首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies showed that phorbol esters and thyrotropin-releasing hormone (TRH) stimulated phosphatidylcholine synthesis via protein kinase C in GH3 pituitary cells [Kolesnick (1987) J. Biol. Chem. 262, 14525-14530]. In contrast, 1,2-diacylglycerol-stimulated phosphatidylcholine synthesis appeared independent of protein kinase C. The present studies compare phosphatidylcholine synthesis stimulated by these agents with inhibition via the cyclic AMP system. The potent phorbol ester phorbol 12-myristate 13-acetate (PMA, 10 nM) increased [32P]Pi incorporation into phosphatidylcholine at 30 min to 159 +/- 6% of control. The adenylate cyclase activator cholera toxin (CT; 10 nM) and the cyclic AMP analogue dibutyryl cyclic AMP (1 mM) abolished this effect. CT similarly abolished TRH-induced phosphatidylcholine, but not phosphatidylinositol, synthesis. This is the first report of inhibiton of receptor-mediated phosphatidylcholine synthesis by the cyclic AMP system. The 1,2-diacylglycerol 1,2-dioctanoylglycerol (diC8) also stimulated concentration-dependent phosphatidylcholine synthesis. DiC8 (3 micrograms/ml) induced an effect quantitatively similar to that of maximal concentrations of PMA and TRH, whereas a maximal diC8 concentration (30 micrograms/ml) stimulated an effect 3-4-fold greater than these other agents. CT decreased the effect of diC8 (3 micrograms/ml) by 80%. Higher diC8 concentrations overcame the CT inhibition. Similar results were obtained with dibutyryl cyclic AMP. Additional differences were found between low and high concentrations of diC8. Low concentrations of diC8 failed to induce additive phosphatidylcholine synthesis with maximal concentrations of PMA, whereas high concentrations were additive. Hence, low concentrations of 1,2-diacylglycerols appear to be regulated similarly to phorbol esters, and higher concentrations appear to act via a pathway unavailable to phorbol esters.  相似文献   

2.
It has recently been proposed that degradation products of sphingolipids may serve as physiologic inhibitors of protein kinase C. The present study was performed to determine the effect of 1,2-diacylglycerols and phorbol esters, known activators of protein kinase C, on sphingomyelin metabolism. 1,2-Dioctanoylglycerol (diC8) caused time- and concentration-dependent reduction in the level of sphingomyelin labeled to equilibrium with [3H]choline. diC8 (200 micrograms/ml) reduced [3H]sphingomyelin to 81 +/- 3% of control (p less than 0.005) by 15 min, and the level was 58 +/- 5% of control after 1 h; an EC50 for this event was 56 micrograms/ml. To evaluate the mechanisms of stimulated hydrolysis, the sphingoid base backbone of sphingomyelin was labeled with [14C] serine, and the effects of diC8 were quantitated. diC8 (100 micrograms/ml) reduced the level of sphingomyelin to 66 +/- 7% of control by 1 h from 375 +/- 12 pmol/10(6) cells to 245 +/- 26 pmol/10(6) cells. There was a concomitant increase in ceramide from 89 +/- 4 pmol/10(6) cells to 252 +/- 27 pmol/10(6) cells consistent with activation of the enzyme, sphingomyelinase (EC 3.1.4.12). In support of this contention, 1,2-diacylglycerols appeared to enhance the activity of an acid, but not a neutral, sphingomyelinase in homogenates of GH3 cells. The 1,2-diacylglycerol, 1-oleyl-2-acetylglycerol, produced similar effects. In contrast, the phorbol esters, 12-O-tetradecanoylphorbol 13-acetate and phorbol 12,13-dibutyrate, failed to stimulate sphingomyelin hydrolysis. Further, these effects of the 1,2-diacylglycerols occurred in cells down-modulated for protein kinase C. These studies demonstrate that 1,2-diacylglycerols stimulate sphingomyelin hydrolysis by a mechanism independent of the protein kinase C which mediates phorbol ester action. This is the first report of stimulated sphingomyelin hydrolysis by a physiologic effector molecule.  相似文献   

