首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuronal growth regulator 1 (NEGR1) is a glycosylphosphatidylinositol-anchored membrane protein associated with several human pathologies, including obesity, depression, and autism. Recently, significantly enlarged white adipose tissue, hepatic lipid accumulation, and decreased muscle capacity were reported in Negr1-deficient mice. However, the mechanism behind these phenotypes was not clear. In the present study, we found NEGR1 to interact with cluster of differentiation 36 (CD36), the major fatty acid translocase in the plasma membrane. Binding assays with a soluble form of NEGR1 and in situ proximal ligation assays indicated that NEGR1-CD36 interaction occurs at the outer leaflet of the cell membrane. Furthermore, we show that NEGR1 overexpression induced CD36 protein destabilization in vitro. Both mRNA and protein levels of CD36 were significantly elevated in the white adipose tissue and liver tissues of Negr1?/? mice. Accordingly, fatty acid uptake rate increased in NEGR1-deficient primary adipocytes. Finally, we demonstrated that Negr1?/? mouse embryonic fibroblasts showed elevated reactive oxygen species levels and decreased adenosine monophosphate-activated protein kinase activation compared with control mouse embryonic fibroblasts. Based on these results, we propose that NEGR1 regulates cellular fat content by controlling the expression of CD36.  相似文献   

2.
Neuronal growth regulator 1 (NEGR1) is a GPI-anchored membrane protein that is involved in neural cell adhesion and communication. Multiple genome wide association studies have found that NEGR1 is a generic risk factor for multiple human diseases, including obesity, autism, and depression. Recently, we reported that Negr1−/− mice showed a highly increased fat mass and affective behavior. In the present study, we identified Na/K-ATPase, beta1-subunit (ATP1B1) as an NEGR1 binding partner by yeast two-hybrid screening. NEGR1 and ATP1B1 were found to form a relatively stable complex in cells, at least partially co-localizing in membrane lipid rafts. We found that NEGR1 binds with ATP1B1 at its C-terminus, away from the binding site for the alpha subunit, and may contribute to intercellular interactions. Collectively, we report ATP1B1 as a novel NEGR1-interacting protein, which may help deciphering molecular networks underlying NEGR1-associated human diseases.  相似文献   

3.
Obesity is a risk factor for type II diabetes, atherosclerosis, and some forms of cancer. Variation in common measures of obesity (e.g., BMI, waist/hip ratio) is largely explained by heritability. The advent of genome‐wide association studies (GWAS) has made it possible to identify several genetic variants that associate with measures of obesity, but how exactly these genetic variants contribute to overweight has remained largely unresolved. One first hint is given by the fact that many of the associated variants reside in or near genes that act in the central nervous system, which implicates neuronal signaling in the etiology of obesity. Although the brain controls both energy intake and expenditure, it has more capacity to regulate energy intake rather than energy expenditure. In environments where food is abundant, this renders the body prone to weight increases. To gain more insight into the neurobiological mechanisms involved, we set out to investigate the effect of dietary exposure on the expression levels of obesity‐associated genes in the ventro‐medial hypothalamus (VMH)/arcuate nucleus (ARC) and the substantia nigra (SN)/ventral tegmental area (VTA), two brain regions that are implicated in feeding behavior. We show that the expression of Etv5, Faim2, Fto, Negr1 but not Sh2b1 is affected by nutritional state in these two areas, thereby providing insight into the relationship between nutritional state and expression levels of obesity‐associated genes in two brain areas relevant to feeding.  相似文献   

4.
Molecular mapping of obesity genes   总被引:3,自引:0,他引:3  
Advances in molecular genetics have made it possible to clone mutant genes from mammals. This capability should facilitate efforts to determine the genetic factors that control food intake and body composition. In order to identify these genetic factors, we have been making use of mouse mutations that cause obesity. The basic premise of this approach is to take advantage of the mouse as a genetic system for the analysis of genetically complex disorders and to then apply that information to the study of human disease. This paper reviews: (1) current concepts concerning the control of body weight in man and other mammals; (2) the biologic characteristics of the mouse obesity mutations; (3) our progress in the use of positional cloning techniques to clone the mouse obese (ob) and diabetes (db) genes; (4) an approach to polygenic obesity in mice; and (5) the possible relevance of the mouse obesity mutations to human obesity.  相似文献   

