首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genome-wide association studies (GWAS) have identified 14 tagging single nucleotide polymorphisms (tagSNPs) that are associated with the risk of colorectal cancer (CRC), and several of these tagSNPs are near bone morphogenetic protein (BMP) pathway loci. The penalty of multiple testing implicit in GWAS increases the attraction of complementary approaches for disease gene discovery, including candidate gene- or pathway-based analyses. The strongest candidate loci for additional predisposition SNPs are arguably those already known both to have functional relevance and to be involved in disease risk. To investigate this proposition, we searched for novel CRC susceptibility variants close to the BMP pathway genes GREM1 (15q13.3), BMP4 (14q22.2), and BMP2 (20p12.3) using sample sets totalling 24,910 CRC cases and 26,275 controls. We identified new, independent CRC predisposition SNPs close to BMP4 (rs1957636, P = 3.93×10(-10)) and BMP2 (rs4813802, P = 4.65×10(-11)). Near GREM1, we found using fine-mapping that the previously-identified association between tagSNP rs4779584 and CRC actually resulted from two independent signals represented by rs16969681 (P = 5.33×10(-8)) and rs11632715 (P = 2.30×10(-10)). As low-penetrance predisposition variants become harder to identify-owing to small effect sizes and/or low risk allele frequencies-approaches based on informed candidate gene selection may become increasingly attractive. Our data emphasise that genetic fine-mapping studies can deconvolute associations that have arisen owing to independent correlation of a tagSNP with more than one functional SNP, thus explaining some of the apparently missing heritability of common diseases.  相似文献   

2.
Genome-wide association studies (GWAS) have identified multiple single nucleotide polymorphisms (SNPs) associated with prostate cancer risk. However, whether these associations can be consistently replicated, vary with disease aggressiveness (tumor stage and grade) and/or interact with non-genetic potential risk factors or other SNPs is unknown. We therefore genotyped 39 SNPs from regions identified by several prostate cancer GWAS in 10,501 prostate cancer cases and 10,831 controls from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). We replicated 36 out of 39 SNPs (P-values ranging from 0.01 to 10−28). Two SNPs located near KLK3 associated with PSA levels showed differential association with Gleason grade (rs2735839, P = 0.0001 and rs266849, P = 0.0004; case-only test), where the alleles associated with decreasing PSA levels were inversely associated with low-grade (as defined by Gleason grade <8) tumors but positively associated with high-grade tumors. No other SNP showed differential associations according to disease stage or grade. We observed no effect modification by SNP for association with age at diagnosis, family history of prostate cancer, diabetes, BMI, height, smoking or alcohol intake. Moreover, we found no evidence of pair-wise SNP-SNP interactions. While these SNPs represent new independent risk factors for prostate cancer, we saw little evidence for effect modification by other SNPs or by the environmental factors examined.  相似文献   

3.
Genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) that mildly predict prostate cancer risk. These SNPs are local tagging markers for causal gene alterations. Consideration of candidate genes in the tagged regions would be facilitated by additional information on the particular pathomechanisms which contribute to the observed risk increase. In this study we test for an association of prostate cancer tagging SNPs with alterations in DNA repair capacity, a phenotype that is frequently involved in cancer predisposition. DNA repair capacity was assessed on blood lymphocytes from 128 healthy probands after ionizing irradiation. We used the micronucleus (MN) assay to determine the cellular DNA double-strand break repair capacity and flow cytometry to measure damage induced mitotic delay (MD). Probands were genotyped for a panel of 14 SNPs, each representing an independent prostate cancer risk locus previously identified by GWAS. Associations between germline variants and DNA repair capacity were found for the SNPs rs1512268 (8p21), rs6983267 (8q24) and rs10993994 (10q11). The most significant finding was an association of homozygous rs10993994 T-allele carriers with a lower MN frequency (p=0.0003) and also a decreased MD index (p=0.0353). Cells with prostate cancer risk alleles at rs10993994 seem to cope more efficiently with DNA double strand breaks (less MN) in a shorter time (decreased MD index). This intriguing finding imposes concern about the accuracy of repair, with respect to the cancer risk that is mediated by T genotypes. To date, MSMB (microseminoprotein β) is favored as the causal gene at the 10q11 risk locus, since it was the first candidate gene known to be expressionally altered by rs10993994. Based on the present observation, candidate genes from the contexts of DNA repair and apoptosis may be more promising targets for expression studies with respect to the rs10993994 genotype.  相似文献   