3.
Phorbol esters and 1,2-diacylglycerols have been used interchangeably to study protein kinase C action. This laboratory first suggested that 1,2-diacylglycerols may also act independent of protein kinase C using protein kinase C-"down-modulated" cells (Kolesnick, R. N., and Paley, A. E. (1987) J. Biol. Chem. 262, 9204-9210). Unfortunately, down-modulation was never complete. The present studies establish an in vitro system of enzyme translocation to resolve this issue. Choline phosphate cytidylyltransferase (EC 2.7.7.15), the regulatory enzyme for phosphatidylcholine biosynthesis, was utilized. Cytidylyltransferase translocation from cytosol to membranes mediates phorbol ester-induced phosphatidylcholine synthesis in GH3 pituitary cells. In the present studies, 1,2-diacylglycerols similarly induced phosphatidylcholine synthesis and cytidylyltransferase translocation. 1,2-Diacylglycerol-induced phosphatidylcholine synthesis, however, was not concentration-dependent but proportional to the moles of 1,2-diacylglycerol added per cell, i.e. subject to surface dilution. For instance, at constant cell number (1.67 x 10(6)/sample) and 1,2-dioctanoylglycerol concentration (diC8; 20 micrograms/ml), 32Pi incorporation into phosphatidylcholine varied from 150 to 350% above control as the incubation volume increased from 0.3 to 1.2 ml. Hence, the effective diC8 concentrations 0.5-30 micrograms/ml are preferably referred to as doses and reported as 0.25-15 nmol/10(6) cells. These doses increased cellular 1,2-diacylglycerol levels within a few fold of basal (374 pmol/10(6) cells). In vitro, diC8 also induced translocation of purified cytidylyltransferase devoid of protein kinase C to microsomes. Translocation was again subject to surface dilution. Translocation occurred with the same ratio of diC8 to microsomal membrane as phosphatidylcholine synthesis in intact cells (1-10 nmol of diC8/10(6) cell membranes). Despite stimulating cytidylyltransferase translocation in intact cells, phorbol esters failed to stimulate translocation in vitro. Hence, 1,2-diacylglycerols are not always interchangeable with phorbol esters and at physiologic levels may stimulate enzyme translocation by an alternative mechanism to protein kinase C.  相似文献   

4.
It has been suggested that sphingoid bases may serve as physiologic inhibitors of protein kinase C. Because 1,2-diacylglycerols, but not phorbol esters, enhance sphingomyelin degradation via a sphingomyelinase in GH3 pituitary cells (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 16759-16762), the effects of phorbol esters, 1,2-diacylglycerols, and sphingomyelinase on protein kinase C activation were assessed. Under basal conditions, the inactive cytosolic form of protein kinase C predominated. 1,2-Diacylglycerols stimulated transient protein kinase C redistribution to the membrane. 1,2-Dioctanoylglycerol (200 micrograms/ml) reduced cytosolic protein kinase C activity to 67% of control from 72 to 48 pmol.min-1.10(6) cells-1 and enhanced membrane-bound activity to 430% of control from 6 to 25 pmol.min-1.10(6) cells-1 after 4 min of stimulation. Thereafter, protein kinase C activity returned to the cytosol. In contrast, the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated redistribution to the membrane without return to the cytosol. Exogenous sphingomyelinase reduced membrane-bound protein kinase C activity to 30% of control, yet did not alter cytosolic activity. Sphingomyelinase, added after phorbol ester-induced redistribution was completed, restored activity to the cytosol. In these studies, TPA (10(-8) M) reduced cytosolic activity to 62% of control and elevated membrane-bound protein kinase C activity to 650% of control. Sphingomyelinase restored cytosolic activity to 84% of control and reduced membrane-bound activity to 297% of control. Similarly, the free sphingoid bases, sphingosine, sphinganine, and phytosphingosine, reversed phorbol ester-induced protein kinase C redistribution. Since 1,2-diacylglycerols activate a sphingomyelinase and sphingomyelinase action can reverse protein kinase C activation, these studies suggest that a pathway involving a sphingomyelinase might comprise a physiologic negative effector system for protein kinase C. Further, the failure of phorbol esters to activate this system might account for some differences between these agents.  相似文献   

