首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taste buds are specialized epithelial cell clusters in the oral squamous cell epithelium. Although taste buds have been reported to renew rapidly, the mechanism of cell cycle control in these specialized structures remains unresolved. To clarify the cell cycle status and role of cyclin-dependent kinase inhibitors (CDKI) for cell cycle control in the taste buds, we analyzed cell proliferation activity using bromodeoxyuridine (BrdU) and Ki-67 immunostainings and the expression of the Cip/Kip family of CDKI (p21Cip1, p27Kip1, and p57Kip2) in the circumvallate papillae of mouse and hamster. BrdU-positive cells were detected in the basal layer of the oral epithelium. In the taste buds, Ki-67-positive cells were seen in the basal area, with only a very few positive cells in the taste buds. Both p21Cip1 and p27Kip1 positive cells were seen in the suprabasal layer of the non-gustatory oral epithelium. In the taste buds, stronger p27Kip1 staining was detected than in the non-gustatory epithelium. Western blotting analysis revealed that p27Kip1 was abundant in the mucosal tissues from circumvallate papillae. Thus, our study suggests that the taste bud cells except for basal cells are post-mitotic cells and that the cell cycle arrest associated with taste bud cell differentiation could be regulated predominantly by p27Kip1.  相似文献   

2.
Butyrate, a short-chain fatty acid produced in the colon, as well as its prodrug tributyrin, reduce proliferation and increase differentiation of colon cancer cells. p21(Waf1/Cip1) and p27(Kip1) are negative regulators of cell cycle and are thought to have a key function in the differentiation of various cell lines. We studied the effects of butyrate on differentiation, VDR expression, as well as on p21(Waf1/Cip1) and p27(Kip1) expression in human colon cancer cells (Caco-2). Butyrate induced cell differentiation, which was further enhanced after addition of 1,25-dihydroxycholecalciferol. Synergistic effect of butyrate and dihydroxycholecalciferol in Caco-2 cells was due to butyrate-induced overexpression of VDR. While butyrate as well as dihydroxycholecalciferol increased p21(Waf1/Cip1) and p27(Kip1) expression, in contrast combined exposure of butyrate and dihydroxycholecalciferol resulted in a synergistic amplification of p21(Waf1/Cip1), but not of p27(Kip1) expression. These data imply that butyrate selectively increases p21(Waf1/Cip1) expression via upregulation of VDR in Caco-2 cells.  相似文献   

3.
Electric fields (EFs) exert biological effects on promoting wound healing by facilitating cell division, cell proliferation, and cell directional migration toward the wound. In this study, we examined the inhibitory effect of direct-current (DC) EFs on the formation of neointimal hyperplasia and the possible mechanism in an abdominal aorta balloon injury rabbit model. Sixty rabbits were divided into normal, control, and experimental groups. After establishment of the abdominal aorta balloon injury model, electrodes were implanted into the bilateral psoas major muscle in control and experimental groups. Only the experimental group received electric stimulation (EFs applied at 3 or 4 V/cm for 30 min/day) for 1, 2, and 4 weeks, respectively. Neointimal hyperplasia of the abdominal aorta and proliferation of vascular smooth muscle cells (VSMCs) were measured. Expressions of collagen, p27(Kip1), and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) were detected. Results showed that the ratio of the tunica intima area to the tunica media area, the expression of type-I collagen in the neointimal, and the proliferating cell nuclear antigen index in experimental groups were significantly less than those in control groups 2 weeks post-operation (P< 0.01). Expressions of p27(Kip1) and PTEN were increased in experimental groups compared with control groups (P< 0.01). In conclusion, our results suggested that the application of DC EFs could inhibit neointimal hyperplasia and reduce collagen expression after abdominal aorta balloon injury. This was probably induced by upregulation of PTEN/p27(Kip1) expression, thereby inhibiting VSMC proliferation.  相似文献   

