首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The arborescent architecture of mammalian conductive airways results from the repeated branching of lung endoderm into surrounding mesoderm. Subsequent lung's striking geometrical features have long raised the question of developmental mechanisms involved in morphogenesis. Many molecular actors have been identified, and several studies demonstrated the central role of Fgf10 and Shh in growth and branching. However, the actual branching mechanism and the way branching events are organized at the organ scale to achieve a self-avoiding tree remain to be understood through a model compatible with evidenced signaling. In this paper we show that the mere diffusion of FGF10 from distal mesenchyme involves differential epithelial proliferation that spontaneously leads to branching. Modeling FGF10 diffusion from sub-mesothelial mesenchyme where Fgf10 is known to be expressed and computing epithelial and mesenchymal growth in a coupled manner, we found that the resulting laplacian dynamics precisely accounts for the patterning of FGF10-induced genes, and that it spontaneously involves differential proliferation leading to a self-avoiding and space-filling tree, through mechanisms that we detail. The tree's fine morphological features depend on the epithelial growth response to FGF10, underlain by the lung's complex regulatory network. Notably, our results suggest that no branching information has to be encoded and that no master routine is required to organize branching events at the organ scale. Despite its simplicity, this model identifies key mechanisms of lung development, from branching to organ-scale organization, and could prove relevant to the development of other branched organs relying on similar pathways.  相似文献   

2.
Mammalian lung develops as an evagination of ventral gut endoderm into the underlying mesenchyme. Iterative epithelial branching, regulated by the surrounding mesenchyme, generates an elaborate network of airways from the initial lung bud. Fibroblast growth factors (FGFs) often mediate epithelial-mesenchymal interactions and mesenchymal Fgf10 is essential for epithelial branching in the developing lung. However, no FGF has been shown to regulate lung mesenchyme. In embryonic lung, Fgf9 is detected in airway epithelium and visceral pleura at E10.5, but is restricted to the pleura by E12.5. We report that mice homozygous for a targeted disruption of Fgf9 exhibit lung hypoplasia and early postnatal death. Fgf9(-/-) lungs exhibit reduced mesenchyme and decreased branching of airways, but show significant distal airspace formation and pneumocyte differentiation. Our results suggest that Fgf9 affects lung size by stimulating mesenchymal proliferation. The reduction in the amount of mesenchyme in Fgf9(-/-) lungs limits expression of mesenchymal Fgf10. We suggest a model whereby FGF9 signaling from the epithelium and reciprocal FGF10 signaling from the mesenchyme coordinately regulate epithelial airway branching and organ size during lung embryogenesis.  相似文献   

3.
4.
Most epithelial sheets emerge during embryogenesis by a branching and growth of the epithelium. The surrounding mesenchyme is crucial for this process. We report that branching morphogenesis and the formation of a new epithelium from the mesenchyme in the embryonic kidney can be blocked by a monoclonal antibody reacting with a surface glycolipid, disialoganglioside GD3. In contrast, a more than 10-fold excess of antibodies to adhesive glycoproteins (N-CAM, L-CAM, fibronectin) fails to inhibit morphogenesis. Although the anti-GD3 antibody affected epithelial development, the disialoganglioside GD3 was expressed not in the epithelium, but in the mesenchyme surrounding the developing epithelia. The data raise the intriguing possibility that the anti-GD3 antibody inhibits epithelial development by interfering with epithelial-mesenchymal interactions.  相似文献   

