首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Y chromosome evolves from an autochromosome and accumulates male-related genes including sex-determining region of Y-chromosome (SRY) and several spermatogenesis-related genes.The human Y chromosome (60 Mb long) is largely composed of repeti-tive sequences that give it a heterochromatic appearance,and it consists of pseudoautosomal,euchromatic,and heterochromatic regions.Located on the two extremities of the Y chromosome,pseudoautosomal regions 1 and 2 (PAR1 and PAR2,2.6 Mb and 320 bp long,re-spectively) are homologs with the termini of the X chromosome.The euchromatic region and some of the repeat-rich heterochromatic parts of the Y chromosome are called "male-specific Y" (MSY),which occupy more than 95% of the whole Y chromosome.After evolu-tion,the Y chromosome becomes the smallest in size with the least number of genes but with the most number of copies of genes that are mostly spermatogenesis-related.The Y chromosome is characterized by highly repetitive sequences (including direct repeats,inverted repeats,and palindromes) and high polymorphism.Several gene rearrangements on the Y chromosome occur during evolution owing to its specific gene structure.The consequences of such rearrangements are not only loss but also gain of specific genes.One hundred and fifty three haplotypes have been discovered in the human Y chromosome.The structure of the Y chromosome in the GenBank belongs to haplotype R1.There are 220 genes (104 coding genes,111 pseudogenes,and 5 other uncategorized genes) according to the most recent count.The 104 coding genes encode a total of about 48 proteins/protein families (including putative proteins/protein families).Among them,16 gene products have been discovered in the azoospermia factor region (AZF) and are related to spermatogenesis.It has been dis-covered that one subset of gene rearrangements on the Y chromosome,"micro-deletions",is a major cause of male infertility in some populations.However,controversies exist about different Y chromosome haplotypes.Six AZFs of the Y chromosome have been discov-ered including AZFa,AZFb,AZFc,and their combinations AZFbc,AZFabc,and partial AZFc called AZFc/gr/gr.Different deletions in AZF lead to different content spermatogenesis loss from teratozoospermia to infertility in different populations depending on their Y hap-lotypes.This article describes the structure of the human Y chromosome and investigates the causes of micro-deletions and their relation-ship with male infertility from the view of chromosome evolution.After analysis of the relationship between AZFc and male infertility,we concluded that spermatogenesis is controlled by a network of genes,which may locate on the Y chromosome,the autochromosomes,or even on the X chromosome.Further investigation of the molecular mechanisms underlying male fertility/infertifity will facilitate our knowledge of functional genomics.  相似文献   

2.
The long arm of the human Y chromosome is flecked with various fractions of repetitive DNA. DYZ1 is one such fraction, which is organized tandemly as an array of a 3.4-kb repeat ranging from 2000-4000 copies in normal males. We have studied the organizational variation of the DYZ1 fraction on the human Y chromosome using DNA samples from CEPH family members and the random population employing the RFLP approach, fluorescence in situ hybridization (FISH), and conducted a similarity search with GenBank sequences. Typing of genomic DNA using DYZ1 as a probe showed an allele length and copy number variations even between two male siblings. Hybridization of DNA from monochromosome hybrids with this probe showed its presence on chromosome 15 in addition to the Y chromosome. Fluorescence in situ hybridization of metaphase chromosomes from an apparently normal male showed DYZ1 sequences in the proximal region of chromosome 11 in addition to the long arm of the Y chromosome. Typing of sets of semen and blood DNA samples from the same human individuals showed discernible allelic variation between the two samples, indicating tissue-specific programmed sequence modulation. DYZ1 seems to be the first probe having the unique potential to discriminate unequivocally the difference between the DNA originating from semen and blood samples, and may be exploited in forensic cases. This probe may also be used as a diagnostic tool to ascertain Y chromosome mosaicism in patients (e.g., Turner), its aberrant status in somatic cells, and possible sequence modulation/rearrangement in the germline samples. Additionally, this can be used to uncover sequence polymorphism in the human population.  相似文献   