4.
Colorectal cancer is the second leading cause of cancer death in developed countries. Genome-wide association studies (GWAS) have successfully identified novel susceptibility loci for colorectal cancer. To follow up on these findings, and try to identify novel colorectal cancer susceptibility loci, we present results for GWAS of colorectal cancer (2,906 cases, 3,416 controls) that have not previously published main associations. Specifically, we calculated odds ratios and 95% confidence intervals using log-additive models for each study. In order to improve our power to detect novel colorectal cancer susceptibility loci, we performed a meta-analysis combining the results across studies. We selected the most statistically significant single nucleotide polymorphisms (SNPs) for replication using ten independent studies (8,161 cases and 9,101 controls). We again used a meta-analysis to summarize results for the replication studies alone, and for a combined analysis of GWAS and replication studies. We measured ten SNPs previously identified in colorectal cancer susceptibility loci and found eight to be associated with colorectal cancer (p value range 0.02 to 1.8?×?10(-8)). When we excluded studies that have previously published on these SNPs, five SNPs remained significant at p?相似文献   

5.
Genetic factors associated with the risk of smoking related cancers have until recently remained elusive. Since the publication of a genome-wide association study (GWAS) on lung cancer new genetic loci have been identified that appear to be associated with disease risk. In this replication study we genotyped 14 single nucleotide polymorphisms (SNPs) located at the 5p12.3-p15.33, 6p21.3-p22.1, 6q23-q27 and 15q25.1 loci in 874 lung, 450 bladder, 418 laryngeal cancer cases and cancer-free controls, matched by year of birth and sex to the cases. Our results revealed that loci in the chromosome region 15q25.1 (rs16969968[A], rs8034191[G]) and 5p15 (rs402710[T]) are associated with lung cancer risk in the Polish population (smoking status adjusted OR = 1.45, 1.35, 0.77; p ≤ 0.0001, 0.0005, 0.002; 95%CI 1.23-1.72, 1.14-1.59, 0.66-0.91 respectively). None of the other regions analyzed herein were implicated in the risk of lung, bladder or laryngeal cancer. This study supports previous findings on lung cancer but fails to show association of SNPs located in 15q25.1 and 5p15 region with other smoking related cancers like bladder and laryngeal cancer.  相似文献   

6.
DNA repair genes are important for maintaining genomic stability and limiting carcinogenesis. We analyzed all single nucleotide polymorphisms (SNPs) of 125 DNA repair genes covered by the Illumina HumanHap300 (v1.1) BeadChips in a previously conducted genome-wide association study (GWAS) of 1154 lung cancer cases and 1137 controls and replicated the top-hits of XRCC4 SNPs in an independent set of 597 cases and 611 controls in Texas populations. We found that six of 20 XRCC4 SNPs were associated with a decreased risk of lung cancer with a P-value of 0.01 or lower in the discovery dataset, of which the most significant SNP was rs10040363 (P for allelic test=4.89 x 10??). Moreover, the data in this region allowed us to impute a potentially functional SNP rs2075685 (imputed P for allelic test=1.3 x 10?3). A luciferase reporter assay demonstrated that the rs2075685G>T change in the XRCC4 promoter increased expression of the gene. In the replication study of rs10040363, rs1478486, rs9293329, and rs2075685, however, only rs10040363 achieved a borderline association with a decreased risk of lung cancer in a dominant model (adjusted OR=0.80, 95% CI=0.62-1.03 and P=0.079). In the final combined analysis of both the Texas GWAS discovery and replication datasets, the strength of the association was increased for rs10040363 (adjusted OR=0.77, 95% CI=0.66-0.89, P(dominant)=5 x 10?? and P for trend=5 x 10??) and rs1478486 (adjusted OR=0.82, 95% CI=0.71-0.94, P(dominant)=6 x 10?3 and P for trend=3.5 x 10?3). Finally, we conducted a meta-analysis of these XRCC4 SNPs with available data from published GWA studies of lung cancer with a total of 12,312 cases and 47,921 controls, in which none of these XRCC4 SNPs was associated with lung cancer risk. It appeared that rs2075685, although associated with increased expression of a reporter gene and lung cancer risk in the Texas populations, did not have an effect on lung cancer risk in other populations. This study underscores the importance of replication using published data in larger populations.  相似文献   