5.
Mesenchymal control of branching pattern in the fetal mouse lung   总被引:1,自引:0,他引:1  
The effect of mesenchyme on specialization of respiratory epithelium in the fetal mouse was tested in organ cultures. Heterologous combinations were made between respiratory and non-respiratory lung epithelia and the corresponding mesenchymes. Isolated terminal respiratory buds of fetal mouse lungs were recombined with mesenchyme from chick lung parabronchi, mouse trachea or from the avascular, non-respiratory air sacs of chick lungs. Isolated non-branching chick air sacs were combined with mouse terminal bud mesenchyme or mesenchyme from the respiratory branches of chick lungs. Air sac epithelia branched in a pattern characteristic of the chick lung when combined with chick respiratory mesenchyme and in a pattern characteristic of mouse lung when combined with mouse terminal bud mesenchyme. Mouse terminal bud epithelia did not branch with either mouse tracheal mesenchyme or chick air sac mesenchyme but branched in a chick pattern with chick parabronchial mesenchyme. Electron microscopic examination of the cultures showed that all chick air sac epithelial cultures failed to produce surfactant (lamellar bodies) even when they branched. Control cultures of mouse terminal buds contained large numbers of lamellar bodies; mesenchyme which suppressed branching reduced the number of lamellar bodies to only a few in a small proportion of the cells. Culture medium supplemented with growth factors and hormones increased the number of lamellar bodies in heterologous mouse combinations but did not bring the number to control levels. Supplemented medium had no effect on lamellar body production by chick air sac epithelium. The results indicate that branching pattern is determined by the mesenchyme surrounding the epithelial primordium. However, the capacity to synthesize surfactant is determined by the source of the epithelium; mesenchyme may control the degree of expression but not the absolute presence or absence of the differentiated condition.  相似文献   

6.
The induction, growth, and differentiation of epithelial lung buds are regulated by the interaction of signals between the lung epithelium and its surrounding mesenchyme. Fibroblast growth factor-10 (FGF-10), which is expressed in the mesenchyme near the distal tips, and bone morphogenetic protein 4 (BMP4), which is expressed in the most distal regions of the epithelium, are important molecules in lung morphogenesis. In the present study, we used two in vitro systems to examine the induction, growth, and differentiation of lung epithelium. Transfilter cultures were used to determine the effect of diffusible factors from the distal lung mesenchyme (LgM) on epithelial branching, and FGF-10 bead cultures were used to ascertain the effect of a high local concentration of a single diffusible molecule on the epithelium. Embryonic tracheal epithelium (TrE) was induced to grow in both culture systems and to express the distal epithelial marker surfactant protein C at the tips nearest the diffusible protein source. TrE cultured on the opposite side of a filter to LgM branched in a pattern resembling intact lungs, whereas TrE cultured in apposition to an FGF-10 bead resembled a single elongating epithelial bud. Examination of the role of BMP4 on lung bud morphogenesis revealed that BMP4 signaling suppressed expression of the proximal epithelial genes Ccsp and Foxj1 in both types of culture and upregulated the expression of Sprouty 2 in TrE cultured with an FGF-10 bead. Antagonizing BMP signaling with Noggin, however, increased expression of both Ccsp and Foxj1.  相似文献   

7.
Experimental evidence is rapidly emerging that the coupling of positive regulatory signals with the induction of negative feedback modulators is a mechanism of fine regulation in development. Studies in Drosophila and chick have shown that members of the SPROUTY family are inducible negative regulators of growth factors that act through tyrosine kinase receptors. We and others have shown that Fibroblast Growth Factor 10 (FGF10) is a key positive regulator of lung branching morphogenesis. Herein, we provide direct evidence that mSprouty2 is dynamically expressed in the peripheral endoderm in embryonic lung and is downregulated in the clefts between new branches at E12.5. We found that mSprouty2 was expressed in a domain restricted in time and space, adjacent to that of Fgf10 in the peripheral mesenchyme. By E14.5, Fgf10 expression was restricted to a narrow domain of mesenchyme along the extreme edges of the individual lung lobes, whereas mSprouty2 was most highly expressed in the subjacent epithelial terminal buds. FGF10 beads upregulated the expression of mSprouty2 in adjacent epithelium in embryonic lung explant culture. Lung cultures treated with exogenous FGF10 showed greater branching and higher levels of mSpry2 mRNA. Conversely, Fgf10 antisense oligonucleotides reduced branching and decreased mSpry2 mRNA levels. However, treatment with exogenous FGF10 or antisense Fgf10 did not change Shh and FgfR2 mRNA levels in the lungs. We investigated Sprouty2 function during lung development by two different but complementary approaches. The targeted overexpression of mSprouty2 in the peripheral lung epithelium in vivo, using the Surfactant Protein C promoter, resulted in a low level of branching, lung lobe edges abnormal in appearance and the inhibition of epithelial proliferation. Transient high-level overexpression of mSpry2 throughout the pulmonary epithelium by intra-tracheal adenovirus microinjection also resulted in a low level of branching. These results indicate for the first time that mSPROUTY2 functions as a negative regulator of embryonic lung morphogenesis and growth.  相似文献   