3.
Because ring Y chromosomes are unstable during cell division most reported patients are mosaics, usually including a 45,X cell line. The phenotype varies from normal males or females with streak gonads to sexual ambiguities. We present here the case of a 23-year-old man who was referred at 11 years for growth delay. The GTG-banded karyotypes of lymphocytes revealed two cell lines: 46,X,dic r(Y) seen in 76% of the metaphases analyzed and 45,X (24%). Karyotypes and FISH were performed eight years later with the following probes: DYZ3 (Y centromere), SRY (sex-region of the Y), DYZ1 (Yq heterochromatin), CEPX/Y (X centromere and Yq heterochromatin), TelVysion Xp/Yp, Xq/Yq (X and Y subtelomeres), pan-telomeric, cosmid clones LLycos130G04 and LLycos37C09 (PARII), and BAC clone RP11-5C5 (Yq11.223). The results showed an increase in the 45,X cell line (60%) and a reduction in the 46,X,dic r(Y) cell line (36.4%). The use of Yq probes showed that the ring Y chromosome was dicentric. In addition, other ring Y structures were observed. The breakpoints occurred in proximal Yp11.32 or in Yp11.31 distal to SRY and in Yq12 distal to the PARII region. Therefore, most of the Y remained intact and all genes, with the exception of those in PARI, are present in double dosage in the dic r(Y). The level of mosaicism was important in defining the phenotype.  相似文献   

4.
We assessed genomic instability of 3.4 kb DYZ1 repeat arrays in patients encompassing prostate cancer (PC), cases of repeated abortion (RA) and males exposed to natural background radiation (NBR) using real-time PCR and fluorescence in situ hybridization (FISH). Normal males showed DYZ1 copies ranging from 3000 to 4300, RA, 0-2237; PC, 550; and males exposed to NBR, 1577-5700. FISH showed organizational variation of DYZ1 in these samples substantiating the data obtained from real-time PCR. Of the 10 RA samples, 7 were found to be affected of which, 5 showed deletion of 265 bp from nt 25 to 290 and 773 bp from 1347 to 2119 and 2 showed deletion of 275 bp from nt 3128 to 3402. Copy number variation of DYZ1 in these males correlated with genetic constrains/anomalies. Although precise mechanisms of genomic instability of DYZ1 remains unclear, we construe that this repeat plays a critical role in maintaining the structural integrity of the Y chromosome, possibly by absorbing the load of mutations. This may be used as a marker system to analyze genetic integrity of the DYZ1 repeat array(s) across the spectrum of patients.  相似文献   

5.
The rise and fall of SRY   总被引:7,自引:0,他引:7  
Comparisons between species reveal when and how SRY, the testis-determining gene, evolved. SRY is younger than the Y chromosome, and so was probably not the original mammal sex-determining gene that defined the Y. SRY is typical of genes on the Y chromosome. It arose from a gene on the proto-sex chromosome pair with a function (possibly brain-determination) in both sexes. It has been buffeted in evolution, and shows variation in copy number, structure and expression. And it is dispensable, having been lost at least twice independently in different rodent lineages. At the observed rate of attrition, the human Y chromosome will be gone in 5-10 million years. This could lead to the extinction of our species or to a burst of hominid speciation.  相似文献   

6.
In this study, we report an accurate method to determine the parental origin of sex chromosome aneuploidies or polyploidies and to detect low percentage mosaicisms. We have amplified by polymerase chain reaction (PCR) five polymorphic markers along the X chromosome (DXS1283E, DYS II, DMD49, AR and DXS52) and three markers along the Y chromosome (SRY, DYZ3 and DYZ1). False-negative results were discarded by the simultaneous amplification of Y markers and of internal controls. We have applied this protocol to a series of 14 Turner syndrome patients with a 45,X karyotype. We have detected sex chromosome mosaicisms in two patients. The parental origin of the syndrome has been determined in the other 12 patients.  相似文献   

