首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Increased levels of intracellular cAMP inhibit T cell activation and proliferation. One mechanism is via activation of the cAMP-dependent protein kinase (PKA). PKA is a broad specificity serine/threonine kinase whose fidelity in signaling is maintained through interactions with A kinase anchoring proteins (AKAPs). AKAPs are adaptor/scaffolding molecules that convey spatial and temporal localization to PKA and other signaling molecules. To determine whether T lymphocytes contain AKAPs that could influence the inflammatory response, PBMCs and Jurkat cells were analyzed for the presence of AKAPs. RII overlay and cAMP pull down assays detected at least six AKAPs. Western blot analyses identified four known AKAPs: AKAP79, AKAP95, AKAP149, and WAVE. Screening of a PMA-stimulated Jurkat cell library identified two additional known AKAPs, AKAP220 and AKAP-KL, and one novel AKAP, myeloid translocation gene 16 (MTG16b). Mutational analysis identified the RII binding domain in MTG16b as residues 399-420, and coimmunoprecipitation assays provide strong evidence that MTG16b is an AKAP in vivo. Immunofluorescence and confocal microscopy illustrate distinct subcellular locations of AKAP79, AKAP95, and AKAP149 and suggest colocalization of MTG and RII in the Golgi. These experiments represent the first report of AKAPs in T cells and suggest that MTG16b is a novel AKAP that targets PKA to the Golgi of T lymphocytes.  相似文献   

3.
PKA (protein kinase A) is tethered to subcellular compartments by direct interaction of its regulatory subunits (RI or RII) with AKAPs (A kinase-anchoring proteins). AKAPs preferentially bind RII subunits via their RII-binding domains. RII-binding domains form structurally conserved amphipathic helices with unrelated sequences. Their binding affinities for RII subunits differ greatly within the AKAP family. Amongst the AKAPs that bind RIIalpha subunits with high affinity is AKAP7delta [AKAP18delta; K(d) (equilibrium dissociation constant) value of 31 nM]. An N-terminally truncated AKAP7delta mutant binds RIIalpha subunits with higher affinity than the full-length protein presumably due to loss of an inhibitory region [Henn, Edemir, Stefan, Wiesner, Lorenz, Theilig, Schmidtt, Vossebein, Tamma, Beyermann et al. (2004) J. Biol. Chem. 279, 26654-26665]. In the present study, we demonstrate that peptides (25 amino acid residues) derived from the RII-binding domain of AKAP7delta bind RIIalpha subunits with higher affinity (K(d)=0.4+/-0.3 nM) than either full-length or N-terminally truncated AKAP7delta, or peptides derived from other RII binding domains. The AKAP7delta-derived peptides and stearate-coupled membrane-permeable mutants effectively disrupt AKAP-RII subunit interactions in vitro and in cell-based assays. Thus they are valuable novel tools for studying anchored PKA signalling. Molecular modelling indicated that the high affinity binding of the amphipathic helix, which forms the RII-binding domain of AKAP7delta, with RII subunits involves both the hydrophobic and the hydrophilic faces of the helix. Alanine scanning (25 amino acid peptides, SPOT technology, combined with RII overlay assays) of the RII binding domain revealed that hydrophobic amino acid residues form the backbone of the interaction and that hydrogen bond- and salt-bridge-forming amino acid residues increase the affinity of the interaction.  相似文献   

4.
A combination of protein kinase A type II (RII) overlay screening, database searches and PCR was used to identify a centrosomal A-kinase anchoring protein. A cDNA with an 11.7 kb open reading frame was characterized and found to correspond to 50 exons of genomic sequence on human chromosome 7q21-22. This cDNA clone encoded a 3908 amino acid protein of 453 kDa, that was designated AKAP450 (DDBJ/EMBL/GenBank accession No. AJ131693). Sequence comparison demonstrated that the open reading frame contained a previously characterized cDNA encoding Yotiao, as well as the human homologue of AKAP120. Numerous coiled-coil structures were predicted from AKAP450, and weak homology to pericentrin, giantin and other structural proteins was observed. A putative RII-binding site was identified involving amino acid 2556 of AKAP450 by mutation analysis combined with RII overlay and an amphipatic helix was predicted in this region. Immunoprecipitation of RII from RIPA-buffer extracts of HeLa cells demonstrated co-precipitation of AKAP450. By immunofluorecent labeling with specific antibodies it was demonstrated that AKAP450 localized to centrosomes. Furthermore, AKAP450 was shown to co-purify in centrosomal preparations. The observation of two mRNAs and several splice products suggests additional functions for the AKAP450 gene.  相似文献   