8.
Many studies have suggested that transforming growth factor beta (TGF-beta) and bone morphogenetic protein 4 (Bmp4) regulate early development of the lung. In this study, administration of growth factors directly into the lumen of lungs grown in organ culture was used to limit their activity to the epithelium and test the hypothesis that signaling to the epithelium is sufficient to mediate the known effects of TGF-beta and BMP-4 on early lung development. Addition of TGF-beta1, beta2, or beta3 to the medium surrounding lungs grown in organ culture resulted in decreased branching, reduced cell proliferation, accumulation of alpha-smooth muscle actin protein (alpha-SMA) in the mesenchyme, and decreased expression of a marker for respiratory epithelium, surfactant protein-C (Sp-C). When TGF-beta1 was restricted to the epithelium, accumulation of alpha-SMA and inhibition of Sp-C expression were not observed but branching and proliferation were inhibited. In contrast, branching was not inhibited in lungs where TGF-beta2 or TGF-beta3 were restricted to the epithelium suggesting differences in the mechanism of signaling by TGF-beta1, TGF-beta2 or TGF -beta3 in lung. Addition of Bmp4 to the medium surrounding lungs grown in organ culture stimulated cell proliferation and branching morphogenesis; however, direct injection of Bmp4 into the lung lumen had no effect on proliferation or branching. Based on these data and data from mesenchyme-free cultures, we propose that the mesenchyme influences growth factor signaling in the lung.  相似文献   

9.
Branching morphogenesis occurs during the development of many organs, and the embryonic mouse submandibular gland (SMG) is a classical model for the study of branching morphogenesis. In the developing SMG, this process involves iterative steps of epithelial bud and duct formation, to ultimately give rise to a complex branched network of acini and ducts, which serve to produce and modify/transport the saliva, respectively, into the oral cavity1-3. The epithelial-associated basement membrane and aspects of the mesenchymal compartment, including the mesenchyme cells, growth factors and the extracellular matrix, produced by these cells, are critical to the branching mechanism, although how the cellular and molecular events are coordinated remains poorly understood 4. The study of the molecular mechanisms driving epithelial morphogenesis advances our understanding of developmental mechanisms and provides insight into possible regenerative medicine approaches. Such studies have been hampered due to the lack of effective methods for genetic manipulation of the salivary epithelium. Currently, adenoviral transduction represents the most effective method for targeting epithelial cells in adult glands in vivo5. However, in embryonic explants, dense mesenchyme and the basement membrane surrounding the epithelial cells impedes viral access to the epithelial cells. If the mesenchyme is removed, the epithelium can be transfected using adenoviruses, and epithelial rudiments can resume branching morphogenesis in the presence of Matrigel or laminin-1116,7. Mesenchyme-free epithelial rudiment growth also requires additional supplementation with soluble growth factors and does not fully recapitulate branching morphogenesis as it occurs in intact glands8. Here we describe a technique which facilitates adenoviral transduction of epithelial cells and culture of the transfected epithelium with associated mesenchyme. Following microdissection of the embryonic SMGs, removal of the mesenchyme, and viral infection of the epithelium with a GFP-containing adenovirus, we show that the epithelium spontaneously recombines with uninfected mesenchyme, recapitulating intact SMG glandular structure and branching morphogenesis. The genetically modified epithelial cell population can be easily monitored using standard fluorescence microscopy methods, if fluorescently-tagged adenoviral constructs are used. The tissue recombination method described here is currently the most effective and accessible method for transfection of epithelial cells with a wild-type or mutant vector within a complex 3D tissue construct that does not require generation of transgenic animals.  相似文献   

10.
Epithelial tissues in various organ rudiments undergo extensive shape changes during their development. The processes of epithelial shape change are controlled by tissue interactions with the surrounding mesenchyme which is kept in direct contact with the epithelium. One of the organs which has been extensively studied is the mouse embryonic submandibular gland, whose epithelium shows the characteristic branching morphogenesis beginning with the formation of narrow and deep clefts as well as changes in tissue organization. Various molecules in the mesenchyme, including growth factors and extracellular matrix components, affect changes of epithelial shape and tissue organization. Also, mesenchymal tissue exhibits dynamic properties such as directional movements in groups and rearrangement of collagen fibers coupled with force-generation by mesenchymal cells. The epithelium, during early branching morphogenesis, makes a cell mass where cell-cell adhesion systems are less developed. Such properties of both the mesenchyme and epithelium are significant for considering how clefts, which first appear as unstable tiny indentations on epithelial surfaces, are formed and stabilized.  相似文献   