4.
The cyclin-dependent kinase (Cdk) inhibitors p21(Cip1) and p27(Kip1) have been proposed to exert redundant functions in cell cycle progression and differentiation programs, although nonoverlapping functions have also been described. To gain further insights into the relevant mechanisms and to detect possible functional differences between both proteins, we conditionally expressed p21(Cip1) and p27(Kip1) in K562, a multipotent human leukemia cell line. Temporal ectopic expression of either p21(Cip1) or p27(Kip1) arrested proliferation, inhibited Cdk2 and Cdk4 activities, and suppressed retinoblastoma phosphorylation. However, whereas p21(Cip1) arrested cells in both G(1) and G(2) cell cycle phases, p27(Kip1) blocked the G(1)/S-phase transition. Furthermore, although both p21(Cip1) and p27(Kip1) associated with Cdk6, only p27(Kip1) significantly inhibited its activity. Most importantly, each protein promoted differentiation along a distinct pathway; p21(Cip1) triggered megakaryocytic maturation, whereas p27(Kip1) resulted in the expression of erythroid markers. Consistently, p21(Cip1) and p27(Kip1) were rapid and transiently up-regulated when K562 cells are differentiated into megakaryocytic and erythroid lineages, respectively. These findings demonstrate distinct functions of p21(Cip1) and p27(Kip1) in cell cycle regulation and differentiation and indicate that these two highly related proteins possess unique biological activities and are not functionally interchangeable.  相似文献   

5.
We examine the cell proliferation activity and expression of cyclin-dependent kinase inhibitors of the Cip/Kip family, p21Cip1, p27Kip1 and p57Kip2, in foetal hamster lungs to determine the expression patterns of the cyclin-dependent kinase inhibitors and to clarify the relationship between expression of the cyclin-dependent kinase inhibitors and lung development. Foetal hamster lungs on gestational days 12.5-16 (the day of birth) and adult lungs were fixed in 4% paraformaldehyde. Frozen sections were immunostained for the cyclin-dependent kinase inhibitors, and examined by immunostaining for Ki-67 and bromodeoxyuridine to determine the proliferation activity of the foetal lungs. During the foetal period, cell proliferation activity, as analysed by Ki-67 or bromodeoxyuridine labelling, decreased with development of the lung. In contrast to the gradual decrease of cell proliferation activity, cells with p27Kip1 immunoreactivity increased with development. On the other hand, p21Cip1-positive cells were most prominent around gestational day 14.5, while after birth positive cells decreased markedly. A few p57Kip2-positive cells were detected in the bronchiolar epithelium on gestational day 14.5. Western blotting analyses confirmed these immunostaining patterns. Thus, the levels of the cyclin-dependent kinase inhibitors of the Cip/Kip family are modulated in the lungs during the foetal period, and each shows a unique expression pattern. The cyclin-dependent kinase inhibitors may play roles not only in regulating cell proliferation activity but also in regulating other functions such as differentiation in the lung during the foetal period.  相似文献   

6.
The cyclin-dependent kinase inhibitors, p21(Cip1) and p27(Kip1), play an important role in the regulation of progression through G(1) to S phase in mammalian cells. Here we report that confluent 3T3 cells expressed p21(Cip1) and p27(Kip1) predominantly in the nucleus, and the level of both proteins declined as the cells entered the cell cycle and progressed through G(1) in response to serum growth factors. However, when confluent cells were serum starved prior to treatment, no downregulation of p21(Cip1) or p27(Kip1) expression was observed. Notably, serum starvation did not significantly influence the capacity of the cells to progress to the S phase. It was observed that serum starvation reduced cell density. Further, when cells were plated at a range of different densities, starved of serum to render them quiescent and then subsequently treated with serum, a reduction in p21(Cip1) and p27(Kip1) expression was observed in cells plated at high density but not in those at low density. Again, the extent and timing of progression to S phase was not influenced by cell density. To establish the potential role of cell:cell contact in the observed density-dependent regulation of p21(Cip1) and p27(Kip1) expression, cells were plated onto micorarrays of adhesive islands that prevented individual cells from making any contact with other cells. Under these conditions serum growth factors induced p21(Cip1) and p27(Kip1) downregulation, and hence, there is no requirement for cell:cell contact. Together, these data indicate that there are conditions under which 3T3 cells can progress to the S phase without downregulation of p21(Cip1) and p27(Kip1). The significance of these observations and mechanisms by which density-dependent regulation of p21(Cip1) and p27(Kip1) expression may occur are discussed.  相似文献   

