首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Explaining the high variability of regenerative ability across metazoan taxa is one of the major challenges in modern biology. Although common and widespread, regeneration shows a heterogeneous distribution and most authors consider regeneration capacity to be an ancestral trait that has been restricted or completely lost over the course of metazoan evolution. Basal Metazoans show the highest capacity for regeneration. By contrast, this feature is highly variable within bilaterians, with many taxa limited in their capacity for regeneration or not regenerating at all. The causes of the loss and/or maintenance of regeneration remain poorly understood, with most explanations invoking adaptive mechanisms. In the present study Metazoan regeneration is discussed with reference to stem cell biology, tissue plasticity, evolution of tissue complexity, cell turnover and lifespan. The presence or absence of regenerative ability cannot be seen only as an adaptation to a particular environment but can also be a consequence of body plan and developmental constraints such as may arise from the evolution of an adaptive immune system.  相似文献   

2.
Mechanosensation is fundamental to many tetrapod limb functions, yet it remains largely uninvestigated in the paired fins of fishes, limb homologues. Here we examine whether membranous fins may function as passive structures for touch sensation. We investigate the pectoral fins of the pictus catfish (Pimelodus pictus), a species that lives in close association with the benthic substrate and whose fins are positioned near its ventral margin. Kinematic analysis shows that the pectoral fins are held partially protracted during routine forward swimming and do not appear to generate propulsive force. Immunohistochemistry reveals that the fins are highly innervated, and we observe putative mechanoreceptors at nerve fibre endings. To test for the ability to sense mechanical perturbations, activity of fin ray nerve fibres was recorded in response to touch and bend stimulation. Both pressure and light surface brushing generated afferent nerve activity. Fin ray nerves also respond to bending of the rays. These data demonstrate for the first time that membranous fins can function as passive mechanosensors. We suggest that touch-sensitive fins may be widespread in fishes that maintain a close association with the bottom substrate.  相似文献   

3.
The present work deals with determination of the threshold of nerve fibers per unit of amputation surface necessary for regeneration of the pectoral fins of a teleost, Fundulus. Partial denervation of the amputated pectoral fins, i.e., resection of one or two of the three nerves of the brachial (=pectoral) plexus revealed that the presence of a single one allows the amputated fin to regenerate. From these data and others obtained previously, it is concluded that the nervous requirements for a teleost fin to regenerate are similar or slightly lower than those for tetrapods, for example in the newt, which are capable of appendage regeneration.  相似文献   

4.
Many benthic batoids utilize their pectoral fins for both undulatory locomotion and feeding. Certain derived, pelagic species of batoids possess cephalic lobes, which evolved from the anterior pectoral fins. These species utilize the pectoral fins for oscillatory locomotion while the cephalic lobes are used for feeding. The goal of this article was to compare the morphology of the cephalic lobes and anterior pectoral fins in species that possess and lack cephalic lobes. The skeletal elements (radials) of the cephalic lobes more closely resembled the radials in the pectoral fin of undulatory species. Second moment of area (I), calculated from cephalic lobe radial cross sections, and the number of joints revealed greater flexibility and resistance to bending in multiple directions as compared to pectoral fin radials of oscillatory species. The cephalic lobe musculature was more complex than the anterior pectoral fin musculature, with an additional muscle on the dorsal side, with fiber angles running obliquely to the radials. In Rhinoptera bonasus, a muscle presumably used to help elevate the cephalic lobes is described. Electrosensory pores were found on the cephalic lobes (except Mobula japonica) and anterior pectoral fins of undulatory swimmers, but absent from the anterior pectoral fins of oscillatory swimmers. Pore distributions were fairly uniform except in R. bonasus, which had higher pore numbers at the edges of the cephalic lobes. Overall, the cephalic lobes are unique in their anatomy but are more similar to the anterior pectoral fins of undulatory swimmers, having more flexibility and maneuverability compared to pectoral fins of oscillatory swimmers. The maneuverable cephalic lobes taking on the role of feeding may have allowed the switch to oscillatory locomotion and hence, a more pelagic lifestyle. J. Morphol. 274:1070–1083, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
The regenerative capacity of limbs was investigated by amputation of limbs at the zeugopodium in postmetamorphic froglets and adults of various sizes in four species of Japanese frogs, all of which showed some regeneration at these ages. In Hyla arborea japonica and Rana brevipoda porosa most young froglets regenerated their limbs well; however, the rate of regeneration decreased with the age of amputation, and the limb became nonregenerative in adults. Limbs of adults in Rana rugosa and R. japonica, on the other hand, exhibited good regeneration. All of the regenerates in the four species were heteromorphic, consisting histologically of well-developed cartilaginous rods surronded by connective tissue and skin. Limited development of muscle was appartment in regenerates of the three ranid species. The relations between body size, innervation of limbs, and regenerative capacity are discussed.  相似文献   