7.
Genome-wide association studies (GWAS) of colorectal cancer (CRC) have led to the identification of a number of common variants associated with modest risk. Several risk variants map within the vicinity of TGFβ/BMP signaling pathway genes, including rs4939827 within an intron of SMAD7 at 18q21.1. A previous study implicated a novel SNP (novel 1 or rs58920878) as a functional variant within an enhancer element in SMAD7 intron 4. In this study, we show that four SNPs including novel 1 (rs6507874, rs6507875, rs8085824, and rs58920878) in linkage disequilibrium (LD) with the index SNP rs4939827 demonstrate allele-specific enhancer effects in a large, multi-component enhancer of SMAD7. All four SNPs demonstrate allele-specific protein binding to nuclear extracts of CRC cell lines. Furthermore, some of the risk-associated alleles correlate with increased expression of SMAD7 in normal colon tissues. Finally, we show that the enhancer is responsive to BMP4 stimulation. Taken together, we propose that the associated CRC risk at 18q21.1 is due to four functional variants that regulate SMAD7 expression and potentially perturb a BMP negative feedback loop in TGFβ/BMP signaling pathways.  相似文献   

8.
Recent genome-wide association studies (GWAS) have identified multiple novel loci associated with obesity in Europeans but results in other ethnicities are less convincing. Here, we report a two-stage GWAS of BMI in African Americans. The GWAS was performed using the Affymetrix 6.0 platform in 816 nondiabetic and 899 diabetic nephropathy subjects. 746,626 single-nucleotide polymorphisms (SNPs) were tested for association with BMI after adjustment for age, gender, disease status, and population structure. Sixty high scoring SNPs that showed nominal association in both GWAS cohorts were further replicated in 3,274 additional subjects in four replication cohorts and a meta-analysis was computed. Meta-analysis of 4,989 subjects revealed five SNPs (rs6794092, rs268972, rs2033195, rs815611, and rs6088887) at four loci showing consistent associations in both GWAS (P < 0.0001) and replication cohorts (P < 0.05) with combined P values range from 2.4 × 10(-6) to 5 × 10(-5). These loci are located near PP13439-TMEM212, CDH12, MFAP3-GALNT10, and FER1L4 and had effect sizes between 0.091 and 0.167 s.d. unit (or 0.67-1.24 kg/m(2)) of BMI for each copy of the effect allele. Our findings suggest the presence of novel loci potentially associated with adiposity in African Americans. Further replication and meta-analysis in African Americans and other populations will shed light on the role of these loci in different ethnic populations.  相似文献   