5.
A-kinase anchoring proteins (AKAPs) function to target protein kinase A (PKA) to specific locations within the cell. AKAPs are functionally identified by their ability to bind the type II regulatory subunits (RII) of PKA in an in vitro overlay assay. We previously showed that follicle-stimulating hormone (FSH) induces the expression of an 80-kDa AKAP (AKAP 80) in ovarian granulosa cells as they mature from a preantral to a preovulatory phenotype. In this report, we identify AKAP 80 as microtubule-associated protein 2D (MAP2D), a low molecular weight splice variant of the neuronal MAP2 protein. MAP2D is induced in granulosa cells by dexamethasone and by FSH in a time-dependent manner that mimics that of AKAP 80, and immunoprecipitation of MAP2D depletes extracts of AKAP 80. MAP2D is the only MAP2 protein present in ovaries and is localized to granulosa cells of preovulatory follicles and to luteal cells. MAP2D is concentrated at the Golgi apparatus along with RI and RII and, based on coimmunoprecipitation results, appears to bind both RI and RII in granulosa cells. Reduced expression of MAP2D resulting from treatment of granulosa cells with antisense oligonucleotides to MAP2 inhibited the phosphorylation of cAMP-response element-binding protein. These results suggest that this classic neuronal RII AKAP is a dual RI/RII AKAP that performs unique functions in ovarian granulosa cells that contribute to the preovulatory phenotype.  相似文献   

6.
We have reported that a novel c-Myc-binding protein, AMY-1, binds to cAMP-dependent protein kinase-anchoring protein 149 (AKAP149) and its splicing variant, AKAP84 and is localized in the mitochondria in a complex with RII, a regulatory subunit of cAMP-dependent protein kinase (PKA) (Furusawa, M., Ohnishi, T., Taira, T., Iguchi-Ariga, S. M. M., and Ariga, H. (2001) J. Biol. Chem. 276, 36647-36651). In this study, we further found that AMY-1 competitively bound to either AKAP95 or AKAP84 in the nucleus and the cytoplasm, respectively, in a concentration-dependent manner of either AKAP. Like AKAP84, AMY-1 was found to bind to the RII-binding region of AKAP95 in vivo and in vitro and to make a ternary complex with RII. It was also found that the formation of the complex of AMY-1 with AKAP84/95 and RII prevented a catalytic subunit from binding to this AKAP complex, leading to suppression of PKA activity. These findings suggest that AMY-1 is an important modulator of PKA.  相似文献   

7.
Recently we identified a novel target gene of MEF2A named myospryn that encodes a large, muscle-specific, costamere-restricted alpha-actinin binding protein. Myospryn belongs to the tripartite motif (TRIM) superfamily of proteins and was independently identified as a dysbindin-interacting protein. Dysbindin is associated with alpha-dystrobrevin, a component of the dystrophin-glycoprotein complex (DGC) in muscle. Apart from these initial findings little else is known regarding the potential function of myospryn in striated muscle. Here we reveal that myospryn is an anchoring protein for protein kinase A (PKA) (or AKAP) whose closest homolog is AKAP12, also known as gravin/AKAP250/SSeCKS. We demonstrate that myospryn co-localizes with RII alpha, a type II regulatory subunit of PKA, at the peripheral Z-disc/costameric region in striated muscle. Myospryn interacts with RII alpha and this scaffolding function has been evolutionarily conserved as the zebrafish ortholog also interacts with PKA. Moreover, myospryn serves as a substrate for PKA. These findings point to localized PKA signaling at the muscle costamere.  相似文献   

