首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ma J  Jin R  Dobry CJ  Lawson SK  Kumar A 《Autophagy》2007,3(6):604-609
Under conditions of nitrogen stress, the budding yeast S. cerevisiae initiates a cellular response involving the activation of autophagy, an intracellular catabolic process for the degradation and recycling of proteins and organelles. In certain strains of yeast, nitrogen stress also drives a striking developmental transition to a filamentous form of growth, in which cells remain physically connected after cytokinesis. We recently identified an interrelationship between these processes, with the inhibition of autophagy resulting in exaggerated filamentous growth. Our results suggest a model wherein autophagy mitigates nutrient stress, and filamentous growth is responsive to the degree of this stress. Here, we extended these studies to encompass a phenotypic analysis of filamentous growth upon overexpression of autophagy-related (ATG) genes. Specifically, overexpression of ATG1, ATG3, ATG7, ATG17, ATG19, ATG23, ATG24 and ATG29 inhibited filamentous growth. From our understanding of autophagy in yeast, overexpression of these genes does not markedly affect the activity of the pathway; thus, we do not expect that this filamentous growth phenotype is due strictly to diminished nitrogen stress in ATG overexpression mutants. Rather, these results highlight an additional undefined regulatory mechanism linking autophagy and filamentous growth, possibly independent of the upstream nitrogen-sensing machinery feeding into both processes.  相似文献   

2.
《Autophagy》2013,9(6):604-609
Under conditions of nitrogen stress, the budding yeast S. cerevisiae initiates a cellular response involving the activation of autophagy, an intracellular catabolic process for the degradation and recycling of proteins and organelles. In certain strains of yeast, nitrogen stress also drives a striking developmental transition to a filamentous form of growth, in which cells remain physically connected after cytokinesis. We recently identified an interrelationship between these processes, with the inhibition of autophagy resulting in exaggerated filamentous growth. Our results suggest a model wherein autophagy mitigates nutrient stress, and filamentous growth is responsive to the degree of this stress. Here, we extended these studies to encompass a phenotypic analysis of filamentous growth upon overexpression of autophagy-related (ATG) genes. Specifically, overexpression of ATG1, ATG3, ATG7, ATG17, ATG19, ATG23, ATG24, and ATG29 inhibited filamentous growth. From our understanding of autophagy in yeast, overexpression of these genes does not markedly affect the activity of the pathway; thus, we do not expect that this filamentous growth phenotype is due strictly to diminished nitrogen stress in ATG overexpression mutants. Rather, these results highlight an additional undefined regulatory mechanism linking autophagy and filamentous growth, possibly independent of the upstream nitrogen-sensing machinery feeding into both processes.

Addendum to:

An Interrelationship Between Autophagy and Filamentous Growth in Budding Yeast

J. Ma, R. Jin, X. Jia, C.J. Dobry, L. Wang, F. Reggiori, J. Zhu and A. Kumar

Genetics 2007; In press  相似文献   

3.
Autophagy is a ubiquitous, non-selective degradation process in eukaryotic cells that is conserved from yeast to man. Autophagy research has increased significantly in the last ten years, as autophagy has been connected with cancer, neurodegenerative disease and various human developmental processes. Autophagy also appears to play an important role in filamentous fungi, impacting growth, morphology and development. In this review, an autophagy model developed for the yeast Saccharomyces cerevisiae is used as an intellectual framework to discuss autophagy in filamentous fungi. Studies imply that, similar to yeast, fungal autophagy is characterized by the presence of autophagosomes and controlled by Tor kinase. In addition, fungal autophagy is apparently involved in protection against cell death and has significant effects on cellular growth and development. However, the only putative autophagy proteins characterized in filamentous fungi are Atg1 and Atg8. We discuss various strategies used to study and monitor fungal autophagy as well as the possible relationship between autophagy, physiology, and morphological development.  相似文献   

4.
Multifunction of autophagy-related genes in filamentous fungi   总被引:1,自引:0,他引:1  
Autophagy (macroautophagy), a highly conserved eukaryotic mechanism, is a non-selective degradation process, helping to maintain a balance between the synthesis, degradation and subsequent recycling of macromolecules to overcome various stress conditions. The term autophagy denotes any cellular process which involves the delivery of cytoplasmic material to the lysosome for degradation. Autophagy, in filamentous fungi plays a critical role during cellular development and pathogenicity. Autophagy, like the mitogen-activated protein (MAP) kinase cascade and nutrient-sensing cyclic AMP (cAMP) pathway, is also an important process for appressorium turgor accumulation in order to penetrate the leaf surface of host plant and destroy the plant defense. Yeast, an autophagy model, has been used to compare the multi-valued functions of ATG (autophagy-related genes) in different filamentous fungi. The autophagy machinery in both yeast and filamentous fungi is controlled by Tor kinase and both contain two distinct phosphatidylinositol 3-kinase complexes. In this review, we focus on the functions of ATG genes during pathogenic development in filamentous fungi.  相似文献   