9.
10.
Age-adjusted mortality rates for prostate cancer are higher for African-American men compared with those of European ancestry. Recent data suggest that West African men also have elevated risk for prostate cancer relative to European men. Genetic susceptibility to prostate cancer could account for part of this difference. We conducted a genome-wide association study (GWAS) of prostate cancer in West African men in the Ghana Prostate Study. Association testing was performed using multivariable logistic regression adjusted for age and genetic ancestry for 474 prostate cancer cases and 458 population-based controls on the Illumina HumanOmni-5 Quad BeadChip. The most promising association was at 10p14 within an intron of a long non-coding RNA (lncRNA RP11-543F8.2) 360 kb centromeric of GATA3 (p = 1.29E?7). In sub-analyses, SNPs at 5q31.3 were associated with high Gleason score (≥7) cancers, the strongest of which was a missense SNP in PCDHA1 (rs34575154, p = 3.66E?8), and SNPs at Xq28 (rs985081, p = 8.66E?9) and 6q21 (rs2185710, p = 5.95E?8) were associated with low Gleason score (<7) cancers. We sought to validate our findings in silico in the African Ancestry Prostate Cancer GWAS Consortium, but only one SNP, at 10p14, replicated at p < 0.05. Of the 90 prostate cancer loci reported from studies of men of European, Asian or African-American ancestry, we were able to test 81 in the Ghana Prostate Study, and 10 of these replicated at p < 0.05. Further genetic studies of prostate cancer in West African men are needed to confirm our promising susceptibility loci.  相似文献   

11.
Rare variation in protein coding sequence is poorly captured by GWAS arrays and has been hypothesized to contribute to disease heritability. Using the Illumina HumanExome SNP array, we successfully genotyped 191,032 common and rare non-synonymous, splice site, or nonsense variants in a multiethnic sample of 2,984 breast cancer cases, 4,376 prostate cancer cases, and 7,545 controls. In breast cancer, the strongest associations included either SNPs in or gene burden scores for genes LDLRAD1, SLC19A1, FGFBP3, CASP5, MMAB, SLC16A6, and INS-IGF2. In prostate cancer, one of the most associated SNPs was in the gene GPRC6A (rs2274911, Pro91Ser, OR = 0.88, P = 1.3×10−5) near to a known risk locus for prostate cancer; other suggestive associations were noted in genes such as F13A1, ANXA4, MANSC1, and GP6. For both breast and prostate cancer, several of the most significant associations involving SNPs or gene burden scores (sum of minor alleles) were noted in genes previously reported to be associated with a cancer-related phenotype. However, only one of the associations (rs145889899 in LDLRAD1, p = 2.5×10−7 only seen in African Americans) for overall breast or prostate cancer risk was statistically significant after correcting for multiple comparisons. In addition to breast and prostate cancer, other cancer-related traits were examined (body mass index, PSA level, and alcohol drinking) with a number of known and potentially novel associations described. In general, these findings do not support there being many protein coding variants of moderate to high risk for breast and prostate cancer with odds ratios over a range that is probably required for protein coding variation to play a truly outstanding role in risk heritability. Very large sample sizes will be required to better define the role of rare and less penetrant coding variation in prostate and breast cancer disease genetics.  相似文献   

12.
Genome-wide association studies (GWAS) have identified more than 30 prostate cancer (PrCa) susceptibility loci. One of these (rs2735839) is located close to a plausible candidate susceptibility gene, KLK3, which encodes prostate-specific antigen (PSA). PSA is widely used as a biomarker for PrCa detection and disease monitoring. To refine the association between PrCa and variants in this region, we used genotyping data from a two-stage GWAS using samples from the UK and Australia, and the Cancer Genetic Markers of Susceptibility (CGEMS) study. Genotypes were imputed for 197 and 312 single nucleotide polymorphisms (SNPs) from HapMap2 and the 1000 Genome Project, respectively. The most significant association with PrCa was with a previously unidentified SNP, rs17632542 (combined P?=?3.9?×?10(-22)). This association was confirmed by direct genotyping in three stages of the UK/Australian GWAS, involving 10,405 cases and 10,681 controls (combined P?=?1.9?×?10(-34)). rs17632542 is also shown to be associated with PSA levels and it is a non-synonymous coding SNP (Ile179Thr) in KLK3. Using molecular dynamic simulation, we showed evidence that this variant has the potential to introduce alterations in the protein or affect RNA splicing. We propose that rs17632542 may directly influence PrCa risk.  相似文献   