5.
Differences between the influences of phorbol esters (such as 4 beta-12-O-tetradecanoylphorbol 13-acetate) and of fatty acids (such as oleic acid) on the synthesis and turnover of phosphatidylcholine (PtdCho) and other phospholipids have been studied in glioma (C6), neuroblastoma (N1E-115), and hybrid (NG108-15) cells in culture using [methyl-3H]choline, [32P]Pi, [1,2-14C]ethanolamine, or 1-14C-labeled fatty acids as lipid precursors. 100-500 microM oleic acid stimulated PtdCho synthesis 3- to 5-fold in all three cell lines, but had little influence on chase of choline label following a 24-h pulse. Phorbol ester (50-200 nM) stimulated PtdCho synthesis 1.5- to 3-fold in C6 cells, was without effect in N1E-115 cells, and had intermediate effects on NG108-15 cells. Phorbol ester stimulated both uptake of extracellular choline and synthesis of PtdCho, whereas fatty acid stimulated only synthesis. Release of radioactivity from 24-h pulse-labeled PtdCho to the medium was enhanced by phorbol ester in C6 cells. Incorporation of [32P]Pi, primarily into PtdCho, was stimulated, whereas utilization of [1,2-14C]ethanolamine or 1-14C-fatty acid was little altered by phorbol ester. C6 cells "down-regulated" with phorbol ester lost the stimulatory response of subsequent treatment with phorbol esters on PtdCho synthesis, but the response to fatty acid was enhanced. Fatty acid had little influence on the relative binding of phorbol ester or "translocation" of phorbol ester binding sites. Accordingly, metabolism of phospholipids in these cultured cells of neural origin is markedly influenced by cell type, phospholipid class, condition of incubation medium, and nature of stimulator. Phorbol esters and fatty acids appear to enhance phospholipid synthesis and turnover by distinct intracellular mechanisms.  相似文献   

6.
Prior studies demonstrated that 1,2-diacylglycerols stimulated degradation of the choline-containing phospholipids, phosphatidylcholine and sphingomyelin, in GH3 pituitary cells by a phospholipase A2 and a sphingomyelinase, respectively (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 16759-16762). The present studies demonstrate that the phenothiazine trifluoperazine also stimulates degradation of these phospholipids. Trifluoperazine (25 microM) reduced phosphatidylcholine and sphingomyelin levels to 81 and 58% of control, respectively, after 30 min in cells labeled for 48 h with [3H] choline. Choline-containing metabolites were released specifically into the cytosolic fraction. The level of cytosolic phosphocholine, but not choline or CDP-choline, increased to 150% of control. These events were not mediated by inhibition of phosphatidylcholine synthesis. The level of 1,2-diacylglycerols, but not lysophosphatidylcholine or glycerol-3-phosphocholine, also increased. These data are most consistent with phosphatidylcholine degradation via a phospholipase C. Trifluoperazine-stimulated sphingomyelin degradation was accompanied by quantitative generation of ceramides consistent with activation of a sphingomyelinase. In contrast to trifluoperazine, choline-containing metabolites were released into the medium during stimulation by the 1,2-diacylglycerol 1,2-dioctanoyl-glycerol. Although both trifluoperazine and 1,2-dioctanoylglycerol increased ceramide levels, only 1,2-dioctanoylglycerol increased the sphingoid base level from 24 to 43 pmol/10(6) cells. Hence, trifluoperazine appears to deplete an intracellular pool of phosphatidylcholine and sphingomyelin by a different mechanism than 1,2-diacylglycerols. This is the first report of phenothiazine-induced degradation of choline-containing phospholipids.  相似文献   

7.
Phorbol esters have been shown to stimulate phosphatidylcholine synthesis via the CDP-choline pathway. The present study compares the effects of phorbol esters and thyrotropin-releasing hormone (TRH) on phosphatidylcholine metabolism in GH3 pituitary cells. In a previous study (Kolesnick, R.N., and Paley, A.E. (1987) J. Biol. Chem. 262, 9204-9210), the potent phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA) induced time- and concentration-dependent incorporation of 32Pi and [3H]choline into phosphatidylcholine in short-term labeling experiments. In this study, TPA is shown to activate choline-phosphate cytidylyltransferase (EC 2.7.7.15), the regulatory enzyme of the CDP-choline pathway, by stimulating redistribution of the inactive cytosolic form of the enzyme to the membrane. Redistribution was quantitative. TPA reduced cytosolic activity from 3.5 +/- 0.4 to 1.5 +/- 0.3 nmol . min-1 x 10(7) cells-1 and enhanced particulate activity from 2.5 +/- 0.4 to 4.9 +/- 0.6 nmol . min-1 x 10(7) cells-1. TRH also stimulated time- and concentration-dependent 32Pi and [3H]choline incorporation into phosphatidylcholine. An increase was detectable after 5 min; and after 30 min, the levels were 164 +/- 9 and 150 +/- 11% of control, respectively; EC50 congruent to 2 X 10(-10) M TRH. These events correlated directly with TRH-induced 32Pi incorporation into phosphatidylcholine. TRH also stimulated redistribution of cytidylyl-transferase specific activity. TRH reduced cytosolic activity 45% and enhanced particulate activity 51%. Neither TRH nor TPA stimulated phosphatidylcholine degradation. In cells down-modulated for protein kinase C (Ca2+/phospholipid-dependent protein kinase), the effects of TPA and TRH on 32Pi incorporation into phosphatidylcholine were abolished. However, TRH-induced incorporation into phosphatidylinositol still occurred. These studies provide evidence that hormones may regulate phosphatidylcholine metabolism via the protein kinase C pathway.  相似文献   