7.
8.
The timing of cellular exit from the cell cycle during differentiation is specific for each cell type or lineage. Granulosa cells in the ovary establish quiescence within several hours after the ovulation-inducing luteinizing hormone surge, whereas they undergo differentiation into corpora lutea. The expression of Cdk inhibitors p21(Cip1/Waf1) and p27(Kip1) is up-regulated during this process, suggesting that these cell cycle inhibitors are involved in restricting proliferative capacity of differentiating granulosa cells. Here we demonstrate that the lack of p27(Kip1) and p21(Cip1) synergistically renders granulosa cells extended an proliferative life span. Immunohistochemical analyses demonstrated that corpora lutea of p27(Kip1), p21(Cip1) double-null mice showed large numbers of cells with bromodeoxyuridine incorporation and high proliferative cell nuclear antigen expression, which were more remarkable than those in p27(Kip1) single-deficient mice showing modest hyperproliferation. In contrast, differentiating granulosa cells in p21(Cip1)-deficient mice ceased proliferation similarly to those in wild-type mice. Interestingly, granulosa cells isolated from p27(Kip1), p21(Cip1) double-null mice exhibited markedly prolonged proliferative life span in culture, unlike cells with other genotypes. Cultured p27(Kip1), p21(Cip1) double-null granulosa cells maintained expression of steroidogenic enzymes and gonadotropin receptors through 8-10 passages and could undergo further differentiation in responses to cAMP accumulation. Thus, the cooperation of p27(Kip1) and p21(Cip1) is critical for withdrawal of granulosa cells from the cell cycle, in concert with luteal differentiation and possibly culture-induced senescence.  相似文献   

9.
Induction of G(1) arrest by TGF-beta correlates with the regulation of p21(Cip1) and p27(Kip1), members of the Cip/Kip family of cyclin-dependent kinase inhibitors (cki). However, no definitive evidence exists that these proteins play a causal role in TGF-beta(1)-induced growth arrest in lymphocytes. In this report we show the suppression of cell cycle progression by TGF-beta is diminished in T cells from mice deficient for both p21(Cip1) and p27(Kip1) (double-knockout (DKO)) only when activated under conditions of optimal costimulation. Although there is an IL-2-dependent enhanced proliferation of CD8(+) T cells from DKO mice, TGF-beta is able to maximally suppress the proliferation of DKO T cells when activated under conditions of low costimulatory strength. We also show that the induction of p15(Ink4b) in T cells stimulated in the presence of TGF-beta is not essential, as TGF-beta also efficiently suppressed proliferation of T cells from p15(Ink4b-/-) mice. Finally, although these cki are dispensable for the suppression of T cell proliferation by TGF-beta, we now describe a Smad3-dependent down-regulation of cdk4, suggesting a potential mechanism underlying to resistance of Smad3(-/-) T cells to the induction of growth arrest by TGF-beta. In summary, the growth suppressive effects of TGF-beta in naive T cells are a function of the strength of costimulation, and alterations in the expression of cki modify the sensitivity to TGF-beta by lowering thresholds for a maximal mitogenic response.  相似文献   

10.
11.
Lack of magnesium suppresses cell growth, but the molecular mechanism is not examined in detail. We examined the effect of extracellular magnesium deficiency on cell cycle progression and the expression of cell cycle regulators in renal epithelial NRK-52E cells. In synchronized cells caused by serum-starved method, over 80% cells were distributed in G1 phase. Cell proliferation and percentage of the cells in S phase in the presence of MgCl(2) were higher than those in the absence of MgCl(2) , suggesting that magnesium is involved in the cell cycle progression from G1 to S phase. After serum addition, the expression levels of p21(Cip1) and p27(Kip1) in the absence of MgCl(2) were higher than those in the presence of MgCl(2) . The exogenous expression of p21(Cip1) or p27(Kip1) increased the percentage in G1 phase, whereas it decreased that in S phase. The mRNA levels and promoter activities of p21(Cip1) and p27(Kip1) in the absence of MgCl(2) were higher than those in the presence of MgCl(2) . The phosphorylated p53 (p-p53) level was decreased by MgCl(2) addition. Pifithrin-α, a p53 inhibitor, decreased the p-p53, p21(Cip1) and p27(Kip1) levels, and the percentage in G1 phase in the absence of MgCl(2) . Rotenone, a mitochondrial respiratory inhibitor, decreased ATP content and increased the p-p53 level in the presence of MgCl(2) . Together, lack of magnesium may increase p21(Cip1) and p27(Kip1) levels mediated by the decrease in ATP content and the activation of p53, resulting in the suppression of cell cycle progression from G1 to S phase in NRK-52E cells.  相似文献   