5.
Richie DL  Askew DS 《Autophagy》2008,4(1):115-117
Nutrient limitation is one of the most common forms of stress encountered by microorganisms in the environment. Surviving this stress depends upon a number of integrated responses, one of the most important of which is autophagy. When the filamentous fungus Aspergillus fumigatus becomes nutrient deprived it undergoes two important processes: the developmental pathway for asexual sporulation (conidiation), and a foraging response that promotes the migration of the hyphal tips into new substrate. To determine the contribution of autophagy to these two functions, we disrupted the A. fumigatus atg1 gene. The data reveal that Atg1 is required for wild-type conidiation of A. fumigatus, but only when nitrogen is limiting. Secondly, we demonstrate that metal ion availability limits the extent to which A. fumigatus can grow without a carbon/nitrogen source and that autophagy is necessary for growth under conditions of metal ion deficiency. These findings indicate that autophagy is responsible for maintaining an adequate supply of nitrogen to support conidiophore development, and provide intriguing new evidence that autophagy is linked to metal ion homeostasis.  相似文献   

6.
7.
The subcellular distribution of kinases and other signaling proteins is regulated in response to cellular cues; however, the extent of this regulation has not been investigated for any gene set in any organism. Here, we present a systematic analysis of protein kinases in the budding yeast, screening for differential localization during filamentous growth. Filamentous growth is an important stress response involving mitogen-activated protein kinase and cAMP-dependent protein kinase signaling modules, wherein yeast cells form interconnected and elongated chains. Because standard strains of yeast are nonfilamentous, we constructed a unique set of 125 kinase-yellow fluorescent protein chimeras in the filamentous Sigma1278b strain for this study. In total, we identified six cytoplasmic kinases (Bcy1p, Fus3p, Ksp1p, Kss1p, Sks1p, and Tpk2p) that localize predominantly to the nucleus during filamentous growth. These kinases form part of an interdependent, localization-based regulatory network: deletion of each individual kinase, or loss of kinase activity, disrupts the nuclear translocation of at least two other kinases. In particular, this study highlights a previously unknown function for the kinase Ksp1p, indicating the essentiality of its nuclear translocation during yeast filamentous growth. Thus, the localization of Ksp1p and the other kinases identified here is tightly controlled during filamentous growth, representing an overlooked regulatory component of this stress response.  相似文献   

8.
BACKGROUND: To survive starvation and other forms of stress, eukaryotic cells undergo a lysosomal process of cytoplasmic degradation known as autophagy. Autophagy has been implicated in a number of cellular and developmental processes, including cell-growth control and programmed cell death. However, direct evidence of a causal role for autophagy in these processes is lacking, resulting in part from the pleiotropic effects of signaling molecules such as TOR that regulate autophagy. Here, we circumvent this difficulty by directly manipulating autophagy rates in Drosophila through the autophagy-specific protein kinase Atg1. RESULTS: We find that overexpression of Atg1 is sufficient to induce high levels of autophagy, the first such demonstration among wild-type Atg proteins. In contrast to findings in yeast, induction of autophagy by Atg1 is dependent on its kinase activity. We find that cells with high levels of Atg1-induced autophagy are rapidly eliminated, demonstrating that autophagy is capable of inducing cell death. However, this cell death is caspase dependent and displays DNA fragmentation, suggesting that autophagy represents an alternative induction of apoptosis, rather than a distinct form of cell death. In addition, we demonstrate that Atg1-induced autophagy strongly inhibits cell growth and that Atg1 mutant cells have a relative growth advantage under conditions of reduced TOR signaling. Finally, we show that Atg1 expression results in negative feedback on the activity of TOR itself. CONCLUSIONS: Our results reveal a central role for Atg1 in mounting a coordinated autophagic response and demonstrate that autophagy has the capacity to induce cell death. Furthermore, this work identifies autophagy as a critical mechanism by which inhibition of TOR signaling leads to reduced cell growth.  相似文献   