8.
Summary The effect of a reduction in protein kinase C activity on the metabolism of exogenous [3H]diC8 by freshly isolated smooth muscle cells from rabbit aorta and cultured A10 smooth muscle cells was determined. The metabolism of [3H]diC8 by both smooth muscle cell preparations was predominantly by hydrolysis to yield monoC8 and glycerol (lipase pathway); very little radioactivity was incorporated into phospholipids. Diacylglycerol lipase activity measured in vitro with A10 cell homogenates was much greater than diacylglycerol kinase activity. The addition of the protein kinase C inhibitor H-7 to incubations of isolated aortic smooth muscle cells and cultured A10 cells had no significant effect on the metabolism of [3H]diC8. Protein kinase C activity in cultured A10 cells preincubated for 20 h with a phorbol ester was reduced to 14% of control as a consequence of down-regulation, but diC8 metabolism was not changed. Therefore, protein kinase C does not regulate the metabolism of diacylglycerols in aortic smooth muscle cells.Abbreviations IP3 inositol 1,4,5-trisphosphate - DG diacylglycerol - MG monoacylglycerol - PL phospholipid(s) - diC8 dioctanoylglycerol - H-7 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride - monoC8 monooctanoylglycerol - PS phosphatidylserine - PDBu phorbol 12,13-dibutyrate  相似文献   

9.
Cross-linking of membrane IgM (mIgM) on both normal resting B cells and on the murine B cell lymphoma WEHI-231 activates the phosphoinositide signal transduction pathway. The initial event in this pathway is the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdInsP2), which results in the generation of two second-messengers: inositol trisphosphate (InsP3), which can cause the release of Ca2+ from intracellular stores, and diacylglycerol (DG), which activates protein kinase C. In examining the effects of exogenous activation of protein kinase C on WEHI-231 cells, we found that phorbol esters blocked some of the biologic effects of anti-IgM on WEHI-231 cells. The mechanism of this effect was investigated. Phorbol ester treatment of WEHI-231 cells blocked the ability of anti-IgM to stimulate production of inositol phosphates and accumulation of phosphatidic acid, the phosphorylated product of DG. Phorbol esters also blocked the ability of anti-IgM to cause an increase in intracellular Ca2+. Thus, it is clear that phorbol esters block anti-IgM-stimulated PtdInsP2 hydrolysis in WEHI-231 cells. In addition, a synthetic DG, dioctanoylglycerol (diC8), also blocked anti-IgM-stimulated inositol phosphate production and the anti-IgM-stimulated rise in cytoplasmic Ca2+. The ability of phorbol esters and diC8 to block mIgM-mediated signaling may reflect a feedback inhibition mechanism by which activated protein kinase C limits the magnitude and duration of receptor signaling.  相似文献   

10.
The biosynthesis of phosphatidylcholine (PC) in HEL-37 cells was followed by measuring the incorporation of [32P]Pi into PC. Incorporation was stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) and by the synthetic diacylglycerol, sn-1,2-dioctanoylglycerol (diC8), but not by sn-1-oleoyl-2-acetylglycerol or sn-1,2-dihexanoylglycerol (diC6). DiC8 was rapidly metabolised by HEL-37 cells to the corresponding PC and phosphatidic acid derivatives. diC8, diC6 and oleoylacetylglycerol effectively displaced [3H]phorbol-12,13-dibutyrate bound to a soluble cell extract from HEL-37 cells, but only diC8 was able to displace the labelled phorbol ester from prelabelled cells. TPA, diC8, diC6 and oleoylacetylglycerol were all effective inhibitors of 125I-labelled epidermal growth factor binding to, and gap junctional communication between, HEL-37 cells. It is concluded that only cell-permeable diacylglycerols stimulate PC biosynthesis which may therefore require interaction with membranes other than the plasma membrane.  相似文献   