11.
Epidermal growth factor receptor (EGF-R) regulates epithelial morphogenesis during development and is important for the proper branching of the lung, mammary gland, and pancreas. We analyzed the salivary gland phenotype of EGF-R-deficient mice and showed impaired growth, branching, and maturation of the epithelium. Furthermore, treatment of wild-type E13 salivary glands with gefitinib, a small molecular inhibitor of EGF-R, led to apoptosis of the mesenchyme. Interestingly, MMP2 and plasminogen activators were upregulated upon inhibition of EGF-R signaling. To summarize, we show that EGF-R is a physiological regulator of salivary gland development and its main function is to support the proliferation and maturation of the epithelium and the survival of the mesenchyme.  相似文献   

12.
Mouse salivary epithelium cannot undergo branching morphogenesis in the absence of the surrounding mesenchyme. To clarify the nature of the mesenchymal influence on the epithelium, we have investigated the culture conditions in which the epithelium could normally branch in the absence of mesenchymal cells. Combination of basement-membrane-like substratum (Matrigel) and epidermal growth factor (EGF) could substitute for the mesenchyme, the epithelium showing typical branching morphogenesis. Transforming growth factor alpha had the same effect as EGF. Matrigel plus basic fibroblast growth factor or transforming growth factor beta 1 and collagen gel plus EGF were not sufficient to support the branching of the epithelium. These results clearly reveal that the role of mesenchyme in salivary morphogenesis is both to provide the epithelium with an appropriate substratum and to accelerate growth of the epithelium.  相似文献   

13.
Vascular endothelial growth factor-A (VEGF-A) signaling directs both vasculogenesis and angiogenesis. However, the role of VEGF-A ligand signaling in the regulation of epithelial-mesenchymal interactions during early mouse lung morphogenesis remains incompletely characterized. Fetal liver kinase-1 (Flk-1) is a VEGF cognate receptor (VEGF-R2) expressed in the embryonic lung mesenchyme. VEGF-A, expressed in the epithelium, is a high affinity ligand for Flk-1. We have used both gain and loss of function approaches to investigate the role of this VEGF-A signaling pathway during lung morphogenesis. Herein, we demonstrate that exogenous VEGF 164, one of the 3 isoforms generated by alternative splicing of the Vegf-A gene, stimulates mouse embryonic lung branching morphogenesis in culture and increases the index of proliferation in both epithelium and mesenchyme. In addition, it induces differential gene and protein expression among several key lung morphogenetic genes, including up-regulation of BMP-4 and Sp-c expression as well as an increase in Flk-1-positive mesenchymal cells. Conversely, embryonic lung culture with an antisense oligodeoxynucleotide (ODN) to the Flk-1 receptor led to reduced epithelial branching, decreased epithelial and mesenchymal proliferation index as well as downregulating BMP-4 expression. These results demonstrate that the VEGF pathway is involved in driving epithelial to endothelial crosstalk in embryonic mouse lung morphogenesis.  相似文献   

14.
The budding of the urogenital sinus epithelium into the surrounding mesenchyme signals the onset of prostate morphogenesis. The epithelial and mesenchymal factors that regulate ductal budding and the ensuing process of ductal growth and branching are not fully known. We provide evidence that bone morphogenetic protein 4 (BMP4) is a mesenchymal factor that regulates ductal morphogenesis. The Bmp4 gene was most highly expressed in the male urogenital sinus from embryonic day 14 through birth, a period marked by formation of main prostatic ducts and initiation of ductal branching. From an initial wide distribution throughout the prostatic anlage of the urogenital sinus, Bmp4 expression became progressively restricted to the mesenchyme immediately surrounding the nascent prostatic ducts and branches. Exogenous BMP4 inhibited epithelial cell proliferation and exhibited a dose-dependent inhibition of ductal budding in urogenital sinus tissues cultured in vitro. Adult Bmp4 haploinsufficient mice exhibited an increased number of duct tips in both the ventral prostate and coagulating gland. Taken together, our data indicate that BMP4 is a urogenital sinus mesenchymal factor that restricts prostate ductal budding and branching morphogenesis.  相似文献   

