首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The lung is a highly branched fluid-filled structure, that develops by repeated dichotomous branching of a single bud off the foregut, of epithelium invaginating into mesenchyme. Incorporating the known stress response of developing lung tissues, we model the developing embryonic lung in fluid mechanical terms. We suggest that the repeated branching of the early embryonic lung can be understood as the natural physical consequence of the interactions of two or more plastic substances with surface tension between them. The model makes qualitative and quantitative predictions, as well as suggesting an explanation for such observed phenomena as the asymmetric second branching of the embryonic bronchi.  相似文献   

2.
The development of many organs, including the lung, depends upon a process known as branching morphogenesis, in which a simple epithelial bud gives rise to a complex tree-like system of tubes specialized for the transport of gas or fluids. Previous studies on lung development have highlighted a role for fibroblast growth factors (FGFs), made by the mesodermal cells, in promoting the proliferation, budding, and chemotaxis of the epithelial endoderm. Here, by using a three-dimensional culture system, we provide evidence for a novel role for Netrins, best known as axonal guidance molecules, in modulating the morphogenetic response of lung endoderm to exogenous FGFs. This effect involves inhibition of localized changes in cell shape and phosphorylation of the intracellular mitogen-activated protein kinase(s) (ERK1/2, for extracellular signal-regulated kinase-1 and -2), elicited by exogenous FGFs. The temporal and spatial expression of netrin 1, netrin 4, and Unc5b genes and the localization of Netrin-4 protein in vivo suggest a model in which Netrins in the basal lamina locally modulate and fine-tune the outgrowth and shape of emergent epithelial buds.  相似文献   

3.
Mouse salivary epithelium cannot undergo branching morphogenesis in the absence of the surrounding mesenchyme. To clarify the nature of the mesenchymal influence on the epithelium, we have investigated the culture conditions in which the epithelium could normally branch in the absence of mesenchymal cells. Combination of basement-membrane-like substratum (Matrigel) and epidermal growth factor (EGF) could substitute for the mesenchyme, the epithelium showing typical branching morphogenesis. Transforming growth factor alpha had the same effect as EGF. Matrigel plus basic fibroblast growth factor or transforming growth factor beta 1 and collagen gel plus EGF were not sufficient to support the branching of the epithelium. These results clearly reveal that the role of mesenchyme in salivary morphogenesis is both to provide the epithelium with an appropriate substratum and to accelerate growth of the epithelium.  相似文献   

4.
Cell-matrix interactions are generally considered critical for normal lung development. This is particularly likely to be true during the glandular stage, when the primitive airways are formed through a process termed branching morphogenesis. Integrins, transmembrane receptors that bind to extracellular matrices, are likely to mediate important interactions between embryonic cells and their matrices during branching morphogenesis. In this report, we examine the role of integrin receptors in this process. Immunohistochemical studies revealed that the integrins VLA 3, VLA 5 and integrin receptors to vitronectin are expressed in the epithelium and/or mesenchyme during the glandular stage of murine lung development. To correlate expression with function, an in vitro model of murine lung branching morphogenesis was utilized to examine branching in the presence of inhibitors of ligand binding to integrin receptors. One such reagent, a hexapeptide containing the RGD (Arg-Gly-Asp) sequence, diminished branching and resulted in an abnormal morphology, whereas a control peptide RGESP (Arg-Gly-Glu-Ser-Pro) had no effect. These findings suggest a critical role for cell-matrix interactions mediated via integrin receptors in early stages of mammalian lung development.  相似文献   

