of the lin-4 miRNA, we have identified 19 general miRNA pathway genes. CONCLUSIONS: The 213 candidate miRNA pathway genes identified could act at steps that produce and traffic miRNAs or in downstream steps that detect miRNA::mRNA duplexes to regulate mRNA translation. The 19 validated general miRNA pathway genes are good candidates for genes that may define protein cofactors for sorting or targeting miRNA::mRNA duplexes, or for recognizing the miRNA base-paired to the target mRNA to downregulate translation.  相似文献   

13.
microRNAs (miRNAs) are a new class of non-protein-coding small RNAs, which regulate the expression of more than 30% protein-coding genes. The unique expression profiles of different miRNAs in different types of cancers and at different stages in one cancer type suggest that miRNAs can function as novel biomarkers for disease diagnostics and may present a new strategy for miRNA gene therapy. Anti-miRNAs and antisense oligonucleotides (ASO) have been employed to inhibit specific miRNA expression in vitro and in vivo for investigational and clinical purposes. Although miRNA-based diagnostics and gene therapy are still in their infancy, their huge potentials will meet our need for future disease diagnostics and gene therapy. High efficient delivery of miRNAs into targeted sites, designing accurate anti-miRNA/ASOs, and related biosafety issues are three major challenges in this field.  相似文献   

14.
Age-related hearing loss is a progressive sensorineural hearing loss that occurs during aging. Degeneration of the organ of Corti and atrophy of the lateral wall of the cochlear duct (or scala media) in the inner ear are the two primary causes. MicroRNAs (miRNAs), a class of short non-coding RNAs that regulate the expression of mRNA/protein targets, are important regulators of cellular senescence and aging. We examined miRNA gene expression profiles in the lateral wall of two mouse strains, along with exploration of the potential targets of those miRNAs that showed dynamic expression during aging. We show that 95 and 60 miRNAs exhibited differential expression in C57 and CBA mice during aging, respectively. A majority of downregulated miRNAs are known to regulate pathways of cell proliferation and differentiation, while all upregulated miRNAs are known regulators in the pro-apoptotic pathways. By using apoptosis-related gene array and bioinformatic approaches to predict miRNA targets, we identify candidate miRNA-regulated genes that regulate apoptosis pathways in the lateral wall of C57 and CBA mice during aging.  相似文献   

15.
《Genomics》2020,112(2):1598-1610
Understanding male gametophyte development is essential to augment hybrid production in sorghum. Although small RNAs are known to critically influence anther/pollen development, their roles in sorghum reproduction have not been deciphered yet. Here, we report small RNA profiling and high-confidence annotation of microRNAs (miRNAs) from meiotic and post-meiotic anthers in sorghum. We identified 262 miRNAs (82 known and 180 novel), out of which 58 (35 known and 23 novel) exhibited differential expression between two stages. Out of 35 differentially expressed known miRNAs, 13 are known to regulate anther/pollen development in other plant species. We also demonstrated conserved spatiotemporal patterns of 21- and 24-nt phasiRNAs and their respective triggers, miR2118 and miR2275, in sorghum anthers as evidenced in other monocots. miRNA target identification yielded 5622 modules, of which 46 modules comprising 16 known and 8 novel miRNA families with 38 target genes are prospective candidates for engineering male fertility in grasses.  相似文献   

16.
Elucidation of the pig microRNAome is essential for interpreting functional elements of the genome and understanding the genetic architecture of complex traits. Here, we extracted small RNAs from skeletal muscle and adipose tissue, and we compared their expression levels between one Western breed (Yorkshire) and seven indigenous Chinese breeds. We detected the expression of 172 known porcine microRNAs (miRNAs) and 181 novel miRNAs. Differential expression analysis found 92 and 12 differentially expressed miRNAs in adipose and muscle tissue respectively. We found that different Chinese breeds shared common directional miRNA expression changes compared to Yorkshire pigs. Some miRNAs differentially expressed across multiple Chinese breeds, including ssc‐miR‐129‐5p, ssc‐miR‐30 and ssc‐miR‐150, are involved in adipose tissue function. Functional enrichment analysis revealed that the target genes of the differentially expressed miRNAs are associated mainly with signaling pathways rather than metabolic and biosynthetic processes. The miRNA–target gene and miRNA–phenotypic traits networks identified many hub miRNAs that regulate a large number of target genes or phenotypic traits. Specifically, we found that intramuscular fat content is regulated by the greatest number of miRNAs in muscle tissue. This study provides valuable new candidate miRNAs that will aid in the improvement of meat quality and production.  相似文献   

17.
18.
Hua Y  Duan S  Murmann AE  Larsen N  Kjems J  Lund AH  Peter ME 《PloS one》2011,6(10):e26521
micro(mi)RNAs are small non-coding RNAs that negatively regulate expression of most mRNAs. They are powerful regulators of various differentiation stages, and the expression of genes that either negatively or positively correlate with expressed miRNAs is expected to hold information on the biological state of the cell and, hence, of the function of the expressed miRNAs. We have compared the large amount of available gene array data on the steady state system of the NCI60 cell lines to two different data sets containing information on the expression of 583 individual miRNAs. In addition, we have generated custom data sets containing expression information of 54 miRNA families sharing the same seed match. We have developed a novel strategy for correlating miRNAs with individual genes based on a summed Pearson Correlation Coefficient (sPCC) that mimics an in silico titration experiment. By focusing on the genes that correlate with the expression of miRNAs without necessarily being direct targets of miRNAs, we have clustered miRNAs into different functional groups. This has resulted in the identification of three novel miRNAs that are linked to the epithelial-to-mesenchymal transition (EMT) in addition to the known EMT regulators of the miR-200 miRNA family. In addition, an analysis of gene signatures associated with EMT, c-MYC activity, and ribosomal protein gene expression allowed us to assign different activities to each of the functional clusters of miRNAs. All correlation data are available via a web interface that allows investigators to identify genes whose expression correlates with the expression of single miRNAs or entire miRNA families. miRConnect.org will aid in identifying pathways regulated by miRNAs without requiring specific knowledge of miRNA targets.  相似文献   

19.
Mitochondria are one of the central regulators of many cellular processes beyond its well established role in energy metabolism. The inter-organellar crosstalk is critical for the optimal function of mitochondria. Many nuclear encoded proteins and RNA are imported to mitochondria. The translocation of small RNA (sRNA) including miRNA to mitochondria and other sub-cellular organelle is still not clear. We characterized here sRNA including miRNA associated with human mitochondria by cellular fractionation and deep sequencing approach. Mitochondria were purified from HEK293 and HeLa cells for RNA isolation. The sRNA library was generated and sequenced using Illumina system. The analysis showed the presence of unique population of sRNA associated with mitochondria including miRNA. Putative novel miRNAs were characterized from unannotated sRNA sequences. The study showed the association of 428 known, 196 putative novel miRNAs to mitochondria of HEK293 and 327 known, 13 putative novel miRNAs to mitochondria of HeLa cells. The alignment of sRNA to mitochondrial genome was also studied. The targets were analyzed using DAVID to classify them in unique networks using GO and KEGG tools. Analysis of identified targets showed that miRNA associated with mitochondria regulates critical cellular processes like RNA turnover, apoptosis, cell cycle and nucleotide metabolism. The six miRNAs (counts >1000) associated with mitochondria of both HEK293 and HeLa were validated by RT-qPCR. To our knowledge, this is the first systematic study demonstrating the associations of sRNA including miRNA with mitochondria that may regulate site-specific turnover of target mRNA important for mitochondrial related functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号