5.
Large-scale genome-wide association studies (GWAS) have identified many loci associated with body mass index (BMI), but few studies focused on obesity as a binary trait. Here we report the results of a GWAS and candidate SNP genotyping study of obesity, including extremely obese cases and never overweight controls as well as families segregating extreme obesity and thinness. We first performed a GWAS on 520 cases (BMI>35 kg/m(2)) and 540 control subjects (BMI<25 kg/m(2)), on measures of obesity and obesity-related traits. We subsequently followed up obesity-associated signals by genotyping the top ~500 SNPs from GWAS in the combined sample of cases, controls and family members totaling 2,256 individuals. For the binary trait of obesity, we found 16 genome-wide significant signals within the FTO gene (strongest signal at rs17817449, P = 2.5 × 10(-12)). We next examined obesity-related quantitative traits (such as total body weight, waist circumference and waist to hip ratio), and detected genome-wide significant signals between waist to hip ratio and NRXN3 (rs11624704, P = 2.67 × 10(-9)), previously associated with body weight and fat distribution. Our study demonstrated how a relatively small sample ascertained through extreme phenotypes can detect genuine associations in a GWAS.  相似文献   

6.
Obesity is a world-wide epidemic, and many factors, including stress, have been linked to this growing trend. After social stress (i.e., defeat), subordinate laboratory rats and most laboratory mice become hypophagic and, subsequently, lose body mass; the opposite is true of subordinate Syrian hamsters. After social defeat, Syrian hamsters become hyperphagic and gain body mass compared with nonstressed controls. It is unknown whether this increase in body mass and food intake is limited to subordinate hamsters. In experiment 1, we asked, do dominant hamsters increase food intake, body mass, and adiposity after an agonistic encounter? Subordinate hamsters increased food intake and body mass compared with nonstressed controls. Although there was no difference in food intake or absolute body mass between dominant and nonstressed control animals, cumulative body mass gain was significantly higher in dominant than in nonstressed control animals. Total carcass lipid and white adipose tissue (WAT) (i.e., retroperitoneal and epididymal WAT) masses were significantly increased in subordinate, but not dominant, hamsters compared with nonstressed controls. In experiment 2, we asked, does footshock stress increase food intake, body mass, and adiposity. Hamsters exposed to defeat, but not footshock stress, increased food intake relative to nonstressed controls. In animals exposed to defeat or footshock stress, body mass, as well as mesenteric WAT mass, increased compared with nonstressed controls. Collectively, these data demonstrate that social and nonsocial stressors increase body and lipid mass in male hamsters, suggesting that this species may prove useful for studying the physiology of stress-induced obesity in some humans.  相似文献   

7.
The strongest BMI–associated GWAS locus in humans is the FTO gene. Rodent studies demonstrate a role for FTO in energy homeostasis and body composition. The phenotypes observed in loss of expression studies are complex with perinatal lethality, stunted growth from weaning, and significant alterations in body composition. Thus understanding how and where Fto regulates food intake, energy expenditure, and body composition is a challenge. To address this we generated a series of mice with distinct temporal and spatial loss of Fto expression. Global germline loss of Fto resulted in high perinatal lethality and a reduction in body length, fat mass, and lean mass. When ratio corrected for lean mass, mice had a significant increase in energy expenditure, but more appropriate multiple linear regression normalisation showed no difference in energy expenditure. Global deletion of Fto after the in utero and perinatal period, at 6 weeks of age, removed the high lethality of germline loss. However, there was a reduction in weight by 9 weeks, primarily as loss of lean mass. Over the subsequent 10 weeks, weight converged, driven by an increase in fat mass. There was a switch to a lower RER with no overall change in food intake or energy expenditure. To test if the phenotype can be explained by loss of Fto in the mediobasal hypothalamus, we sterotactically injected adeno-associated viral vectors encoding Cre recombinase to cause regional deletion. We observed a small reduction in food intake and weight gain with no effect on energy expenditure or body composition. Thus, although hypothalamic Fto can impact feeding, the effect of loss of Fto on body composition is brought about by its actions at sites elsewhere. Our data suggest that Fto may have a critical role in the control of lean mass, independent of its effect on food intake.  相似文献   