8.
CXCL12/stromal cell-derived factor 1 is a member of the CXC family of chemokines that plays an important role in hematopoiesis and signals through CXCR4 and CXCR7. Two splice variants of human CXCL12 (CXCL12alpha and CXCL12beta) induce chemotaxis of CXCR4(+) cells and inhibit X4 infection. Recent studies described four other novel splice variants of human CXCL12; however, their antiviral activities were not investigated. We constructed and expressed all of the CXCL12 splice variants in Escherichia coli. Recombinant proteins were purified through a His affinity column, and their biological properties were analyzed. All six CXCL12 variants induced chemotaxis of CXCR4(+) and CXCR7(+) cell lines. Enhancement of survival and replating capacity of human hematopoietic progenitor cells were observed with CXCL12alpha, CXCL12beta, and CXCL12epsilon but not with the other variants. CXCL12gamma showed the greatest antiviral activity in X4 inhibition assays and the weakest chemotaxis activity through CXCR4. The order of potency in X4 inhibition assays was as follows: CXCL12gamma > CXCL12beta > CXCL12alpha > CXCL12theta > CXCL12epsilon > CXCL12delta. The order of anti-human immunodeficiency virus (HIV) activity was associated with the number of BBXB motifs present in each variant; the most potent inhibitor was CXCL12gamma, with five BBXB domains. The results suggest that the different C termini of CXCL12 variants may contain important molecular determinants for the observed differences in antiviral effects and other biological functions. These studies implicate CXCL12gamma as a potent HIV-1 entry inhibitor with significantly reduced chemotaxis activity and small or absent effects on progenitor cell survival or replating capacity, providing important insight into the structure-function relationships of CXCL12.  相似文献   

9.
The A-Kinase Anchor Protein AKAP 75 (formerly designated bovine brain P75) is a particulate brain protein that avidly binds the regulatory subunit (RII beta) of cAMP-dependent protein kinase II beta (Bregman, D. B., Hirsch, A.H. and Rubin, C.S. (1991) J. Biol. Chem. 266, 7207-7213). The formation of stable AKAP 75.RII beta complexes provides a potential mechanism for targeting physiological signals carried by cAMP to specific effector sites within neurons and other brain cells. We have now cloned and characterized the AKAP 75 gene. Its coding sequence is novel and unexpectedly short (1284 base pairs) and contains no introns. When the AKAP 75 gene was transfected into HEK 293 cells, a new RII beta-binding protein with an apparent Mr of 75,000 accumulated. A high proportion (approximately 65%) of the AKAP 75 gene product was excluded from the cytoplasm and was recovered in the 40,000 x g pellet derived from disrupted transfected cells. In contrast, cells transfected with a construct encoding 249 amino acids from the central and C-terminal regions of AKAP 75 produced an RII beta-binding protein (apparent Mr = 45,000) that was exclusively cytosolic. AKAP 75 is a novel protein composed of only 428 amino acid residues (Mr = 47,878). A highly acidic C-terminal region mediates the binding of RII beta (and cAMP-dependent protein kinase II beta), whereas a positively charged N-terminal segment contains structural features that are essential for the association of AKAP 75 with the cytoskeleton and/or intracellular membranes.  相似文献   

10.
Arginine vasopressin (AVP) increases the water permeability of renal collecting duct principal cells by inducing the fusion of vesicles containing the water channel aquaporin-2 (AQP2) with the plasma membrane (AQP2 shuttle). This event is initiated by activation of vasopressin V2 receptors, followed by an elevation of cAMP and the activation of protein kinase A (PKA). The tethering of PKA to subcellular compartments by protein kinase A anchoring proteins (AKAPs) is a prerequisite for the AQP2 shuttle. During the search for AKAP(s) involved in the shuttle, a new splice variant of AKAP18, AKAP18delta, was identified. AKAP18delta functions as an AKAP in vitro and in vivo. In the kidney, it is mainly expressed in principal cells of the inner medullary collecting duct, closely resembling the distribution of AQP2. It is present in both the soluble and particulate fractions derived from renal inner medullary tissue. Within the particulate fraction, AKAP18delta was identified on the same intracellular vesicles as AQP2 and PKA. AVP not only recruited AQP2, but also AKAP18delta to the plasma membrane. The elevation of cAMP caused the dissociation of AKAP18delta and PKA. The data suggest that AKAP18delta is involved in the AQP2 shuttle.  相似文献   