7.
Sex chromosome-related anomalies engender plethora of conditions leading to male infertility. Hypogonadotropic hypogonadism (HH) is a rare but well-known cause of male infertility. Present study was conducted to ascertain possible consensus on the alterations of the Y-linked genes and loci in males representing hypogonadism (H), which in turn culminate in reproductive dysfunction. A total of nineteen 46, XY males, clinically diagnosed with H (11 representative HH adults and eight prepubertal boys suspected of having HH) were included in the study. Sequence-tagged site screening, SRY gene sequencing, fluorescence in situ hybridization mapping (FISH), copy number and relative expression studies by real-time PCR were conducted to uncover the altered status of the Y chromosome in the patients. The result showed random microdeletions within the AZFa (73%)/b (78%) and c(26%) regions. Sequencing of the SRY gene showed nucleotide variations within and outside of the HMG box in four males (21%). FISH uncovered mosaicism for SRY, AMELY, DAZ genes and DYZ1 arrays, structural rearrangement for AMELY (31%) and duplication of DAZ (57%) genes. Copy number variation for seven Y-linked genes (2–8 rounds of duplication), DYZ1 arrays (495–6201copies) and differential expression of SRY, UTY and VCY in the patients’ blood were observed. Present work demonstrates the organizational vulnerability of several Y-linked genes in H males. These results are envisaged to be useful during routine diagnosis of H patients.  相似文献   

8.
AZF microdeletions on the Y chromosome of infertile men from Turkey   总被引:3,自引:0,他引:3  
Intervals V and VI of Yq11.23 regions contain responsible genes for spermatogenesis, and are named as "azoospermia factor locus" (AZF). Deletions in these genes are thought to be pathogenetically involved in some cases of male infertility associated with azoospermia or oligozoospermia. The aim of this study was to establish the prevalence of microdeletions on the Y chromosome in infertile Turkish males with azoospermia or oligozoospermia. We applied multiplex polymerase chain reaction (PCR) using several sequence-tagged site (STS) primer sets, in order to determine Y chromosome microdeletions. In this study, 61 infertile males were enrolled for the molecular AZF screening program. In this cohort, one infertile male had 46,XX karyotype and the remaining had 46,XY karyotypes. Forty-eight patients had a diagnosis of azoospermia and 13 had oligozoospermia. Microdeletions in AZFa, AZFb and AZFc (DAZ gene) regions were detected in two of the 60 (3.3%) idiopathic infertile males with normal karyotypes and a SRY translocation was determined on 46,XX male. Our findings suggest that genetic screening should be advised to infertile men before starting assisted reproductive treatments.  相似文献   

9.
Summary The syndrome of 46,XX true hermaphroditism is a clinical condition in which both ovarian and testicular tissue are found in one individual. Both Mullerian and Wolffian structures are usually present, and external genitalia are often ambiguous. Two alternative mechanisms have been proposed to explain the development of testicular tissue in these subjects: (1) translocation of chromosomal material encoding the testicular determination factor (TDF) from the Y to the X chromosome or to an autosome, or (2) an autosomal dominant mutation that permits testicular determination in the absence of TDF. We have investigated five subjects with 46,XX true hermaphroditism. Four individuals had a normal 46,XX karyotype; one subject (307) had an apparent terminal deletion of the short arm of one X chromosome. Genomic DNA was isolated from these individuals and subjected to Southern blot analysis. Only subject 307 had Y chromosomal sequences that included the pseudoautosomal boundary, SRY (sex-determining region of Y), ZFY (Y gene encoding a zinc finger protein), and DXYS5 (an anonymous locus on the distal short arm of Y) but lacked sequences for DYZ5 (proximal short arm of Y) and for the long arm probes DYZ1 and DYZ2. The genomic DNA of the other four subjects lacked detectable Y chromosomal sequences when assayed either by Southern blotting or after polymerase chain reaction amplification. Our data demonstrate that 46,XX true hermaphroditism is a genetically heterogeneous condition, some subjects having TDF sequences but most not. The 46,XX subjects without SRY may have a mutation of an autosomal gene that permits testicular determination in the absence of TDF.  相似文献   