11.
Protein phosphorylation mediated by cAMP-dependent protein kinase is instrumental in maintaining meiotic arrest of mouse oocytes. To assess whether protein phosphorylation mediated by calcium/phospholipid-dependent protein kinase (protein kinase C) might also inhibit the resumption of meiosis, we treated oocytes with activators of this enzyme. The active phorbol esters 12-O-tetra-decanoyl phorbol-13-acetate (TPA) and 4 beta-phorbol 12,13-didecanoate (4 beta-PDD) inhibited germinal vesicle breakdown (GVBD), as did a more natural activator of protein kinase, C, sn-1,2-dioctanoylglycerol (diC8). An inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate (4 alpha-PDD), did not inhibit GVBD. We then examined whether protein kinase C activators inhibit a step in the cAMP-modulated pathway that regulates resumption of meiosis. TPA did not inhibit the maturation-associated decrease in oocyte cAMP. Microinjected heat-stable protein inhibitor of cAMP-dependent protein kinase failed to induce GVBD in the presence of TPA. Both TPA and diC8 partially inhibited specific changes in oocyte phosphoprotein metabolism that are tightly correlated with resumption of meiosis; these agents also induced the apparent phosphorylation of specific oocyte proteins. These results suggest that protein kinase C activators may inhibit resumption of meiosis by acting distal to a decrease in cAMP-dependent protein kinase activity, but prior to changes in oocyte phosphoprotein metabolism that are presumably required for resumption of meiosis. Finally, we compared the effects of db-cAMP and protein kinase C activators on polar body emission following GVBD. TPA, 4 beta-PDD or diC8, but not 4 alpha-PDD or db-cAMP, inhibited polar body emission in a dose-dependent manner. The morphology and cytology of oocytes in which polar body emission was inhibited by TPA or 4 beta-PDD differed from that of oocytes treated with diC8. Thirty to 60% of the former were round in shape and exhibited a clump of chromosomes but no spindle; the remainder were distended in shape and exhibited a metaphase I spindle. All oocytes treated with diC8, however, were round, had dispersed chromosomes, and no spindle. These results suggest that, in contrast to resumption of meiosis, polar body emission is inhibited by activation of protein kinase C but not cAMP-dependent protein kinase.  相似文献   

12.
We have previously described the chemoattraction of lymphoblasts by lysophosphatidylcholine [Hoffman, R. D., et al. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 3285-3289]. In studying the mechanism of chemoattraction it was found that lysophosphatidylcholine was metabolized to 1,2-diacylglycerol by the lymphoblastic cell line 6C3HED. One route of metabolism involves the acylation of lysophosphatidylcholine to phosphatidylcholine with subsequent hydrolysis to 1,2-diacylglycerol and phosphocholine by the action of phospholipase C. The increase in cellular 1,2-diacylglycerol was established by metabolic experiments using [14C]glycerol-labeled lysophosphatidylcholine and by mass measurements of 1,2-diacylglycerol. The presence of a phosphatidylcholine-hydrolyzing phospholipase C was confirmed in 6C3HED cell homogenates. In intact cells, lysophosphatidylcholine induced a pattern of protein phosphorylation similar to those of 1,2-dioctanoylglycerol and phorbol 12-myristate 13-acetate, two known activators of protein kinase C. This pathway of lysophosphatidylcholine metabolism, which involves a phosphatidylcholine-hydrolyzing phospholipase C, may be important in the activation of protein kinase C independent of inositol phospholipid hydrolysis.  相似文献   

13.
Bombesin caused a marked stimulation of 32Pi into phosphatidylinositol (PI), with no apparent lag, and into phosphatidylcholine (PC), after a lag of about 20 min. Stimulation was blocked by the bombesin receptor antagonist, [D-Arg1, D-Pro2, D-Trp7,9, Leu11] substance P, indicating that the effects on both PI and PC were mediated through the same receptor. The tumor-promoting phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) and dioctanoylglycerol (diC8) both directly activate protein kinase C and in this report were shown to stimulate 32Pi incorporation into PC but not into Pl. In addition, TPA stimulated the release of [3H]choline and [3H]phosphocholine and the accumulation of [3H]diacyglycerol from prelabelled cells. These results strongly suggest that TPA activates a phospholipase C specific for PC. Pretreatment of cells with phorbol-12, 13-dibutyrate (PDBu) for 24 h depleted cellular protein kinase C activity and inhibited the ability of TPA to induce these effects suggesting a direct involvement of protein kinase C. Similarly the bombesin stimulation of 32Pi into PC and of [3H]choline and [3H]phosphocholine release was inhibited by PDBu pretreatment. DiC8 and, to a lesser extent, TPA stimulated the translocation of CTP:phosphocholine cytidylytransferase from the cytosolic to the particulate fraction. DiC8 also stimulated this translocation in cells depleted of protein kinase C. It was concluded that both bombesin and TPA activated protein kinase C leading to activation of a phospholipase C specific for PC.  相似文献   