11.
In phylogenetic reconstructions by the parsimony method, utilizing 62 sequenced globin genes and pseudogenes (including 34 of the beta-globin gene family from eutherian orders Primates, Lagomorpha, Artiodactyla and Rodentia), the branch of primate psi beta pseudogenes and the goat embryonically expressed epsilon II gene group monophyletically together as orthologues of a common ancestral gene (labelled eta) distinct from orthologues of epsilon, gamma, delta and beta. This primate psi eta-goat eta branch is cladistically closer to epsilon and gamma than to delta and beta branches. In each eutherian order gene conversions replaced portions of delta by beta sequences, whereas in descent of Primates epsilon, gamma and eta mostly retained their separate ancient identities predating the radiation of Eutheria in all their exons and non-coding regions. The loci of the ancestral beta-globin gene cluster in basal eutherians and proto-primates, as deduced from beta-clusters representing the four eutherian orders, were linked 5'-epsilon-gamma-eta-delta-beta-3' with epsilon, gamma and eta being embryonically expressed genes, and delta and beta ontogenetically later expressed genes. Through deletions gamma was lost in artiodactyl evolution, eta in lagomorph and rodent evolution, and all DNA between exon 2 3' boundaries of eta and delta in prosimian lemuriform evolution (lemur having the hybrid pseudogene psi eta delta). Simian primates retained intact the five loci of the ancestral cluster. Not only did eta, after it became a pseudogene in the basal primates, persist intact in descent to present-day simians but in the line to hominoids it evolved during the last 40 million years at the decelerated rate of 1 X 10(-9) substitutions/site per year which is one-fifth the expected neutral rate. The possibility is suggested that the psi eta locus situated between fetal and adult chromosomal domains of the simian beta-globin gene cluster might play some role in a mechanism for ontogenetic switches of globin gene expression. However, not enough sequence data on genes and intergenic regions in DNA of species of primates and other mammals as yet exist to know if the slow rate of 1 X 10(-9) reflects the rate of a conserved functional gene or primarily reflects a decelerated neutral rate of hominoid DNA evolution, conceivably from enhanced DNA repair and longer generation times in hominoids. The further possibility is raised that gene correction (repair of damaged DNA that prevents emergence of new alleles) and gene conversion both more often involve strand copying of conserved than of rapidly evolving DNA.  相似文献   

12.
13.
14.
15.
Comparative and phylogenetic analyses of homologous sequences from closely related species reveal genetic events which have happened in the past and thus provide considerable insight into molecular genetic processes. One such process which has been especially important in the evolution of multigene families is gene conversion. The fetal gamma 1 and gamma 2-globin genes of catarrhine primates (humans, apes, and Old World monkeys) underwent numerous gene conversion events after they arose from a gene duplication event 25-35 million years ago. By including the gamma 1- and gamma 2-globin gene sequences from the common gibbon, Hylobates lar, the present work expands the gamma-globin data set to represent all major groups of hominoid primates. A computer-assisted algorithm is introduced which reveals converted DNA segments and provides results very similar to those obtained by site-by-site evolutionary reconstruction. Both methods provide strong evidence for at least 14 different converted stretches in catarrhine primates as well as five conversions in ancestral lineages. Features of gene conversions generalized from this molecular history are 1) conversions are restricted to regions maintaining high degrees of sequence similarity, 2) one gene may dominate in converting another gene, 3) sequences involved in conversions may accumulate changes more rapidly than expected, and 4) certain elements, such as polypurine/polypyrimidine [Y)n) and (TG)n elements, appear to be hotspots for initiating or terminating conversion events.  相似文献   