10.
Deletions of two of four DAZ (Deleted in AZoospermia) gene copies located on the Y chromosome were associated with spermatogenic failure, but the information on DAZ copy number is still very scarce. The aim of this study was to determine the frequency of partial DAZ gene deletions and to analyze the existence of duplications in general Slovenian and Bosnian population. To answer these questions, we used real time PCR. We analyzed 100 male samples from Slovenian and Bosnian general population. The incidence of two DAZ gene copies was 6% (3/50) in Slovenian population. The incidence of more than four DAZ genes was 2% (1/50) in Slovenian population and 8% (4/50) in Bosnian population. Observed differences have not reached statistical significance. In conclusion we demonstrate that DAZ genes are not only prone to deletions but also to duplication events. Further studies are needed to estimate the prevalence of these mutations and its' relevance to male infertility.  相似文献   

11.
Y chromosome micro-deletions in idiopathic infertility from Northern India   总被引:3,自引:0,他引:3  
Azoospermia factor locus (AZF) is assumed to contain the genes responsible for spermatogenesis. Deletions in these genes are thought to be pathologically involved in some cases of male infertility associated with azoospermia or oligozoospermia. An attempt was made to establish the prevalence of micro-deletions on the Y chromosome in 79 infertile North Indians with azoospermia and oligozoospermia. Detail clinical examinations as well as endocrinological parameters were also done. Polymerase chain reaction (PCR) micro-deletion analysis was done in 79 infertile men. For this, genomic DNA was extracted from the peripheral blood. Seven sets of primers were used encompassing AZFa, AZFb and AZFc regions. Micro-deletions in five of the 79 cases (6.3%) showed deletions of at least one of the STS markers. Deletions were detected with known and unknown aetiology and at least in one of the infertile male with varicocele. AZF micro-deletions seen in idiopathic infertile males suggest the need for molecular screening in non-idiopathic cases.  相似文献   

12.
About 30% of couple infertilities are of male origin, some of them caused by genetic abnormalities of the Y chromosome. Deletions in AZF region can cause severe spermatogenic defects ranging from non-obstructive azoospermia to oligospermia. The intracytoplasmatic sperm injection technique (ICSI) is rapidly becoming a versatile procedure for human assisted reproduction in case of male infertility. The use of ICSI allows Y chromosome defects to be passed from father. The goal of our study is to evaluate the frequency of microdeletions in the long arm of Y chromosome, within the AZF regions, in these cases of infertilities, using molecular genetics techniques. Thirty infertile men with azoospermia or oligozoospermia, determined by spermogram, were studied after exclusion of patients with endocrine or obstructive causes of infertility. Peripheral blood DNA was extracted from each patient, then amplified by multiplex PCR with STS genomic markers from the Y chromosome AZF zones. Each case was checked by multiplex PCR through coamplification with the SRY marker. Three men with microdeletions of the long arm of the Y chromosome were diagnosed among the 30 patients, corresponding to a proportion of 10%. The relatively high proportion of microdeletions found in our population suggest the need for strict patient selection to avoid unnecessary screening for long arm Y chromosome microdeletions. The molecular diagnostics was performed according to the current European Academy of Andrology laboratory guidelines for molecular diagnosis of Y chromosomal microdeletions.  相似文献   