6.
Epimorphic regeneration of fins was studied in different ray-finned fishes (Actinopterygii), but species representing the phylogenetically basal lineages of the taxon have remained outside the attention of researchers. Information on the regenerative abilities of these groups is important both for understanding the evolutionary origins of the epimorphic regeneration phenomenon and for assessing the universality of regenerative potencies in Actinopterygii. Addressing this problem, we studied for the first time fin regeneration in two members of the archaic family Polypteridae: the ropefish (Erpetoichthys calabaricus) and the Senegal bichir (Polypterus senegalus). Along with the ability to regenerate the bony rays of fins, widespread among Actinopterygii, polypterids show the ability to effectively regenerate the endoskeleton and musculature of their fins. This unusual feature allows us to suggest polypterids as new model organisms for the study of the mechanisms of vertebrate limb regeneration.  相似文献   

7.
Certain fish and amphibians regenerate entire fins and limbs after amputation, whereas such potential is absent in birds and limited in mammals to digit tips [1, 2]. Additionally, regenerative success can change during life stages. Anuran tadpoles gradually lose the capacity to regenerate limbs [3,?4], and digit regeneration occurs more effectively in fetal mice and human children than adults [5-8]. Little is known about mechanisms that control regenerative capacity. Here, we identify an unexpected difference between male and female zebrafish in the regenerative potential of a major appendage. Males display regenerative defects in amputated pectoral fins, caused by impaired blastemal proliferation. This regenerative failure emerges after sexual maturity, is mimicked in androgen-treated females, and is suppressed in males by androgen receptor antagonism. Androgen signaling maintains expression of dkk1b and igfbp2a, which encode secreted inhibitors of Wnt and Igf signaling, respectively. Furthermore, the regulatory target of Wnts and Igfs, GSK3β, is inefficiently inactivated in male fin regenerates compared with females. Pharmacological inhibition of GSK3 in males increases blastemal proliferation and restores regenerative pattern. Our findings identify a natural sex bias in appendage regenerative capacity and indicate an underlying regulatory circuit in which androgen locally restricts key morphogenetic programs after amputation.  相似文献   

8.
Epimorphic regeneration of fins was studied in different ray-finned fishes (Actinopterygii), but species representing the phylogenetically basal lineages of the taxon have remained outside the attention of researchers. Information on the regenerative abilities of these groups is important both for understanding the evolutionary origins of the epimorphic regeneration phenomenon and for assessing the universality of regenerative potencies in Actinopterygii. Addressing this problem, we studied for the first time fin regeneration in two members of the archaic family Polypteridae: the ropefish (Erpetoichthys calabaricus) and the Senegal bichir (Polypterus senegalus). Along with the ability to regenerate the bony rays of fins, widespread among Actinopterygii, polypterids show the ability to effectively regenerate the endoskeleton and musculature of their fins. This unusual feature allows us to suggest polypterids as new model organisms for the study of the mechanisms of vertebrate limb regeneration.  相似文献   