5.
Although thyroid hormone (T(3)) influences epithelial cell differentiation during late fetal lung development, its effects on early lung morphogenesis are unknown. We hypothesized that T(3) would alter embryonic lung airway branching and temporal-spatial differentiation of the lung epithelium and mesenchyme. Gestational day 11.5 embryonic mouse lungs were cultured for 72 h in BGJb serum-free medium without or with added T(3) (0.2, 2.0, 10.0, or 100 nM). Evaluation of terminal bud counts showed a dose- and time-dependent decrease in branching morphogenesis. Cell proliferation was also significantly decreased with higher doses of T(3). Morphometric analysis of lung histology showed that T(3) caused a dose-dependent decrease in mesenchyme and increase in cuboidal epithelia and airway space. Immunocytochemistry showed that with T(3) treatment, Nkx2.1 and surfactant protein SP-C proteins became progressively localized to cuboidal epithelial cells and mesenchymal expression of Hoxb5 was reduced, a pattern resembling late fetal lung development. We conclude that exogenous T(3) treatment during early lung development accelerated epithelial and mesenchymal cell differentiation at the expense of premature reduction in new branch formation and lung growth.  相似文献   

6.
Bone morphogenetic protein (BMP) 4 plays very important roles in regulating developmental processes of many organs, including lung. Smad1 is one of the BMP receptor downstream signaling proteins that transduce BMP4 ligand signaling from cell surface to nucleus. The dynamic expression patterns of Smad1 in embryonic mouse lungs were examined using immunohistochemistry. Smad1 protein was predominantly detected in peripheral airway epithelial cells of early embryonic lung tissue [embryonic day 12.5 (E12.5)], whereas Smad1 protein expression in mesenchymal cells increased during mid-late gestation. Many Smad1-positive mesenchymal cells were localized adjacent to large airway epithelial cells and endothelial cells of blood vessels, which colocalized with a molecular marker of smooth muscle cells (alpha-smooth muscle actin). The biological function of Smad1 in early lung branching morphogenesis was then studied in our established E11.5 lung explant culture model. Reduction of endogenous Smad1 expression was achieved by adding a Smad1-specific antisense DNA oligonucleotide, causing approximately 20% reduction of lung epithelial branching. Furthermore, airway epithelial cell proliferation and differentiation were also inhibited when endogenous Smad1 expression was knocked down. Therefore, these data indicate that Smad1, acting as an intracellular BMP signaling pathway component, positively regulates early mouse embryonic lung branching morphogenesis.  相似文献   

7.
The mammalian pancreas is a highly branched gland, essential for both digestion and glucose homeostasis. Pancreatic branching, however, is poorly understood, both at the ultrastructural and cellular levels. In this article, we characterize the morphogenesis of pancreatic branches, from gross anatomy to the dynamics of their epithelial organization. We identify trends in pancreatic branch morphology and introduce a novel mechanism for branch formation, which involves transient epithelial stratification and partial loss of cell polarity, changes in cell shape and cell rearrangements, de novo tubulogenesis and epithelial tubule remodeling. In contrast to the classical epithelial budding and tube extension observed in other organs, a pancreatic branch takes shape as a multi-lumen tubular plexus coordinately extends and remodels into a ramifying, single-lumen ductal system. Moreover, our studies identify a role for EphB signaling in epithelial remodeling during pancreatic branching. Overall, these results illustrate distinct, step-wise cellular mechanisms by which pancreatic epithelium shapes itself to create a functional branching organ.  相似文献   

8.
Semaphorin III/collapsin-1 (Sema3A) guides a specific subset of neuronal growth cones as a repulsive molecule. In this study, we have investigated a possible role of non-neuronal Sema3A in lung morphogenesis. Expression of mRNAs of Sema3A and neuropilin-1 (NP-1), a Sema3A receptor, was detected in fetal and adult lungs. Sema3A-immunoreactive cells were found in airway and alveolar epithelial cells of the fetal and adult lungs. Immunoreactivity for NP-1 was seen in fetal and adult alveolar epithelial cells as well as endothelial cells. Immunoreactivity of collapsin response mediator protein CRMP (CRMP-2), an intracellular protein mediating Sema3A signaling, was localized in alveolar epithelial cells, nerve tissue and airway neuroendocrine cells. The expression of CRMP-2 increased during the fetal, neonate and adult periods, and this pattern paralleled that of NP-1. In a two-day culture of lung explants from fetal mouse lung (E11.5), with exogenous Sema3A at a dose comparable to that which induces growth cone collapse of dorsal root ganglia neurons, the number of terminal buds was reduced in a dose-dependent manner when compared with control or untreated lung explants. This decrease was not accompanied with any alteration of the bromodeoxyuridine-positive DNA-synthesizing fraction. A soluble NP-1 lacking the transmembrane and intracellular region, neutralized the inhibitory effect of Sema3A. The fetal lung explants from neuropilin-1 homozygous null mice grew normally in vitro regardless of Sema3A treatment. These results provide evidence that Sema3A inhibits branching morphogenesis in lung bud organ cultures via NP-1 as a receptor or a component of a possible multimeric Sema3A receptor complex.  相似文献   