12.
It has been suggested that bradykinin (BK) plays an important role in regulating neointimal formation after vascular injury. However, implication of BK in the growth of rat vascular smooth muscle cells (VSMCs) is controversial. Therefore, we examined the mitogenic effect of BK on VSMCs associated with activation of mitogen-activated protein kinase (MAPK). Both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were activated by BK in time- and concentration-dependent manners. Pretreatment of these cells with neither pertussis toxin nor cholera toxin attenuated the BK-induced responses. Pretreatment of VSMCs with Hoe 140 (a selective B(2) receptor antagonist), U73122 (an inhibitor of phospholipase C), and BAPTA/AM (an intracellular Ca(2+) chelator) inhibited both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation in response to BK. BK-induced [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were inhibited by pretreatment of VSMCs with tyrosine kinase inhibitors (genistein and herbimycin A), protein kinase C (PKC) inhibitors (staurosporine, Go-6976, and Ro-318220), an MAPK kinase inhibitor (PD98059), and a p38 MAPK inhibitor (SB203580). Overexpression of the dominant negative mutants, H-Ras-15A and Raf-N4, suppressed p42/p44 MAPK activation induced by BK and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. From these results, we concluded that the mitogenic effect of BK is mediated through activation of the Ras/Raf/MEK/MAPK pathway similar to that of PDGF-BB. BK-mediated MAPK activation was modulated by Ca(2+), PKC, and tyrosine kinase all of which are associated with cell proliferation in rat cultured VSMCs.  相似文献   

13.
Th1 cells exposed to Ag and the G(1) blocker n-butyrate in primary cultures lose their ability to proliferate in Ag-stimulated secondary cultures. The ability of n-butyrate to induce anergy in Ag-stimulated, but not resting, Th1 cells was shown here to be blocked by cycloheximide. Subsequent experiments to delineate the nature of the protein apparently required for n-butyrate-induced Th1 cell anergy focused on the role of cyclin-dependent kinase (cdk) inhibitors p21(Cip1) and p27(Kip1). Normally, entry into S phase by Th1 cells occurs around 24 h after Ag stimulation and corresponds with relatively low levels of both p21(Cip1) and p27(Kip1). However, unlike control Th1 cells, anergic Th1 cells contained high levels of both p21(Cip1) and p27(Kip1) when examined 24 h after Ag stimulation. The increase in p21(Cip1) observed in Ag-stimulated anergic Th1 cells appeared to be initiated in primary cultures. In contrast, the increase in p27(Kip1) observed in these anergic Th1 cells appears to represent a re-expression of the protein much earlier than control cells following Ag stimulation in secondary cultures. The anergic Th1 cells contained functionally active cdk inhibitors capable of inhibiting the activity of both endogenous and exogenous cdks. Consequently, it appears that n-butyrate-induced anergy in Th1 cells correlated with the up-regulation of p21(Cip1) and perhaps the downstream failure to maintain low levels of p27(Kip1). Increased levels of both p21(Cip1) and p27(Kip1) at the end of G(1) could prevent cdk-mediated entry into S phase, and thus help maintain the proliferative unresponsiveness found in the anergic Th1 cells.  相似文献   

14.
血管平滑肌细胞增殖与Cdk抑制蛋白p27的表达   总被引:4,自引:1,他引:4  
Yuan Y  Xu DL  Liu YL  Jia MY 《生理学报》1999,51(3):285-290
p27蛋白是细胞周期素依赖性激酶(Cdk)抑制蛋白家族中的一种,主要对外部促进或抑制细胞增殖的信号起反应。本研究应用流式细胞仪(FCM)双标记的方法观察血管紧张素Ⅱ(AngⅡ)、血管加压素(AVP)和血小板源生长因子(PDGF)对血管平滑肌细胞(VSMCs)细胞周期百分比和p27蛋白表达量的影响。静止状态培养的VSMCs加入AngⅡ,AVP,PDGFBB后,在不同时间收集细胞,用碘化丙啶(PI)标记细胞DNA,以确定细胞所处的周期。用p27蛋白的单抗和标记了FITC的二抗标记细胞,通过流式细胞仪测定被激发出的荧光量来确定细胞p27蛋白表达的相对量。结果显示,AngⅡ刺激VSMCs增生,其蛋白含量增加了436%(P<001),但不抑制p27蛋白的表达;AVP可轻度抑制p27的表达,有轻度促进VSMCs增殖和增生的作用(P<005);PDGF明显抑制p27的表达,引起细胞增殖。本研究结果提示,p27蛋白抑制VSMCs通过G1期进入S期,是抑制VSMCs增殖的重要调节因子。  相似文献   