9.
WithAcanthodes bourbonensis n.sp. another acanthodian from Lower Permian basins of Europe is described. The new species is similar toAcanthodes gracilis (Beyrich) from Silesia (Poland), but it differs from this and all other species of the genus in the development of the pectoral fins, dorsal fin, anal fin and caudal fin. In pectoral fins, dorsal and anal fin there are different ceratotrichia as supporting elements and pectoral fins are attaching along a row of oblonged large scales. In the caudal fin there is an epichoral appendix first found byHeyler (1969).  相似文献   

10.
Aquatic organisms exposed to high flow regimes typically exhibit adaptations to decrease overall drag and increase friction with the substrate. However, these adaptations have not yet been examined on a structural level. Sculpins (Scorpaeniformes: Cottoidea) have regionalized pectoral fins that are modified for increasing friction with the substrate, and morphological specialization varies across species. We examined body and pectoral fin morphology of 9 species to determine patterns of body and pectoral fin specialization. Intact specimens and pectoral fins were measured, and multivariate techniques determined the differences among species. Cluster analysis identified 4 groups that likely represent differences in station-holding demand, and this was supported by a discriminant function analysis. Primarily, the high-demand group had increased peduncle depth (specialization for acceleration) and larger pectoral fins with less webbed ventral rays (specialization for mechanical gripping) compared to other groups; secondarily, the high-demand group had a greater aspect ratio and a reduced number of pectoral fin rays (specialization for lift generation) than other groups. The function of sculpin pectoral fins likely shifts from primarily gripping where demand is likely low, to an equal dependence on gripping and negative lift generation where demand is likely high. Specialization of the ventral pectoral fin region for gripping likely contributes to the recent diversification of some species into high-demand habitats.  相似文献   

11.
Batoids differ from other elasmobranch fishes in that they possess dorsoventrally flattened bodies with enlarged muscled pectoral fins. Most batoids also swim using either of two modes of locomotion: undulation or oscillation of the pectoral fins. In other elasmobranchs (e.g., sharks), the main locomotory muscle is located in the axial myotome; in contrast, the main locomotory muscle in batoids is found in the enlarged pectoral fins. The pectoral fin muscles of sharks have a simple structure, confined to the base of the fin; however, little to no data are available on the more complex musculature within the pectoral fins of batoids. Understanding the types of fibers and their arrangement within the pectoral fins may elucidate how batoid fishes are able to utilize such unique swimming modes. In the present study, histochemical methods including succinate dehydrogenase (SDH) and immunofluoresence were used to determine the different fiber types comprising these muscles in three batoid species: Atlantic stingray (Dasyatis sabina), ocellate river stingray (Potamotrygon motoro) and cownose ray (Rhinoptera bonasus). All three species had muscles comprised of two muscle fiber types (slow-red and fast-white). The undulatory species, D. sabina and P. motoro, had a larger proportion of fast-white muscle fibers compared to the oscillatory species, R. bonasus. The muscle fiber sizes were similar between each species, though generally smaller compared to the axial musculature in other elasmobranch fishes. These results suggest that batoid locomotion can be distinguished using muscle fiber type proportions. Undulatory species are more benthic with fast-white fibers allowing them to contract their muscles quickly, as a possible means of escape from potential predators. Oscillatory species are pelagic and are known to migrate long distances with muscles using slow-red fibers to aid in sustained swimming.  相似文献   

12.
Paired fins and associated internal structures of the epauletic sharkHemiscyllium ocellatum, were described on the basis of three specimens. A comparison with other genera showed the epaulette shark to be, characterized by two elongated basal cartilages articulating with a distally projecting articular condyle on the coracoid, a loosely separated radial series with an intermediate series, a levator pectoralis inferior muscle and an anterolaterally developed depressor pectoralis muscle in the pectoral fin, and an elongated anterior pelvic basal cartilage articulating with a distally projecting articular condyle and an anterolaterally developed depressor pelvicus muscle in the pelvic fin. In captivity, the sharks exhibited both upright and crawling behavior on the bottom by using the pectoral and pelvic fins and bending the body. The distinctive morphological characters are shared by otherHemiscyllium species and are suggested as important factors enabling their unique behavior associated with a complex coral reef habitat.  相似文献   