9.
10.
A key question in eukaryotic differentiation is whether there are common regulators or biochemical events that are required for diverse types of differentiation or whether there is a core mechanism for differentiation. The unicellular model organism Saccharomyces cerevisiae undergoes filamentous differentiation in response to environmental cues. Because conserved cell cycle regulators, the mitotic cyclin-dependent kinase Clb2/Cdc28, and its inhibitor Swe1 were found to be involved in both nitrogen starvation- and short chain alcohol-induced filamentous differentiation, they were identified as components of the core mechanism for filamentous differentiation. We report here that slowed DNA synthesis also induces yeast filamentous differentiation through conserved checkpoint proteins Mec1 and Rad53. Swe1 and Clb2 are also involved in this form of differentiation, and the core status of Swe1/Clb2/Cdc28 in the mechanism of filamentous differentiation has therefore been confirmed. Because the cAMP and filamentous growth mitogen-activated protein kinase pathways that mediate nitrogen starvation-induced filamentous differentiation are not required for slowed DNA synthesis-induced filamentous growth, they can therefore be excluded from the core mechanism. More significantly, slowed DNA synthesis also induces differentiation in mammalian cancer cells, and such stimulus conservation may indicate that the core mechanism for yeast filamentous differentiation is conserved in mammalian differentiation.  相似文献   

11.
12.
Under certain conditions of nutrient stress, the budding yeast Saccharomyces cerevisiae initiates a striking developmental transition to a filamentous form of growth, resembling developmental transitions required for virulence in closely related pathogenic fungi. In yeast, filamentous growth involves known mitogen-activated protein kinase and protein kinase A signaling modules, but the full scope of this extensive filamentous response has not been delineated. Accordingly, we have undertaken the first systematic gene disruption and overexpression analysis of yeast filamentous growth. Standard laboratory strains of yeast are nonfilamentous; thus, we constructed a unique set of reagents in the filamentous Σ1278b strain, encompassing 3627 integrated transposon insertion alleles and 2043 overexpression constructs. Collectively, we analyzed 4528 yeast genes with these reagents and identified 487 genes conferring mutant filamentous phenotypes upon transposon insertion and/or gene overexpression. Using a fluorescent protein reporter integrated at the MUC1 locus, we further assayed each filamentous growth mutant for aberrant protein levels of the key flocculence factor Muc1p. Our results indicate a variety of genes and pathways affecting filamentous growth. In total, this filamentous growth gene set represents a wealth of yeast biology, highlighting 84 genes of uncharacterized function and an underappreciated role for the mitochondrial retrograde signaling pathway as an inhibitor of filamentous growth.  相似文献   

13.
Autophagy in development and stress responses of plants   总被引:2,自引:0,他引:2  
The uptake and degradation of cytoplasmic material by vacuolar autophagy in plants has been studied extensively by electron microscopy and shown to be involved in developmental processes such as vacuole formation, deposition of seed storage proteins and senescence, and in the response of plants to nutrient starvation and to pathogens. The isolation of genes required for autophagy in yeast has allowed the identification of many of the corresponding Arabidopsis genes based on sequence similarity. Knockout mutations in some of these Arabidopsis genes have revealed physiological roles for autophagy in nutrient recycling during nitrogen deficiency and in senescence. Recently, markers for monitoring autophagy in whole plants have been developed, opening the way for future studies to decipher the mechanisms and pathways of autophagy, and the function of these pathways in plant development and stress responses.  相似文献   

14.
《Autophagy》2013,9(1):2-11
The uptake and degradation of cytoplasmic material by vacuolar autophagy in plants has been studied extensively by electron microscopy and shown to be involved in developmental processes such as vacuole formation, deposition of seed storage proteins and senescence, and in the response of plants to nutrient starvation and to pathogens. The isolation of genes required for autophagy in yeast has allowed the identification of many of the corresponding Arabidopsis genes based on sequence similarity. Knockout mutations in some of these Arabidopsis genes have revealed physiological roles for autophagy in nutrient recycling during nitrogen deficiency and in senescence. Recently, markers for monitoring autophagy in whole plants have been developed, opening the way for future studies to decipher the mechanisms and pathways of autophagy, and the function of these pathways in plant development and stress responses.  相似文献   

15.
Shin CS  Huh WK 《Autophagy》2011,7(8):854-862
It has been reported in various model organisms that autophagy and the target of rapamycin complex 1 (TORC1) signaling are strongly involved in eukaryotic cell aging and decreasing TORC1 activity extends longevity by an autophagy-dependent mechanism. Thus, to expand our knowledge of the regulation of eukaryotic cell aging, it is important to understand the relationship between TORC1 signaling and autophagy. Many researchers have shown that TORC1 represses autophagy under normal growth conditions, and TORC1 inactivation contributes to the upregulation of autophagy. However, it is poorly understood how autophagy is regulated or terminated when starvation is prolonged. Here, we report that bidirectional regulation between autophagy and TORC1 exists in the yeast Saccharomyces cerevisiae. We show that mutant cells with weak TORC1 activity maintain autophagy longer than wild-type cells, and TORC1 is partially reactivated under ongoing nitrogen starvation by an autophagy-dependent mechanism. In addition, we found that Atg13 is gradually rephosphorylated during prolonged nitrogen starvation, and the kinase activity of Atg1 is required for Atg13 rephosphorylation. Our data suggest that TORC1 can be substantially, if not fully, reactivated in an autophagy-dependent manner under ongoing starvation, and that partially reactivated TORC1 eventually plays a role in the attenuation of autophagy.  相似文献   