9.
 Hoxb-5 is one of the few homeobox genes strongly expressed in the developing mouse lung. To explore the hypothesis that Hoxb-5 acts to regulate epithelial cell fate and branching morphogenesis in the developing lung, we studied the temporal, spatial, and cell-specific expression of Hoxb-5 from gestational day (d) 13.5 to postnatal day (P) 2. Immunocytochemistry demonstrated regional localization of Hoxb-5 protein to developing conducting airways and surrounding mesenchyme. The cellular expression pattern changed from diffusely positive nuclei of mesenchymal cells on d13.5 to become more localized to nuclei of subepithelial fibroblasts and some adjacent columnar and cuboidal epithelial cells on d14.5. After d14.5, Hoxb-5 protein expression continued to decrease in mesenchymal cells distal from developing airways, but persisted in fibroblasts underlying conducting airways. Hoxb-5 protein expression persisted in nuclei of columnar and cuboidal epithelial cells on d16.5 and d17.5, with expression in low cuboidal epithelial cells as well from d17.5 to P2. Western blot analysis showed temporal and quantitative changes in Hoxb-5 protein expression with peak expression on d14.5–15.5. We conclude that Hoxb-5 protein is developmentally regulated in a temporal, spatial, and cell-specific manner throughout the pseudoglandular, canalicular, and terminal saccular periods of lung development in the mouse. This localization and expression pattern suggests that Hoxb-5 may influence branching morphogenesis, cell–cell communication, cell fate, and differentiation of conducting airway epithelia. Accepted: 5 May 1997  相似文献   

10.
Bone morphogenetic protein-4 (BMP-4) is a key morphogen for embryonic lung development that is expressed at high levels in the peripheral epithelium, but the mechanisms that modulate BMP-4 function in early mouse lung branching morphogenesis are unclear. Here, we studied the BMP-4 antagonist Gremlin, which is a member of the DAN family of BMP antagonists that can bind and block BMP-2/4 activity. The expression level of gremlin in embryonic mouse lungs is highest in the early embryonic pseudoglandular stage [embryonic days (E) 11.5-14.5] and is reduced during fetal lung maturation (E18.5 to postnatal day 1). In situ hybridization indicates that gremlin is diffusely expressed in peripheral lung mesenchyme and epithelium, but relatively high epithelial expression occurs in branching buds at E11.5 and in large airways after E16.5. In E11.5 lung organ culture, we found that exogenous BMP-4 dramatically enhanced peripheral lung epithelial branching morphogenesis, whereas reduction of endogenous gremlin expression with antisense oligonucleotides achieved the same gain-of-function phenotype as exogenous BMP-4, including increased epithelial cell proliferation and surfactant protein C expression. On the other hand, adenoviral overexpression of gremlin blocked the stimulatory effects of exogenous BMP-4. Therefore, our data support the hypothesis that Gremlin is a physiologically negative regulator of BMP-4 in lung branching morphogenesis.  相似文献   