13.
Ecomorphology of Locomotion in Labrid Fishes   总被引:8,自引:0,他引:8  
The Labridae is an ecologically diverse group of mostly reef associated marine fishes that swim primarily by oscillating their pectoral fins. To generate locomotor thrust, labrids employ the paired pectoral fins in motions that range from a fore-aft rowing stroke to a dorso-ventral flapping stroke. Species that emphasize one or the other behavior are expected to benefit from alternative fin shapes that maximize performance of their primary swimming behavior. We document the diversity of pectoral fin shape in 143 species of labrids from the Great Barrier Reef and the Caribbean. Pectoral fin aspect ratio ranged among species from 1.12 to 4.48 and showed a distribution with two peaks at about 2.0 and 3.0. Higher aspect ratio fins typically had a relatively long leading edge and were narrower distally. Body mass only explained 3% of the variation in fin aspect ratio in spite of four orders of magnitude range and an expectation that the advantages of high aspect ratio fins and flapping motion are greatest at large body sizes. Aspect ratio was correlated with the angle of attachment of the fin on the body (r = 0.65), indicating that the orientation of the pectoral girdle is rotated in high aspect ratio species to enable them to move their fin in a flapping motion. Field measures of routine swimming speed were made in 43 species from the Great Barrier Reef. Multiple regression revealed that fin aspect ratio explained 52% of the variation in size-corrected swimming speed, but the angle of attachment of the pectoral fin only explained an additional 2%. Labrid locomotor diversity appears to be related to a trade-off between efficiency of fast swimming and maneuverability in slow swimming species. Slow swimmers typically swim closer to the reef while fast swimmers dominate the water column and shallow, high-flow habitats. Planktivory was the most common trophic associate with high aspect ratio fins and fast swimming, apparently evolving six times.  相似文献   

14.
1. The three-spined stickleback, Gasterosteus aculeatus L., is a territorial fish with exclusive male parental care. Males oxygenate the eggs with fanning movements of their pectoral fins. The present authors investigated whether the apparent sexual differences in the functional demands of the pectoral fins have resulted in sexual differences in fin size. If males have relatively larger pectoral fins, females may use this as a signal to aid their mate choice for good fathers. Therefore, further objectives were to study the condition-dependency of relative pectoral fin size in males and the relationship with male parasite load. 2. Reproductively active males possessed relatively larger pectoral fins than females in both wild-caught and laboratory-bred fish. 3. In the field, caring males with relatively large pectoral fins were in better physical condition and had more food in their stomachs. 4. Relatively small pectoral fins and poor body condition were associated with infection by the intestinal parasite Pomphorhynchus laevis (Acanthocephala), the prevalent parasite species in the study population.  相似文献   

15.
To establish a simple and reliable index for determining silvering stages of the Japanese eel, Anguilla japonica, we observed the colorations of various body parts and biological characteristics of the eels collected in a coastal area of Japan (Mikawa Bay). The four silvering stages are characterized by the colorations of pectoral fins and ventral skin as follows: (1) Y1, yellow eel without a metallic hue at the base of pectoral fins, (2) Y2, late yellow eel with a metallic hue at the base of the pectoral fins but without melanization at the tip of pectoral fins, (3) S1, silver eel with complete melanization at the tip of pectoral fins but without full pigmented belly in black or dark brown, and (4) S2, late silver eel with black or dark brown belly. The body size, eye diameter and sexual maturity of each stage increased in the order of Y1, Y2, S1 and S2 stages, whereas the digestive tract degenerated in the same order, suggesting a sequential development of these ontogenetic stages identified in the study. The Y1, Y2 and S1 stages could be also distinguished by canonical discriminant function analysis using three internal (gonad-somatic index, GSI; hepato-somatic index, HIS; and gut index) and two morphometric (condition factor and eye index) parameters, supporting the significance of these stages. This method of staging for the silvering process of the Japanese eel appeared to be applicable to all specimens of this species, since this index used only simple external characteristics that would be easy to observe during field surveys.  相似文献   