8.
Five novel loci recently found to be associated with body mass in two GWAS of East Asian populations were evaluated in two cohorts of Swedish and Greek children and adolescents. These loci are located within, or in the proximity of: CDKAL1, PCSK1, GP2, PAX6 and KLF9. No association with body mass has previously been reported for these loci in GWAS performed on European populations. The single nucleotide polymorphisms (SNPs) with the strongest association at each loci in the East Asian GWAS were genotyped in two cohorts, one obesity case control cohort of Swedish children and adolescents consisting of 496 cases and 520 controls and one cross-sectional cohort of 2293 nine-to-thirteen year old Greek children and adolescents. SNPs were surveyed for association with body mass and other phenotypic traits commonly associated with obesity, including adipose tissue distribution, insulin resistance and daily caloric intake. No association with body mass was found in either cohort. However, among the Greek children, association with insulin resistance could be observed for the two CDKAL1-related SNPs: rs9356744 (β = 0.018, p = 0.014) and rs2206734 (β = 0.024, p = 0.001). CDKAL1-related variants have previously been associated with type 2 diabetes and insulin response. This study reports association of CDKAL1-related SNPs with insulin resistance, a clinical marker related to type 2 diabetes in a cross-sectional cohort of Greek children and adolescents of European descent.  相似文献   

9.
Mahoganoid (Mgrn1(md)) is a mutation of the mahogunin (Mgrn1) gene. The hypomorphic allele suppresses the yellow pigmentation and obesity of the A(y) mouse that ubiquitously overexpresses agouti signaling protein (ASP). To assess the physiological effects of MGRN1 on energy and glucose homeostasis, we generated animals doubly mutant for Mgrn1(md) and A(y), Lep(ob), or a null allele of Mc4r, and diet-induced obesity (DIO) mice segregating for Mgrn1(md). Mgrn1(md) suppressed the obesity, hyperglycemia, and hyperinsulinemia of A(y) mice. Mgrn1(md) suppressed A(y)-induced obesity by reducing food intake, and reduced adiposity in Lep(ob)/Lep(ob) females, but did not alter the body weight or body composition of mice fed a high-fat diet. There was no effect of Mgrn1(md) on weight gain, body composition, energy intake, or energy expenditure in Mc4r-null animals. Mgrn1(md) reduced circulating insulin concentrations in DIO, A(y), and Mc4r-null but not Lep(ob)/Lep(ob) mice. The effect of Mgrn1(md) on circulating insulin concentrations was not due primarily to reductions in fat mass, since the plasma insulin concentrations of Mgrn1(md) mice segregating for either A(y) or Mc4r-null alleles, adjusted for fat mass and plasma glucose, were reduced compared with A(y) and Mc4r mice, respectively. The effect of Mgrn1(md) on insulin sensitivity of Mc4r-null mice suggests that Mgrn1(md) may be increasing insulin sensitivity via the hypothalamic melanocortin-3 receptor pathway.  相似文献   

10.
Glutamate acts in the hypothalamus promoting region-, and cell-dependent effects on feeding. Part of these effects are mediated by NMDA receptors, which are up regulated in conditions known to promote increased food intake and thermogenesis, such as exposure to cold and consumption of highly caloric diets. Here, we hypothesized that at least part of the effect of glutamate on hypothalamic control of energy homeostasis would depend on the control of neurotransmitter expression and JAK2 signaling. The expression of NMDA receptors was co-localized to NPY/AgRP, POMC, CRH, and MCH but not to TRH and orexin neurons of the hypothalamus. The acute intracerebroventricular injection of glutamate promoted a dose-dependent increase in JAK2 tyrosine phosphorylation. In obese rats, 5 days intracerebroventricular treatment with glutamate resulted in the reduction of food intake, accompanied by a reduction of spontaneous motility and reduction of body mass, without affecting oxygen consumption. The reduction of food intake and body mass were partially restrained by the inhibition of JAK2. In addition, glutamate produced an increased hypothalamic expression of NPY, POMC, CART, MCH, orexin, CRH, and TRH, and the reduction of AgRP. All these effects on neurotransmitters were hindered by the inhibition of JAK2. Thus, the intracerebroventricular injection of glutamate results in the reduction of body mass through a mechanism, at least in part, dependent on JAK2, and on the broad regulation of neurotransmitter expression. These effects are not impaired by obesity, which suggest that glutamate actions in the hypothalamus may be pharmacologically explored to treat this disease.  相似文献   