11.
It has been shown experimentally that lung epithelial explants have an ability to undergo branching morphogenesis without mesenchyme. However, the mechanisms of this phenomenon remain to be elucidated. In the present study, we construct a mathematical model that can reproduce the dynamics of in vitro branching morphogenesis. We show that the system is essentially governed by three variables--c(0) which is the initial fibroblast growth factor (FGF) concentration, D which is the diffusion coefficient of FGF, and beta which describes the mechanical strength of the cytoskeleton. It is confirmed by numerical simulations that this model can reproduce the experimentally obtained patterns qualitatively. Finally, we experimentally verify two predictions from the model: effects of very high FGF concentration and effects of small mechanical contributions of the cytoskeleton. The theoretical predictions match well with the experimental results.  相似文献   

12.
Urinary tract morphogenesis requires subdivision of the ureteric bud (UB) into the intra-renal collecting system and the extra-renal ureter, by responding to signals in its surrounding mesenchyme. BMP4 is a mesenchymal regulator promoting ureter development, while GREM1 is necessary to negatively regulate BMP4 activity to induce UB branching. However, the mechanisms that regulate the GREM1-BMP4 signaling are unknown. Previous studies have shown that Six1-deficient mice lack kidneys, but form ureters. Here, we show that the tip cells of Six1−/− UB fail to form an ampulla for branching. Instead, the UB elongates within Tbx18- and Bmp4-expressing mesenchyme. We find that the expression of Grem1 in the metanephric mesenchyme (MM) is Six1-dependent. Treatment of Six1−/− kidney rudiments with GREM1 protein restores ampulla formation and branching morphogenesis. Furthermore, we demonstrate that genetic reduction of BMP4 levels in Six1−/− (Six1−/−; Bmp4+/−) embryos restores urinary tract morphogenesis and kidney formation. This study uncovers an essential function for Six1 in the MM as an upstream regulator of Grem1 in initiating branching morphogenesis.  相似文献   

13.
14.
Branching morphogenesis is a fundamental developmental process which results in amplification of epithelial surface area for exchanging molecules in organs including the lung, kidney, mammary gland and salivary gland. These complex tree-like structures are built by iterative rounds of simple routines of epithelial morphogenesis, including bud formation, extension, and bifurcation, that require constant remodeling of the extracellular matrix (ECM) and the cytoskeleton. In this review, we highlight the current understanding of the role of the ECM and cytoskeletal dynamics in branching morphogenesis across these different organs. The cellular and molecular mechanisms shared during this morphogenetic process provide insight into the development of other branching organs.  相似文献   

15.
《Organogenesis》2013,9(2):56-64
Branching morphogenesis is a fundamental developmental process which results in amplification of epithelial surface area for exchanging molecules in organs including the lung, kidney, mammary gland and salivary gland. These complex tree-like structures are built by iterative rounds of simple routines of epithelial morphogenesis, including bud formation, extension, and bifurcation, that require constant remodeling of the extracellular matrix (ECM) and the cytoskeleton. In this review, we highlight the current understanding of the role of the ECM and cytoskeletal dynamics in branching morphogenesis across these different organs. The cellular and molecular mechanisms shared during this morphogenetic process provide insight into the development of other branching organs.  相似文献   

16.
Hox proteins control structural morphogenesis, pattern formation and cell fate in the developing embryo. To determine if Hoxb-5 participates in patterning of early airway branching during lung morphogenesis, gestational day 11.5 embryonic lung cultures were treated with retinoic acid (RA) to up-regulate and antisense oligonucleotides to down-regulate Hoxb-5 protein expression. RA (10?6 M) and Hoxb-5 antisense oligonucleotide (20 μM) treatment each significantly decreased branching morphogenesis (P<0.001), but the morphology of branching under these conditions was very different. RA-treated lungs had elongated primary branches but decreased further branching with increased Hoxb-5 immunostaining in subepithelial regions underlying these elongated airways. Western blots confirmed that Hoxb-5 protein was increased by 189±20% (mean±S.E.M., P<0.05) in RA-treated lungs compared to controls. In contrast, lungs treated with Hoxb-5 antisense oligos plus RA had foreshortened primary branches with rudimentary distal clefts resulting in decreased numbers of primary and subsequent branches. Immunohistochemistry confirmed that Hoxb-5 antisense oligos inhibited Hoxb-5 protein expression even in the presence of RA. We conclude that regional and quantitative changes in Hoxb-5 protein expression influence morphogenesis of the first airway divisions from the mainstem bronchi. RA-induced alterations in branching are mediated in part through regulated Hoxb-5 expression.  相似文献   