16.
Autophagy is a lysosome‐mediated degradation pathway used by eukaryotes to recycle cytosolic components in both basal and stress conditions. Several genes have been described as regulators of autophagy, many of them being evolutionarily conserved from yeast to mammals. The study of autophagy‐defective model systems has made it possible to highlight the importance of correctly functioning autophagic machinery in the development of invertebrates as, for example, during the complex events of fly and worm metamorphosis. In vertebrates, on the other hand, autophagy defects can be lethal for the animal if the mutated gene is involved in the early stages of development, or can lead to severe phenotypes if the mutation affects later stages. However, in both lower and higher eukaryotes, autophagy seems to be crucial during embryogenesis by acting in tissue remodeling in parallel with apoptosis. An increase of autophagic cells is, in fact, observed in the embryonic stages characterized by massive cell elimination. Moreover, autophagic processes probably protect cells during metabolic stress and nutrient paucity that occur during tissue remodeling. In light of such evidence, it can be concluded that there is a close interplay between autophagy and the processes of cell death, proliferation and differentiation that determine the development of higher eukaryotes.  相似文献   

17.
Summary: The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attractive model because it displays pronounced cell polarity in response to intracellular and extracellular cues. Cells of S. cerevisiae undergo polarized growth during various phases of their life cycle, such as during vegetative growth, mating between haploid cells of opposite mating types, and filamentous growth upon deprivation of nutrition such as nitrogen. Substantial progress has been made in deciphering the molecular basis of cell polarity in budding yeast. In particular, it becomes increasingly clear how small GTPases regulate polarized cytoskeletal organization, cell wall assembly, and exocytosis at the molecular level and how these GTPases are regulated. In this review, we discuss the key signaling pathways that regulate cell polarization during the mitotic cell cycle and during mating.  相似文献   

18.
19.
《Autophagy》2013,9(8):854-862
It has been reported in various model organisms that autophagy and the target of rapamycin complex 1 (TORC1) signaling are strongly involved in eukaryotic cell aging and decreasing TORC1 activity extends longevity by an autophagy-dependent mechanism. Thus, to expand our knowledge of the regulation of eukaryotic cell aging, it is important to understand the relationship between TORC1 signaling and autophagy. Many researchers have shown that TORC1 represses autophagy under normal growth conditions, and TORC1 inactivation contributes to the upregulation of autophagy. However, it is poorly understood how autophagy is regulated or terminated when starvation is prolonged. Here, we report that bidirectional regulation between autophagy and TORC1 exists in the yeast Saccharomyces cerevisiae. We show that mutant cells with weak TORC1 activity maintain autophagy longer than wild-type cells, and TORC1 is partially reactivated under ongoing nitrogen starvation by an autophagy-dependent mechanism. In addition, we found that Atg13 is gradually rephosphorylated during prolonged nitrogen starvation, and the kinase activity of Atg1 is required for Atg13 rephosphorylation. Our data suggest that TORC1 can be substantially, if not fully, reactivated in an autophagy-dependent manner under ongoing starvation, and that partially reactivated TORC1 eventually plays a role in the attenuation of autophagy.  相似文献   

20.
Signal transduction cascades regulating fungal development and virulence.   总被引:19,自引:0,他引:19  
Cellular differentiation, mating, and filamentous growth are regulated in many fungi by environmental and nutritional signals. For example, in response to nitrogen limitation, diploid cells of the yeast Saccharomyces cerevisiae undergo a dimorphic transition to filamentous growth referred to as pseudohyphal differentiation. Yeast filamentous growth is regulated, in part, by two conserved signal transduction cascades: a mitogen-activated protein kinase cascade and a G-protein regulated cyclic AMP signaling pathway. Related signaling cascades play an analogous role in regulating mating and virulence in the plant fungal pathogen Ustilago maydis and the human fungal pathogens Cryptococcus neoformans and Candida albicans. We review here studies on the signaling cascades that regulate development of these and other fungi. This analysis illustrates both how the model yeast S. cerevisiae can serve as a paradigm for signaling in other organisms and also how studies in other fungi provide insights into conserved signaling pathways that operate in many divergent organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号