15.
曲古抑菌素A对结肠癌细胞株SW480细胞周期影响的机制研究   总被引:4,自引:0,他引:4  
为了研究组蛋白去乙酰化酶(HDACs)抑制剂曲古抑菌素A(TSA)对结肠癌细胞周期和凋亡的影响,初步探讨TSA作用细胞周期的可能机制,将人结肠癌细胞系SW480经TSA处理后,运用流式细胞术检测细胞周期、凋亡以及细胞周期素的变化,最后采用western-blot对细胞周期相关的基因进行检测.结果表明,TSA处理细胞后,TSA能够延缓细胞周期G1-S进程,阻滞细胞于G1期,并且影响细胞周期素cyclinE、cyclinA聚集,而对凋亡无明显的影响.Western-blot显示,TSA能够上调p21Waf1/Cip1、p27Kip1的表达,下调CDK2、cyclinE以及cycli-nA的表达.以上结果说明在结肠癌细胞中,TSA能够通过上调p21Waf1/Cip1、p27Kip1的表达以及下调CDK2、cy-clinE、cyclinA的表达,从而阻滞细胞周期于G1期,最终影响肿瘤细胞的生长,以上研究为HDAC抑制剂应用于结肠癌治疗提供了理论依据.  相似文献   

16.
The Cip/Kip family of mammalian cyclin-dependent kinase (cdk) inhibitors plays important roles in development, particularly in cell fate determination and differentiation, in addition to their function of blocking cell cycle progression. We have identified two novel members of the Kip/Cip cdk inhibitor family, p16Xic2 and p17Xic3, from Xenopus laevis. Sequence analysis revealed that p16Xic2 and p17Xic3 are orthologues of mammalian p21Cip1 and p27Kip1, respectively. Overexpression of these inhibitors results in cell cycle arrest by inhibition of cdk2 activity. Interestingly, the expression of these inhibitors is highly developmentally regulated. p16Xic2 is highly expressed in differentiating somite, tail bud, lens, and cement gland, while p17Xic3 is expressed in the central nervous system. In a retinal cell fate determination assay, both p16Xic2 and p17Xic3 have an activity that influences cell fate determination. These observations suggest that p16Xic2 and p17Xic3 might be involved in cell fate determination in a tissue-specific manner by coordinating proliferation and differentiation as observed with p27Xic1.  相似文献   

17.
Mammalian cardiomyocytes actively proliferate during embryonic stages, following which cardiomyocytes exit their cell cycle after birth. The irreversible cell cycle exit inhibits cardiac regeneration by the proliferation of pre-existing cardiomyocytes. Exactly how the cell cycle exit occurs remains largely unknown. Previously, we showed that cyclin E- and cyclin A-CDK activities are inhibited before the CDKs levels decrease in postnatal stages. This result suggests that factors such as CDK inhibitors (CKIs) inhibit CDK activities, and contribute to the cell cycle exit. In the present study, we focused on a Cip/Kip family, which can inhibit cyclin E- and cyclin A-CDK activities. Expression of p21Cip1 and p27Kip1 but not p57Kip2 showed a peak around postnatal day 5, when cyclin E- and cyclin A-CDK activities start to decrease. p21Cip1 and p27Kip1 bound to cyclin E, cyclin A and CDK2 at postnatal stages. Cell cycle distribution patterns of postnatal cardiomyocytes in p21Cip1 and p27Kip1 knockout mice showed failure in the cell cycle exit at G1-phase, and endoreplication. These results indicate that p21Cip1 and p27Kip play important roles in the cell cycle exit of postnatal cardiomyocytes.  相似文献   