13.
《PloS one》2014,9(11)
Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88–0.96), rs1052532 (OR 0.97; 95% CI: 0.95–0.99), rs10719 (OR 0.97; 95% CI: 0.94–0.99), rs4687554 (OR 0.97; 95% CI: 0.95–0.99, and rs3134615 (OR 1.03; 95% CI: 1.01–1.05) located in the 3′ UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.  相似文献   

14.
The objective of this study was to determine whether an association exists between certain single nucleotide polymorphisms (SNPs), which have previously been linked with adverse normal tissue effects resulting from radiotherapy, and the development of radiation injury resulting from radiotherapy for prostate cancer. A total of 135 consecutive patients with clinically localized prostate cancer and a minimum of 1 year of follow-up who had been treated with radiation therapy, either brachytherapy alone or in combination with external-beam radiotherapy, with or without hormone therapy, were genotyped for SNPs in SOD2, XRCC1 and XRCC3. Three common late tissue toxicities were investigated: late rectal bleeding, urinary morbidity, and erectile dysfunction. Patients with the XRCC1 rs25489 G/A (Arg280His) genotype were more likely to develop erectile dysfunction after irradiation than patients who had the G/G genotype (67% compared to 24%; P=0.048). In addition, patients who had the SOD2 rs4880 T/C (Val16Ala) genotype exhibited a significant increase in grade 2 late rectal bleeding compared to patients who had either the C/C or T/T genotype for this SNP (8% compared to 0%; P=0.02). Finally, patients with the combination of the SOD2 rs4880 C/T genotype and XRCC3 rs861539 T/C (Thr241Met) genotype experienced a significant increase in grade 2 late rectal bleeding compared to patients without this particular genotypic arrangement (14% compared to 1%; P=0.002). These results suggest that SNPs in the SOD2, XRCC1 and XRCC3 genes are associated with the development of late radiation injury in patients treated with radiation therapy for prostate adenocarcinoma.  相似文献   

15.
Recent evidence has suggested that single-nucleotide polymorphisms (SNPs) located at 5p15.33 contribute to susceptibilities for several cancer types, including prostate cancer. To determine whether SNP rs402710 in this region plays a role in prostate cancer, we analyzed these associations in a Chinese population; 251 prostate cancer patients and 273 control subjects were included in this case-control study. Genotypes were determined by PCR-RFLP. We found that subjects carrying the CC homozygote had a decreased risk for prostrate cancer compared to those carrying TT/TC genotypes (odds ratio (OR) = 0.69, 95% confidence interval (CI) = 0.48-0.98, P = 0.038). Compared with the TT homozygote, subjects carrying the CC homozygote also had a decreased risk for prostate cancer (OR = 0.71, 95%CI = 0.51-0.99, P = 0.043). We conclude that rs402710 polymorphisms in the 5p15.33 region are associated with prostate cancer risk in the Chinese population. Further investigations with large cohorts and done worldwide are warranted to determine whether our findings are detected in other populations.  相似文献   