16.
Downstream regulation of the cAMP-dependent protein kinase (PKA) pathway is mediated by anchoring proteins (AKAPs) that sequester PKA to specific subcellular locations through binding to PKA regulatory subunits (RI or RII). The RII-binding domain of all AKAPs forms an amphipathic alpha-helix with similar secondary structure. However, the importance of sequence differences in the RII-binding domains of different AKAPs is unknown, and mechanisms that regulate AKAP-PKA affinity are not clearly defined. Using surface plasmon resonance (SPR) spectroscopy, we measured real-time kinetics of RII interaction with various AKAPs. Base-line equilibrium binding constants (K(d)) for RII binding to Ht31, mAKAP, and AKAP15/18 were 10 nm, 119 nm, and 6.6 microm, respectively. PKA stimulation of intact Chinese hamster ovary cells increased RIIalpha binding to AKAP100/mAKAP and AKAP15/18 by approximately 7- and 82-fold, respectively. These results suggest that differences in primary sequence of the RII-binding domain may be responsible for the selective affinity of RII for different AKAPs. Furthermore, RII autophosphorylation may provide additional localized regulation of kinase anchoring. In cardiac myocytes, disruption of RII-AKAP interaction decreased PKA phosphorylation of the PKA substrate, myosin-binding protein C. Thus, these mechanisms may be involved in adding additional specificity in intracellular signaling in diverse cell types and under conditions of cAMP/PKA activation.  相似文献   

17.
The µ opioid receptor gene, OPRM1, undergoes extensive alternative pre-mRNA splicing in rodents and humans, with dozens of alternatively spliced variants of the OPRM1 gene. The present studies establish a SYBR green quantitative PCR (qPCR) assay to more accurately quantify mouse OPRM1 splice variant mRNAs. Using these qPCR assays, we examined the expression of OPRM1 splice variant mRNAs in selected brain regions of four inbred mouse strains displaying differences in µ opioid-induced tolerance and physical dependence: C56BL/6J, 129P3/J, SJL/J and SWR/J. The complete mRNA expression profiles of the OPRM1 splice variants reveal marked differences of the variant mRNA expression among the brain regions in each mouse strain, suggesting region-specific alternative splicing of the OPRM1 gene. The expression of many variants was also strain-specific, implying a genetic influence on OPRM1 alternative splicing. The expression levels of a number of the variant mRNAs in certain brain regions appear to correlate with strain sensitivities to morphine analgesia, tolerance and physical dependence in four mouse strains.  相似文献   

18.
19.
Protein kinase CK1 (formerly termed casein kinase I) is ubiquitous in eukaryotic cells and comprises a family of as many as 14 isoforms (including splice variants) in mammalian cells. Mammalian CK1delta and CK1epsilon, which are highly related to each other, are enriched at the centrosomes in interphase cells and at the spindle during mitosis. In the present study we have isolated, using the yeast two-hybrid system, a 182 amino acid residue fragment of the centrosomal and golgi N-kinase anchoring protein (CG-NAP, also known as AKAP450), which specifically interacts with CK1delta and CK1epsilon, but not with other CK1 isoforms. The 182 amino acid residue CG-NAP fragment, or full length CG-NAP, co-immunoprecipitates with CK1delta and CK1epsilon from mammalian cells. Consistent with this association, endogenous CG-NAP/AKAP450 and CK1delta co-localize in cells. Moreover, when expressed in the presence of CK1delta the 182 amino acid residue CG-NAP fragment adopts the same sub-cellular localization as CK1delta. Strikingly, attachment of the CG-NAP fragment to the plasma membrane is sufficient to re-localize a significant level of CK1delta to the membrane. These findings support a model in which sub-cellular localization of CK1delta/epsilon molecules at the centrosome is mediated, at least in part, through the action of CG-NAP/AKAP450 and provide a potential mechanism by which the contribution to cell cycle progression by CK1delta/epsilon may be regulated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号