17.
Recent investigations have suggested an active role for endothelial cells in organ development, including the lung. Herein, we investigated some of the molecular mechanisms underlying normal pulmonary vascular development and their influence on epithelial branching morphogenesis. Because the lung in utero develops in a relative hypoxic environment, we first investigated the influence of low oxygen on epithelial and vascular branching morphogenesis. Two transgenic mouse models, the C101-LacZ (epithelial-LacZ marker) and the Tie2-LacZ (endothelial-LacZ marker), were used. At embryonic day 11.5, primitive lung buds were dissected and cultured at either 20 or 3% oxygen. At 24-h intervals, epithelial and endothelial LacZ gene expression was visualized by X-galactosidase staining. The rate of branching of both tissue elements was increased in explants cultured at 3% oxygen compared with 20% oxygen. Low oxygen increased expression of VEGF, but not that of the VEGF receptor (Flk-1). Expression of two crucial epithelial branching factors, fibroblast growth factor-10 and bone morphogenetic protein-4, were not affected by low oxygen. Epithelial differentiation was maintained at low oxygen as shown by surfactant protein C in situ hybridization. To explore epithelial-vascular interactions, we inhibited vascular development with antisense oligonucleotides targeted against either hypoxia inducible factor-1 alpha or VEGF. Epithelial branching morphogenesis in vitro was dramatically abrogated when pulmonary vascular development was inhibited. Collectively, the in vitro data show that a low-oxygen environment enhances branching of both distal lung epithelium and vascular tissue and that pulmonary vascular development appears to be rate limiting for epithelial branching morphogenesis.  相似文献   

18.
The growth and differentiation of the epithelium in many tissues is mediated by interactions with the adjacent mesenchyme, but the mechanisms responsible remain undefined. To identify the factors involved in the growth and branching morphogenesis of ureteric bud, which is the collecting duct anlagen, buds from 13-gestation-day rat embryos were separated from the metanephrogenic mesenchyme and explanted to culture dishes coated with gelled type I collagen in a defined medium. Under these conditions buds attached to the substrate and grew out without indication of cell senescence. When buds were instead suspended in gelled type I collagen, branching morphogenesis was observed despite the absence of mesenchyme although it was not as extensive as in vivo. Since growth occurred much more slowly in culture than expected, culture conditions were varied in attempts to accelerate the process. Despite extensive screening of matrices and growth factors, only epidermal and endothelial cell growth factors stimulated growth to a significant extent. Transforming growth factor-beta, on the other hand, was a potent inhibitor of growth. Homogenates from tumors that caricature metanephrogenic mesenchyme were highly mitogenic for bud cells and, thus, will be a source of material for characterizing regulatory factors involved in renal growth. These studies show that growth and branching morphogenesis of the ureteric bud can occur without direct cell-cell interactions with the metanephrogenic mesenchyme and that matrices and factors secreted by the mesenchyme may mediated these activities in vivo.  相似文献   

19.
20.
Angiogenesis requires the development of a hierarchically branched network of vessels, which undergoes radial expansion and anastomosis to form a close circuit. Branching is achieved by coordinated behavior of endothelial cells that organize into leading “tip” cells and trailing “stalk” cells. Such organization is under control of the Dll4-Notch signaling pathway, which sets a hierarchy in receptiveness of cells to VEGF-A. Recent studies have shed light on a control of the Notch pathway by basement membrane proteins and integrin signaling, disclosing that extracellular matrix exerts active control on vascular branching morphogenesis. We will survey in the present review how extracellular matrix is a multifaceted substrate, which behind a classical structural role hides a powerful conductor function to shape the branching pattern of vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号