16.
The use of venom to subdue prey or deter predators has evolved multiple times in numerous animal lineages. Catfishes represent one of the most easily recognized, but least studied groups of venomous fishes. Venom glands surround spines on the dorsal and pectoral fins that serve as venom delivery structures. Species of madtom catfishes in the genus Noturus were found to each have one of four venom delivery morphologies: (1) smooth spine with no venom gland; (2) smooth spine with venom gland associated with shaft of spine; (3) serrated spine with venom gland associated with shaft of spine; and (4) serrated spine with venom gland associated with shaft of spine and posterior serrations. Analyses accounting for the phylogenetic history of Noturus species suggest that a serrated pectoral spine with a venom gland is the ancestral condition for the genus. The presence of serrations and a venom gland have been largely conserved among Noturus species, but sting morphology has changed at least five times within the genus. Four of these changes have resulted in a loss of morphological complexity, including the loss of posterior serrations, loss of venom glands associated with the posterior serrations, and one complete loss of the venom gland. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 115–129.  相似文献   

17.

Background

Accurate regulation of Notch signalling is central for developmental processes in a variety of tissues, but its function in pectoral fin development in zebrafish is still unknown.

Methodology/Principal Findings

Here we show that core elements necessary for a functional Notch pathway are expressed in developing pectoral fins in or near prospective muscle territories. Blocking Notch signalling at different levels of the pathway consistently leads to the formation of thin, wavy, fragmented and mechanically weak muscles fibres and loss of stress fibres in endoskeletal disc cells in pectoral fins. Although the structural muscle genes encoding Desmin and Vinculin are normally transcribed in Notch-disrupted pectoral fins, their proteins levels are severely reduced, suggesting that weak mechanical forces produced by the muscle fibres are unable to stabilize/localize these proteins. Moreover, in Notch signalling disrupted pectoral fins there is a decrease in the number of Pax7-positive cells indicative of a defect in myogenesis.

Conclusions/Significance

We propose that by controlling the differentiation of myogenic progenitor cells, Notch signalling might secure the formation of structurally stable muscle fibres in the zebrafish pectoral fin.  相似文献   

18.
19.
During regeneration, lost functional tissue can, in general, be replaced by different mechanisms, including proliferation of terminally differentiated cells or through differentiation of resident stem cells. It is a well-accepted dogma that the mammalian heart cannot efficiently regenerate upon injury as a consequence of insufficient oxygen supply. This is in sharp contrast to the hearts of adult zebrafish or newts that are able to replace lost ventricular tissue. Novel data indicate that the young murine heart also has the ability to regenerate within the first week after birth using mechanisms apparently quite similar to those observed in fish. This now provides us with a good starting point to identify the molecular mechanisms that led to the loss of the regenerative capacity of the adult mammalian heart. These future studies will also indicate whether it will be possible to reawaken the regenerative capability of cardiomyocytes in the human heart by treatment with selected pharmaceuticals.  相似文献   

20.
Synopsis Ecomorphological correlates were sought among ten species of distantly related subtropical seagrass fishes. Morphometric data associated with feeding and microhabitat utilization were compared by principal components analysis, cluster analysis, and canonical correspondence analysis to dietary data. Morphology was generally a poor predictor of diet except for a group of mid-water planktotrophic filter feeders. Separation of the species along morphological axes appears to be related more to microhabitat utilization resulting in three major groups: (1) a group of planktotrophic, mid-water fishes specialized for cruising and seeking out evasive prey characterized by a compressed fusiform body, forked caudal fin, long, closely spaced gill rakers, short to intermediate! length pectoral fin, pointed pectoral fin, large lateral eye, short head, and a terminal or subterminal mouth; (2) slow swimming, less maneuverable epibenthic fishes that pick or suck their prey off the substrate. They are united by more rounded caudal and pectoral fins, and short or no gill rakers; and (3) a group of more mobile and maneuverable epibenthic foragers characterized by a more compressed, sub-gibbose body, long, pointed pectoral fins, forked caudal fins, large lateral eyes, subterminal mouth, and greater jaw protrusibility. Cases of convergence in trophic and microhabitat utilization characters were apparent in some of the groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号