15.
Although thyroid hormone (T(3)) influences epithelial cell differentiation during late fetal lung development, its effects on early lung morphogenesis are unknown. We hypothesized that T(3) would alter embryonic lung airway branching and temporal-spatial differentiation of the lung epithelium and mesenchyme. Gestational day 11.5 embryonic mouse lungs were cultured for 72 h in BGJb serum-free medium without or with added T(3) (0.2, 2.0, 10.0, or 100 nM). Evaluation of terminal bud counts showed a dose- and time-dependent decrease in branching morphogenesis. Cell proliferation was also significantly decreased with higher doses of T(3). Morphometric analysis of lung histology showed that T(3) caused a dose-dependent decrease in mesenchyme and increase in cuboidal epithelia and airway space. Immunocytochemistry showed that with T(3) treatment, Nkx2.1 and surfactant protein SP-C proteins became progressively localized to cuboidal epithelial cells and mesenchymal expression of Hoxb5 was reduced, a pattern resembling late fetal lung development. We conclude that exogenous T(3) treatment during early lung development accelerated epithelial and mesenchymal cell differentiation at the expense of premature reduction in new branch formation and lung growth.  相似文献   

16.
It has been shown that branching morphogenesis of the lung bud is mediated by epithelial-mesenchymal interaction via such molecules as FGF10, BMP4 and Shh. However, a recent study showed that the isolated lung epithelium still undergoes branching morphogenesis in vitro even in the absence of mesenchyme (Nogawa and Ito, 1995). In the present study, we observed in vitro the dynamic movement of the isolated lung epithelium of the fetal mouse using time-lapse recording, and investigatedthe roles of actinfilaments in branching of the lung bud. First, time-lapse observation of the initial phase of lung branching morphogenesis revealed that at the sites of cleft formation, the epithelial surface was retracted inward from its original position. From this observation we assumed that there should be some structures which exert a physical force on the epithelium, and the localization and arrangement of actin fibers in the cultured lung epithelium were examined at various stages of branching morphogenesis. At the prebudding (6 h) and onset-budding (24 h) stages, no specific localization of actin filaments was observed in the lung bud epithelium, but at the postbudding stage (48 h) they were localized densely in the cells at the tip of the branched lung epithelium. The cell density was not different between the tip and cleft regions of the lung bud epithelium. When cultured with FGF-soaked beads, an actin-rich region was induced at the tip of the lung bud which was growing toward an FGF-soaked bead. These results indicate that actin fibers do not play a significant part in cleft formation but can be secondarily induced by FGF in the surrounding matrix and play some roles at later shaping of the branch in lung morphogenesis.  相似文献   

17.
The mechanisms by which the branching of epithelial tissue occurs and is regulated to generate different organ structures are not well understood. In this work, image analyses of the organ rudiments demonstrate specific epithelial branching patterns for the early lung and kidney; the lung type typically generating several side branches, whereas kidney branching was mainly dichotomous. Parameters such as the number of epithelial tips, the angle of the first branch, the position index of the first branch (PIFB) in a module, and the percentage of epithelial module type (PMT) were analysed. The branching patterns in the cultured lung and kidney, and in homotypic tissue recombinants recapitulated their early in vivo branching patterns. The parameters were applied to heterotypic tissue recombinants between lung mesenchyme and ureteric bud, and tip number, PIFB and PMT values qualified the change in ureter morphogenesis and the reprogramming of the ureteric bud with lung mesenchyme. All the values for the heterotypic recombinant between ureteric bud and lung mesenchyme were significantly different from those for kidney samples but similar to those of the lung samples. Hence, lung mesenchyme can instruct the ureteric bud to undergo aspects of early lung-type epithelial morphogenesis. Different areas of the lung mesenchyme, except the tracheal region, were sufficient to promote ureteric bud growth and branching. In conclusion, our findings provide morphogenetic parameters for monitoring epithelial development in early embryonic lung and kidney and demonstrate the use of heterotypic tissue recombinants as a model for studying tissue-specific epithelial branching during organogenesis.  相似文献   