11.
Administration of chemically synthesized ghrelin (Ghr) peptide has been shown to increase food intake and body adiposity in most species. However, the biological role of endogenous Ghr in the molecular control of energy metabolism is far less understood. Mice deficient for either Ghr or its receptor (the growth hormone secretagogue receptor, GHS-R1a) seem to exhibit enhanced protection against high-fat diet-induced obesity but do not show a substantial metabolic phenotype on a standard diet. Here we present the first mouse mutant lacking both Ghr and the Ghr receptor. We demonstrate that simultaneous genetic disruption of both genes of the Ghr system leads to an enhanced energy metabolism phenotype. Ghr/Ghr receptor double knockout (dKO) mice exhibit decreased body weight, increased energy expenditure, and increased motor activity on a standard diet without exposure to a high caloric environment. Mice on the same genetic background lacking either the Ghr or the Ghr receptor gene did not exhibit such a phenotype on standard chow, thereby confirming earlier reports. No differences in food intake, meal pattern, or lean mass were observed between dKO, Ghr-deficient, Ghr receptor-deficient, and wild-type (WT) control mice. Only dKO showed a slight decrease in body length. In summary, simultaneous deletion of Ghr and its receptor enhances the metabolic phenotype of single gene-deficient mice compared with WT mice, possibly suggesting the existence of additional, as of yet unknown, molecular components of the endogenous Ghr system.  相似文献   

12.
During seasonal acclimation, Djungarian hamsters spontaneously exhibit a reduction in food intake, body mass and body fat stores, which is externally cued by shortening of day length in autumn and controlled by a sliding set-point. We investigated the function of the leptin adipostatic feedback system in the photoperiodic control of seasonal acclimation. In response to mouse recombinant leptin injections for 10 days, long day photoperiod (LD) and short day photoperiod (SD)-acclimated hamsters decreased food intake and body mass. The reduction of body mass was due to the depletion of body fat, as revealed by carcass composition analysis. In SD hamsters, leptin caused a larger reduction of body fat mass than observed under LD conditions, whereas the anorectic effect was similar in both photoperiods. The serum leptin concentration was 9.3 ± 1.2 ng/ml in LD-acclimated hamsters and decreased significantly to 4.2 ± 0.8 ng/ml and 2.1 ± 0.6 ng/ml in hamsters exposed to SD for 66 days and 116 days, respectively (P < 0.001). A strong positive correlation between total body fat mass and serum leptin concentration was found (r S=0.935, P < 0.0001, n=70). Despite the anorectic action of exogenous leptin, higher endogenous leptin levels in LD hamsters were paralleled by higher food intake in LD hamsters as compared to SD hamsters. This paradoxical finding further supports the increased leptin sensitivity in SD hamsters as judged from leptin treatment experiments. We tested the functional significance of leptin for the controlled down-regulation of food intake and body mass induced by short photoperiod. Food restriction for 10 days during the transition phase decreased body mass below the desired sliding set-point, which was recovered in control hamsters following ad libitum refeeding. Treatment with mouse recombinant leptin during ad libitum refeeding inhibited the recovery of body mass and blunted the increase of food intake observed in controls, indicating that the sliding set-point utilizes leptin as a signal for the adjustment of the appropriate body mass level. Accepted: 15 October 1999  相似文献   