13.
14.
Human Y chromosome is used as a tool in male infertility and population genetic studies. The aims of this research were to analyse the prevalence of Y chromosome microdeletions among infertile Latvian men, and to identify possible lineages of Y chromosome that may be at increased risk of developing infertility. A study encompassed 105 infertile men with different spermatogenic disturbances. Deletions on Y chromosome were detected in 5 out of 105 (approximately 5%) cases analysed in this study. Three of them carried deletion in AZFc region and two individuals had AZFa + b + c deletion. Study of Y chromosome haplogroups showed that N3a1 and R1a1 lineages were found less frequently in the infertile male group compared to ethnic Latvian group, however K* cluster was predominantly found in infertile male Y chromosomes. Conclusions: 1) Our study advocates running Y chromosome microdeletion analyses only in cases of severe form of infertility; 2) Y chromosome haplogroup analysis showed statistically significant tendencies that some haplogroups are more common in ethnic male group, but others are more common in infertile males.  相似文献   

15.
Human Y chromosome is used as a tool in male infertility and population genetic studies. The aims of this research were to analyse the prevalence of Y chromosome microdeletions among infertile Latvian men, and to identify possible lineages of Y chromosome that may be at increased risk of developing infertility. A study encompassed 105 infertile men with different spermatogenic disturbances. Deletions on Y chromosome were detected in 5 out of 105 (∼5%) cases analysed in this study. Three of them carried deletion in AZFc region and two individuals had AZFa+b+c deletion. Study of Y chromosome haplogroups showed that N3a1 and R1a1 lineages were found less frequently in the infertile male group compared to ethnic Latvian group, however K* cluster was predominantly found in infertile male Y chromosomes. Conclusions: (1) Our study advocates running Y chromosome microdeletion analyses only in cases of severe form of infertility; (2) Ychromosome haplogroup analysis showed statistically significant tendencies that some haplogroups are more common in ethnic male group, but others are more common in infertile males.  相似文献   

16.
A case with an apparently balanced reciprocal translocation between the long arm of the Y chromosome and the short arm of chromosome 1 t(Y;1)(q11.2;p34.3) is described. The translocation was found in a phenotypically normal male ascertained by infertility and presenting for intra-cytoplasmatic sperm injection treatment. Histological examination of testicular biopsies revealed spermatogenic failure. Chromosome painting with probes for chromosome 1 and for the euchromatic part of the Y chromsome confirmed the translocation of euchromatic Y chromosomal material onto the short arm of chromosome 1 and of a substantial part of the short arm of chromosome 1 onto the Y chromosome. Among the Y/autosome translocations, the rearrangements involving long arm euchromatin of the Y chromosome are relatively rare and mostly associated with infertility. Microdeletion screening at the azoospermia locus revealed no deletions, suggesting another mechanism causing infertility in this translocation carrier.  相似文献   

17.
Infertile men having numerical or structural sperm defects may carry several genetic abnormalities (karyotype abnormalities, Y chromosome microdeletions, cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations, androgen receptor gene mutations, and abnormalities seen in sperm cells) leading to this situation. First we aimed to investigate the relationship between the numerical and constitutional (morphological) sperm anomalies and the genetic disorders that can be seen in infertile males. Our other aim was to compare two different kinds of kits that we use for the detection of Y chromosome microdeletions. Sixty-three infertile males [44 nonobstructive azoospermic, 8 severe oligozoospermic, and 11 oligoasthenoteratozoospermic] were investigated in terms of somatic chromosomal constitutions and microdeletions of the Y chromosome. Sperm aneuploidy levels were analyzed by fluorescence in situ hybridization (FISH) in sperm cells obtained from the semen of six OAT patients. Microdeletion and sex chromosome aneuploidy (47,XXY) rates in somatic cells were found to be approximately 3.2% and 4.7%, respectively. Sperm aneuploidy rates were determined as 9%, 22%, and 47% in three patients out of six. Two of these three patients also had high rates of head anomalies in semen samples. High correlation was found between sperm aneuploidy rates and sperm head anomalies. Since the introduction of the assisted reproductive techniques for the treatment of severe male infertility, genetic tests and genetic counseling became very important due to the transmission of genetic abnormalities to the next generation. Thus in a very near future, for a comprehensive male infertility panel, it will be essential to include additional genetic tests, such as CFTR gene mutations, sperm mitochondrial DNA mutations, and androgen receptor gene mutations, besides the conventional chromosomal analyses, Y chromosome microdeletion detection, and sperm-FISH analyses.  相似文献   