16.
Bipolar disorder is a severe psychiatric disorder influenced by environmental and genetic factors. Genetic studies have implicated many variants in the disease's etiology but only few have been successfully replicated. We conducted a genome-wide association study (GWAS) on bipolar disorder in the Bulgarian population followed by a replication study of the top 100 single nucleotide polymorphisms (SNPs) showing the smallest P values. The GWAS was performed on 188 bipolar disorder patients and 376 control subjects genotyped on the Illumina 550 platform. The replication study was conducted on 122 patients and 328 controls. Although our study did not show any association P value that achieved genome-wide significance, and none of the top 100 SNPs reached the Bonferroni-corrected P value in the replication study, the plausible involvement of some variants cannot be entirely discarded. Three polymorphisms, rs8099939 [P = 2.12 × 10(-6), odds ratio (OR) = 1.95, 95% confidence interval (CI) = 1.43-2.67] in GRIK5, rs6122972 (P = 3.11 × 10(-6), OR = 2.02, 95% CI = 1.46-2.80) in PARD6B and rs2289700 (P = 9.14 × 10(-6), OR = 2.13, 95% CI = 1.53-2.95) in CTSH remained associated at a similar level after Mantel-Haenszel test for combining the results from the genome-wide and replication studies. A modest association was also detected for SNP rs1012053 (GWAS P = 4.50 × 10(-2)) in DGKH, which has already been reported as the most significant variant in a previous genome-wide scan on bipolar disorder. However, further studies using larger datasets are needed to identify variants with smaller effects that contribute to the risk of bipolar disorder.  相似文献   

17.
The Kallikrein-related peptidase, KLK4, has been shown to be significantly overexpressed in prostate tumours in numerous studies and is suggested to be a potential biomarker for prostate cancer. KLK4 may also play a role in prostate cancer progression through its involvement in epithelial-mesenchymal transition, a more aggressive phenotype, and metastases to bone. It is well known that genetic variation has the potential to affect gene expression and/or various protein characteristics and hence we sought to investigate the possible role of single nucleotide polymorphisms (SNPs) in the KLK4 gene in prostate cancer. Assessment of 61 SNPs in the KLK4 locus (±10 kb) in approximately 1300 prostate cancer cases and 1300 male controls for associations with prostate cancer risk and/or prostate tumour aggressiveness (Gleason score <7 versus ≥7) revealed 7 SNPs to be associated with a decreased risk of prostate cancer at the P(trend)<0.05 significance level. Three of these SNPs, rs268923, rs56112930 and the HapMap tagSNP rs7248321, are located several kb upstream of KLK4; rs1654551 encodes a non-synonymous serine to alanine substitution at position 22 of the long isoform of the KLK4 protein, and the remaining 3 risk-associated SNPs, rs1701927, rs1090649 and rs806019, are located downstream of KLK4 and are in high linkage disequilibrium with each other (r(2)≥0.98). Our findings provide suggestive evidence of a role for genetic variation in the KLK4 locus in prostate cancer predisposition.  相似文献   

18.
Craig C. Teerlink  Stephen N. Thibodeau  Shannon K. McDonnell  Daniel J. Schaid  Antje Rinckleb  Christiane Maier  Walther Vogel  Geraldine Cancel-Tassin  Christophe Egrot  Olivier Cussenot  William D. Foulkes  Graham G. Giles  John L. Hopper  Gianluca Severi  Ros Eeles  Douglas Easton  Zsofia Kote-Jarai  Michelle Guy  Kathleen A. Cooney  Anna M. Ray  Kimberly A. Zuhlke  Ethan M. Lange  Liesel M. FitzGerald  Janet L. Stanford  Elaine A. Ostrander  Kathleen E. Wiley  Sarah D. Isaacs  Patrick C. Walsh  William B. Isaacs  Tiina Wahlfors  Teuvo Tammela  Johanna Schleutker  Fredrik Wiklund  Henrik Grönberg  Monica Emanuelsson  John Carpten  Joan Bailey-Wilson  Alice S. Whittemore  Ingrid Oakley-Girvan  Chih-Lin Hsieh  William J. Catalona  S. Lilly Zheng  Guangfu Jin  Lingyi Lu  Jianfeng Xu  Nicola J. Camp  Lisa A. Cannon-Albright 《Human genetics》2014,133(3):347-356
Previous GWAS studies have reported significant associations between various common SNPs and prostate cancer risk using cases unselected for family history. How these variants influence risk in familial prostate cancer is not well studied. Here, we analyzed 25 previously reported SNPs across 14 loci from prior prostate cancer GWAS. The International Consortium for Prostate Cancer Genetics (ICPCG) previously validated some of these using a family-based association method (FBAT). However, this approach suffered reduced power due to the conditional statistics implemented in FBAT. Here, we use a case–control design with an empirical analysis strategy to analyze the ICPCG resource for association between these 25 SNPs and familial prostate cancer risk. Fourteen sites contributed 12,506 samples (9,560 prostate cancer cases, 3,368 with aggressive disease, and 2,946 controls from 2,283 pedigrees). We performed association analysis with Genie software which accounts for relationships. We analyzed all familial prostate cancer cases and the subset of aggressive cases. For the familial prostate cancer phenotype, 20 of the 25 SNPs were at least nominally associated with prostate cancer and 16 remained significant after multiple testing correction (p ≤ 1E ?3) occurring on chromosomal bands 6q25, 7p15, 8q24, 10q11, 11q13, 17q12, 17q24, and Xp11. For aggressive disease, 16 of the SNPs had at least nominal evidence and 8 were statistically significant including 2p15. The results indicate that the majority of common, low-risk alleles identified in GWAS studies for all prostate cancer also contribute risk for familial prostate cancer, and that some may contribute risk to aggressive disease.  相似文献   