13.
Obesity and insulin resistance are major risk factors for a number of metabolic disorders, such as type 2 diabetes mellitus. Insulin has been suggested to function as one of the adiposity signals to the brain for modulation of energy balance. Administration of insulin into the brain reduces food intake and body weight, and mice with a genetic deletion of neuronal insulin receptors are hyperphagic and obese. However, insulin is also an anabolic factor; when administered systemically, pharmacological levels of insulin are associated with body weight gain in patients. In this study, we investigated the efficacy and feasibility of small molecule insulin mimetic compounds to regulate key parameters of energy homeostasis. Central intracerebroventricular (i.c.v.) administration of an insulin mimetic resulted in a dose-dependent reduction of food intake and body weight in rats, and altered the expression of hypothalamic genes known to regulate food intake and body weight. Oral administration of a mimetic in a mouse model of high-fat diet-induced obesity reduced body weight gain, adiposity and insulin resistance. Thus, insulin mimetics have a unique advantage over insulin in the control of body weight and hold potential as a novel anti-obesity treatment.  相似文献   

14.
Overeating and increases in body and fat mass are the most common responses to day-to-day stress in humans, whereas stressed laboratory rats and mice respond oppositely. Group housing of Syrian hamsters increases body mass, adiposity, and food intake, perhaps due to social confrontation-induced stress. In experiment 1 we asked, Does repeated social defeat increase food intake, body mass, and white adipose tissue (WAT) mass in Syrian hamsters? Male hamsters subjected to the resident-intruder social interaction model and defeated intermittently 15 times over 34 days for 7-min sessions significantly increased their food intake, body mass, and most WAT masses compared with nondefeated controls. Defeat significantly increased terminal adrenal norepinephrine, but not epinephrine, content. In experiment 2 we asked, Are 15 intermittent resident-intruder interactions necessary to increase body mass and food intake? Body mass and food intake of subordinate hamsters defeated only once were similar to those of nondefeated controls, but four or eight defeats similarly and significantly increased these responses. In experiment 3 we asked, Do intermittent defeats increase adiposity and food intake more than consecutive defeats? Four intermittent or consecutive defeats similarly and significantly increased food intake and body mass compared with nondefeated controls, but only intermittent defeats significantly increased all WAT masses. Consecutive defeats significantly increased mesenteric and inguinal WAT masses. Plasma leptin, but not insulin, concentrations were similarly and significantly increased compared with nondefeated controls. Collectively, social defeat, a natural stressor, significantly increased food intake, body mass, and adiposity in Syrian hamsters and may prove useful in determining mechanisms underlying human stress-induced obesity.  相似文献   

15.
Mutation of the melanocortin-receptor 4 (MC4R) is the most frequent cause of severe obesity in humans. Binding of agouti-related peptide (AgRP) to MC4R involves the co-receptor syndecan-3, a heparan sulfate proteoglycan. The proteoglycan can be structurally modified by the enzyme heparanase. Here we tested the hypothesis that heparanase plays a role in food intake behaviour and energy balance regulation by analysing body weight, body composition and food intake in genetically modified mice that either lack or overexpress heparanase. We also assessed food intake and body weight following acute central intracerebroventricular administration of heparanase; such treatment reduced food intake in wildtype mice, an effect that was abolished in mice lacking MC4R. By contrast, heparanase knockout mice on a high-fat diet showed increased food intake and maturity-onset obesity, with up to a 40% increase in body fat. Mice overexpressing heparanase displayed essentially the opposite phenotypes, with a reduced fat mass. These results implicate heparanase in energy balance control via the central melanocortin system. Our data indicate that heparanase acts as a negative modulator of AgRP signaling at MC4R, through cleavage of heparan sulfate chains presumably linked to syndecan-3.  相似文献   

16.
Treatment of newborn mice with monosodium glutamate (MSG) is neurotoxic for hypothalamic arcuate nucleus (ARC) and causes obesity. In the MSG-treated 16-week-old NMRI mice, we detected specific ablation of ARC neuronal cells, 8 times higher fat to body mass ratio but unchanged body mass compared to controls, advanced hyperglycemia and hyperinsulinemia--both more pronounced in males, and hyperleptinemia--more severe in females. After fasting, the MSG-treated mice showed attenuated food intake compared to controls. Cholecystokinin octapeptide, which decreased food intake in a dose-dependent manner in 24 h fasted controls, did not significantly affect food intake in the MSG-treated animals. We propose that the obesity-related changes in the feeding behavior of the MSG-treated obese mice were the result of missing leptin and insulin receptors in ARC and consequent altered neuropeptide signaling. This makes the MSG model suitable for clarifying generally the central control of food intake.  相似文献   