18.
During development, the epithelial component of the lung goes through a complex orderly process of branching, following strict patterns of space and time. Proteoglycans, glycosaminoglycans and growth factors are fundamental components of the extracellular matrix and perform a key role in differentiative processes. The embryonic chick lung shows a specific glycosaminoglycan composition at different levels of branching and at different embryonic stages. Proteoglycan and glycosaminoglycan accumulation is the result of secretion, absorption and degradation processes. In this pathway, enzymes, such as glycosidases, growth factors and cytokines are involved. We examined the behaviour of glycosidases, such as beta-hexosaminidases (beta-N-acetyl-D-glucosaminidase, beta-N-acetyl-D-galactosaminidase), beta-glucuronidase and beta-galactosidase, during the development of the lung bud. Our data show that the activity of the enzymes is closely linked to the processes of epithelial proliferation, bronchial tubule lengthening and infiltration of the surrounding mesenchyme. The glycosaminoglycans colocalize with transforming growth factor beta2 and interleukin-1 in the basement membrane and in the mesenchymal areas where the epithelium grows, and are complementary to the presence of the glycosidases. In conclusion, the activity of these glycosidases is spatially and temporally programmed and favors the release of the factors and the events which they influence.  相似文献   

19.
Lung branching morphogenesis is a result of epithelial-mesenchymal interactions, which are in turn dependent on extracellular matrix composition and cytokine regulation. Polyamines have recently been demonstrated as able to modify chick embryo skin differentiation. In this work we have examined the effects of putrescine and spermidine during chick embryo lung morphogenesis in organotypic cultures by morphological, histochemical and biochemical examination. To verify the role of polyamines, we used specific inhibitors, such as bis-cyclohexylammonium sulphate and alfa-difluoromethylornithine, and transforming growth factor beta1, an ornithine decarboxylase and polyamine stimulator. Our data show that lung morphogenesis is significantly altered following the induced mesenchymal glycosaminoglycan changes. The increase of mesenchymal glycosaminoglycans is correlated with a stimulation of lung development in the presence of polyamines, and with its inhibition when transforming growth factor beta1 is added to the culture medium. The morphometric data show a uniform increase of both the mesenchyme and epithelial branching with spermidine and putrescine stimulus, whereas the mesenchymal substance alone is significantly increased in apical-median lung sections with transforming growth factor beta1 and transforming growth factor beta1 + spermidine lung cultures. Transforming growth factor beta1 and transforming growth factor beta1 + spermidine confirm the blocking of epithelial branching formations and fibroblast activation, and show that polyamines are unable to prevent the blocking of epithelial cells due to the inhibitory effect of transforming growth factor beta1.  相似文献   

20.
Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis   总被引:14,自引:0,他引:14  
Morphogenesis of the mouse lung involves reciprocal interactions between the epithelial endoderm and the surrounding mesenchyme, leading to an invariant early pattern of branching that forms the basis of the respiratory tree. There is evidence that Fibroblast growth factor 10 (Fgf10) and Bone Morphogenetic Protein 4 (Bmp4), expressed in the distal mesenchyme and endoderm, respectively, play important roles in branching morphogenesis. To examine these roles in more detail, we have exploited an in vitro culture system in which isolated endoderm is incubated in Matrigel(TM) substratum with Fgf-loaded beads. In addition, we have used a Bmp4(lacZ) line of mice in which lacZ faithfully reports Bmp4 expression. Analysis of lung endoderm in vivo shows a dynamic pattern of Bmp4(lacZ) expression during bud outgrowth, extension and branching. In vitro, Fgf10 induces both proliferation and chemotaxis of isolated endoderm, whether it is derived from the distal or proximal lung. Moreover, after 48 hours, Bmp4(lacZ) expression is upregulated in the endoderm closest to the bead. Addition of 30-50 ng/ml of exogenous purified Bmp4 to the culture medium inhibits Fgf-induced budding or chemotaxis, and inhibits overall proliferation. By contrast, the Bmp-binding protein Noggin enhances Fgf-induced morphogenesis. Based on these and other results, we propose a model for the combinatorial roles of Fgf10 and Bmp4 in branching morphogenesis of the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号