18.
In contrast to the rest of the genome, the Y chromosome is restricted to males and lacks recombination. As a result, Y chromosomes are unable to respond efficiently to selection, and newly formed Y chromosomes degenerate until few genes remain. The rapid loss of genes from newly formed Y chromosomes has been well studied, but gene loss from highly degenerate Y chromosomes has only recently received attention. Here, we identify and characterize a Y to autosome duplication of the male fertility gene kl-5 that occurred during the evolution of the testacea group species of Drosophila. The duplication was likely DNA based, as other Y-linked genes remain on the Y chromosome, the locations of introns are conserved, and expression analyses suggest that regulatory elements remain linked. Genetic mapping reveals that the autosomal copy of kl-5 resides on the dot chromosome, a tiny autosome with strongly suppressed recombination. Molecular evolutionary analyses show that autosomal copies of kl-5 have reduced polymorphism and little recombination. Importantly, the rate of protein evolution of kl-5 has increased significantly in lineages where it is on the dot versus Y linked. Further analyses suggest this pattern is a consequence of relaxed purifying selection, rather than adaptive evolution. Thus, although the initial fixation of the kl-5 duplication may have been advantageous, slightly deleterious mutations have accumulated in the dot-linked copies of kl-5 faster than in the Y-linked copies. Because the dot chromosome contains seven times more genes than the Y and is exposed to selection in both males and females, these results suggest that the dot suffers the deleterious effects of genetic linkage to more selective targets compared with the Y chromosome. Thus, a highly degenerate Y chromosome may not be the worst environment in the genome, as is generally thought, but may in fact be protected from the accumulation of deleterious mutations relative to other nonrecombining regions that contain more genes.  相似文献   

19.
The Y chromosome gene SRY (sex-determining region, Y gene) has been equated with the mammalian testis-determining factor. The SRY gene of five subjects with 46,XY complete gonadal dysgenesis (46,XY karyotype, completely female external genitalia, normal Müllerian ducts, and streak gonads) was evaluated for possible mutations in the coding region by using both single-strand conformation polymorphism (SSCP) assay and DNA sequencing. Mutations were identified in three subjects, of which two gave altered SSCP patterns. Two of them were point mutations causing amino acid substitutions, and the third was a single-base deletion causing a frameshift. All three mutations caused alterations in the putative DNA-binding region of the SRY protein. Genomic DNA was obtained from the fathers of two of the three mutant patients: one mutation was demonstrated to be de novo, and the other was inherited. The presence of SRY mutations in three of five patients suggests that the frequency of SRY mutations in XY females is higher than current estimates.  相似文献   

20.
The most frequent Y-autosome translocations involve an acrocentric autosome and they are frequently familial with neither phenotypic nor reproductive repercussion. However, different Y-autosome translocations have been related to infertility, due to abnormal pairing of the X and Y chromosomes at meiosis and an abnormal XY-body formation or by the disruption of the AZFs (Azoospermic Factor). Rare forms of Y-autosome translocations are those resulting in an unbalanced 45-chromosome karyotype that includes a dicentric Y+autosome chromosome. We describe a new case of a familial pseudodicentric 22;Y that is carried by 19 male members of a large family without phenotypic repercussion. Cytogenetic analysis, fluorescence in situ hybridisation (FISH) and subtelomeric Multiplex Ligation-dependent Probe Amplification (MLPA) assay have been performed. All male members of the family showed the karyotype 45,X,psu dic(22;Y)(p11.2;qter).ish psu dic(22;Y) (SRY+,DYZ3+,D14/D22Z1+). In conclusion, the presence of the dicentric chromosome in the male members of the family reported does not seem to interfere with the correct progression of spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号