17.
Gene–environment interactions need to be studied to better understand the obesity. We aimed at determining whether genetic susceptibility to obesity associates with diet intake levels and whether diet intakes modify the genetic susceptibility. In 29,480 subjects of the population-based Malmö Diet and Cancer Study (MDCS), we first assessed association between 16 genome-wide association studies identified obesity-related single-nucleotide polymorphisms (SNPs) with body mass index (BMI) and associated traits. We then conducted association analyses between a genetic risk score (GRS) comprising of 13 replicated SNPs and the individual SNPs, and relative dietary intakes of fat, carbohydrates, protein, fiber and total energy intake, as well as interaction analyses on BMI and associated traits among 26,107 nondiabetic MDCS participants. GRS associated strongly with increased BMI (P = 3.6 × 10?34), fat mass (P = 6.3 × 10?28) and fat-free mass (P = 1.3 × 10?24). Higher GRS associated with lower total energy intake (P = 0.001) and higher intake of fiber (P = 2.3 × 10?4). No significant interactions were observed between GRS and the studied dietary intakes on BMI or related traits. Of the individual SNPs, after correcting for multiple comparisons, NEGR1 rs2815752 associated with diet intakes and BDNF rs4923461 showed interaction with protein intake on BMI. In conclusion, our study does not provide evidence for a major role for macronutrient-, fiber- or total energy intake levels in modifying genetic susceptibility to obesity measured as GRS. However, our data suggest that the number of risk alleles as well as some of the individual obesity loci may have a role in regulation of food and energy intake and that some individual loci may interact with diet.  相似文献   

18.
The aim was to investigate the effects of intestinal electrical stimulation (IES) on food intake, body weight, and gastric emptying in rats. An experiment on food intake and weight change was performed in 22 rats on a control diet and 10 diet-induced obese (DIO) rats for 4 wk with IES or sham IES. The effect of IES on gastric emptying was performed in another 20 rats in the control group. We found that 1) in control rats, 4-wk IES resulted in a reduction of 18.2% in the total amount of food intake compared with sham-IES (P = 0.02); the rats treated with IES had a weight change of -1 +/- 7.8g (P = 0.03), which was equivalent to a weight loss of 6.2% due to IES when adjusted for normal growing. 2) Acute IES delayed gastric emptying by 20% in the control rats (P < 0.01). 3) In the DIO rats, 1-wk IES with the same parameters as those used in the control rats resulted in a significant reduction in the total amount of food intake (126.6 +/- 6.3 g vs. 116.9 +/- 3.2 g, P < 0.01). More reduction in food intake was noted, and a significant weight change was also observed when stimulation energy was increased. 4) No adverse events were observed in any of the experiments. In conclusion, IES delays gastric emptying, reduces food intake, and decreases weight gain in control growing rats. These data suggest that it is worthy to explore therapeutic potentials of IES for obesity.  相似文献   

19.
动物行为和生理活动的适应性调节是应对食物资源变化的主要策略。为探讨禁食和重喂食对大绒鼠体重、产热和血清瘦素的影响,测定了禁食和重喂食条件下大绒鼠的体重、体脂重量、静止代谢率、身体组成、血清瘦素含量以及禁食后重喂食期间的摄食量。结果显示:禁食导致大绒鼠体重、体脂重量和静止代谢率显著下降,重喂食后体重和静止代谢率能够恢复到对照组水平,而体脂重量却不能恢复。禁食12 h 后血清瘦素含量快速下降,重喂食后未能恢复到对照水平。此外,大绒鼠在禁食后重喂食期间摄食量没有补偿性增加,血清瘦素含量与体脂重量呈正相关关系。这些结果很可能反映出大绒鼠能调节自身生理状况以适应短期的能量缺乏,主要通过降低体重、血清瘦素含量和代谢活性器官重量以减少能量消耗。禁食后重喂食时大绒鼠没有摄食过量。血清瘦素的下降早于体重和体脂的下降。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号