18.
The steroid hormone progesterone regulates proliferation and differentiation in the mammary gland and uterus by cell cycle phase-specific actions. The long-term effect of progestins on T-47D breast cancer cells is inhibition of cellular proliferation. This is accompanied by decreased G(1) cyclin-dependent kinase (CDK) activities, redistribution of the CDK inhibitor p27(Kip1) among these CDK complexes, and alterations in the elution profile of cyclin E-Cdk2 upon gel filtration chromatography, such that high-molecular-weight complexes predominate. This study aimed to determine the relative contribution of CDK inhibitors to these events. Following progestin treatment, the majority of cyclin E- and D-CDK complexes were bound to p27(Kip1) and few were bound to p21(Cip1). In vitro, recombinant His(6)-p27 could quantitatively reproduce the effects on cyclin E-Cdk2 kinase activity and the shift in molecular weight observed following progestin treatment. In contrast, cyclin D-Cdk4 was not inhibited by His(6)-p27 in vitro or p27(Kip1) in vivo. However, an increase in the expression of the Cdk4/6 inhibitor p18(INK4c) and its extensive association with Cdk4 and Cdk6 were apparent following progestin treatment. Recombinant p18(INK4c) led to the reassortment of cyclin-CDK-CDK inhibitor complexes in vitro, with consequent decrease in cyclin E-Cdk2 activity. These results suggest a concerted model of progestin action whereby p27(Kip1) and p18(INK4c) cooperate to inhibit cyclin E-Cdk2 and Cdk4. Since similar models have been developed for growth inhibition by transforming growth factor beta and during adipogenesis, interaction between the Cip/Kip and INK4 families of inhibitors may be a common theme in physiological growth arrest and differentiation.  相似文献   

19.
When suspended in methylcellulose, primary mouse keratinocytes cease proliferation and differentiate. Suspension also reduces the activity of the cyclin-dependent kinase cdk2, an important cell cycle regulatory enzyme. To determine how suspension modulates these events, we examined its effects on wild-type keratinocytes and keratinocytes nullizygous for the cdk2 inhibitor p21(Cip1). After suspension of cycling cells, amounts of cyclin A (a cdk2 partner), cyclin A mRNA, and cyclin A-associated activity decreased much more rapidly in the presence than in the absence of p21(Cip1). Neither suspension nor p21(Cip1) status affected the stability of cyclin A mRNA. Loss of p21(Cip1) reduced the capacity of suspended cells to growth arrest, differentiate, and accumulate p27(Kip1) (a second cdk2 inhibitor) and affected the composition of E2F DNA binding complexes. Cyclin A-cdk2 complexes in suspended p21(+/+) cells contained p21(Cip1) or p27(Kip1), whereas most of the cyclin A-cdk2 complexes in p21(-/-) cells lacked p27(Kip1). Ectopic expression of p21(Cip1) allowed p21(-/-) keratinocytes to efficiently down-regulate cyclin A and differentiate when placed in suspension. These findings show that p21(Cip1) mediates the effects of suspension on numerous processes in primary keratinocytes including cdk2 activity, cyclin A expression, cell cycle progression, and differentiation.  相似文献   

20.
K cyclin encoded by Kaposi's sarcoma-associated herpesvirus confers resistance to the cyclin-dependent kinase (cdk) inhibitors p16Ink4A, p21Cip1, and p27Kip1 on the associated cdk6. We have previously shown that K cyclin expression enforces S-phase entry on cells overexpressing p27Kip1 by promoting phosphorylation of p27Kip1 on threonine 187, triggering p27Kip1 down-regulation. Since p21Cip1 acts in a manner similar to that of p27Kip1, we have investigated the subversion of a p21Cip1-induced G1 arrest by K cyclin. Here, we show that p21Cip1 is associated with K cyclin both in overexpression models and in primary effusion lymphoma cells and is a substrate of the K cyclin/cdk6 complex, resulting in phosphorylation of p21Cip1 on serine 130. This phosphoform of p21Cip1 appeared unable to associate with cdk2 in vivo. We further demonstrate that phosphorylation on serine 130 is essential for K cyclin-mediated release of a p21Cip1-imposed G1 arrest. Moreover, we show that under physiological conditions of cell cycle arrest due to elevated levels of p21Cip1 resulting from oxidative stress, K cyclin expression enabled S-phase entry and was associated with p21Cip1 phosphorylation and partial restoration of cdk2 kinase activity. Thus, expression of the viral cyclin enables cells to subvert the cell cycle inhibitory function of p21Cip1 by promoting cdk6-dependent phosphorylation of this antiproliferative protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号