19.
The receptor for advanced glycation end products (RAGE) overexpression was suggested to be associated with prostate cancer development and poor prognosis. In this study, we focused on the correlations between the clinicopathological characteristics and susceptibility of prostate cancer and RAGE single-nucleotide polymorphisms (SNPs). In 579 prostate cancer patients, the RAGE SNPs rs1800625, rs1800624, rs2070600 and rs184003 in patients with or without grade group upgrade were analysed with real-time polymerase chain reaction. The results demonstrated that the prostate cancer patients who carried the RAGE SNPs rs2070600 ‘GA’ genotypic variants were significantly associated with lower risk to develop grade group upgrade. Moreover, patients with the RAGE rs1800625 ‘TC + CC’ genotypic variants were associated with higher risk of perineural invasion. In 343 prostate cancer patients who carried the RAGE rs1800625 ‘TC + CC’ genotype without grade group upgrade were correlated with higher risk of biochemical recurrence and perineural invasion. In the analysis of TCGA database, significant differences of the RAGE mRNA level were found between the normal controls and prostate cancer patients (p < 0.0001), and the pathologic stage N1 and N0 patients (p = 0.0027). The prostate cancer patients with high RAGE expression were associated with lower overall survival rate (p = 0.025). In conclusion, our results have revealed that the RAGE SNPs rs2070600 and rs1800625 were associated with the grade group upgrade of prostate cancer and clinical status. The RAGE polymorphisms may provide as a pivotal predictor to evaluate prostate cancer disease progression and prognosis.  相似文献   

20.
Recent genome-wide association studies (GWAS) demonstrated that genetic variation in intron 2 of fibroblast growth factor receptor 2 (FGFR2) was a novel risk for breast cancer. We investigated whether two SNPs rs1219648 and rs2981582 in intron 2 of FGFR2 were associated with the risk of breast cancer in Chinese women. A total of 340 female breast cancer patients and 400 normal age-matched controls were recruited. Two SNPs were genotyped using matrix-assisted laser desorption/ionization mass spectrometry. The two SNPs rs1219648 and rs2981582 showed no association with the risk of breast cancer. A subgroup analysis by menopausal status demonstrated that the distribution of rs2981582 T alleles, including CT and TT genotypes, was significantly higher in premenopausal patients compared with postmenopausal patients. The TT genotype in rs2981582 was more strongly associated with ER-positive than with ER-negative tumors by ER status analysis. Analysis by haplotypes showed that no haplotypes associated with breast cancer. The results showed no association between two SNPs, rs1219648 and rs2981582 and breast cancer risk, although in a stratified analysis rs2981582 strongly associated with premenopausal and ER-positive breast cancer patients in Chinese women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号