14.
The role of C-kinase in the induction of maturation of HL-60 promyelocytic leukemia cells was examined using two activators of this kinase, 12-O-tetradecanoyl phorbol 13-acetate (TPA) and 1-oleoyl-2-acetylglycerol (OAG). At 10(-8) M, a concentration that induced maturation, TPA effectively stimulated C-kinase activity in cell-free preparations by increasing the affinity of the enzyme for Ca2+. Similar activation was observed with 20 micrograms/ml of OAG. At these concentrations, addition of either compound to intact cells stimulated the phosphorylation of cellular proteins. Treatment with TPA resulted in an increased phosphorylation of 14 proteins, 9 of which also changed in response to OAG. In addition to the effects on protein phosphorylation, TPA and OAG both affected choline lipid metabolism. TPA at 10(-8) M stimulated the incorporation of [methyl-3H]choline into phosphatidylcholine, sphingomyelin, and lysophosphatidylcholine. OAG at 20 micrograms/ml had quantitatively similar effects on the labeling of the former two lipids, but did not affect incorporation of choline into lysophosphatidylcholine. Despite the similar biochemical effects of TPA and OAG, the diglyceride was unable to induce HL-60 cell maturation as measured by inhibition of cell growth, development of nonspecific esterase activity, phagocytosis, adherence of cells to plastic, and loss of transferrin receptor activity. The lack of effect is not due to metabolism of OAG; maturation could not be induced by treating cells with fresh OAG every 2 h for a period of 12 h. These results suggest a dissociation of the activation of C-kinase and the induction of HL-60 cell maturation by TPA.  相似文献   

15.
16.
Phospholipid metabolism was studied in rat sciatic nerve during Wallerian degeneration induced by crush injury. Portions of crushed sciatic nerve, incubated with labeled substrates, showed significantly higher phosphatidylcholine synthesis than normal nerve, prior to any measurable alterations of phospholipid composition. Maximum synthesis occurred 3 days after crush injury, at which time the metabolism of other phospholipids was unchanged. After a rapid decrease in biosynthetic activity, a second phase of enhanced phosphatidylcholine synthesis occurred, beginning 6 days after crush injury. Increased incorporation of [33P]phosphate, [2-3H]glycerol, and [Me-14C]choline indicated stimulation of de novo synthesis of phosphatidylcholine 3 days after injury. Neither base exchange reactions nor sequential methylation of ethanolamine phospholipids contributed significantly to phosphatidylcholine synthesis. Assay of certain key enzymes under optimal conditions in subcellular fractions of sciatic nerve revealed higher activities of cholinephosphate cytidyltransferase, choline phosphotransferase, and acyl-CoA:lysophosphatidylcholine acyltransferase in injured nerve, while choline kinase activity remained unchanged. This indicates that stimulation of phosphatidylcholine synthesis occurs via the cytidine nucleotide pathway, as well as by increased acylation of lysophosphatidylcholine. Although the cause of stimulated phosphatidylcholine synthesis remains unexplained, it is possible that trace amounts of lysophospholipids or other metabolites produced by injury-enhanced phospholipase activity may be responsible.  相似文献   

17.
The role protein kinase C plays in the regulation of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by insulin and phorbol esters was studied in H4IIE hepatoma cells (ATCC CRL 1548). The combined effects of phorbol 12-myristate 13-acetate (PMA) and insulin on the suppression of mRNA coding for PEPCK (mRNAPEPCK) synthesis were additive. A potent inhibitor of both cyclic nucleotide-dependent protein kinases and protein kinase C, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, inhibited the cAMP and PMA-mediated regulation of mRNAPEPCK synthesis, but did not affect the action of insulin. Desensitization of the protein kinase C pathway by exposure to PMA for 16 h abolished the subsequent action of the phorbol ester, but did not affect insulin- or cAMP-mediated regulation of PEPCK gene expression. We conclude that insulin suppresses PEPCK gene expression independently from the protein kinase C-mediated pathway used by phorbol esters.  相似文献   

18.
Binding of chemoattractants to receptors on human polymorphonuclear leukocytes (PMN) stimulates the phosphodiesteric cleavage of phosphatidylinositol 4,5-bisphosphate to produce inositol 1,4,5-trisphosphate and 1,2-diacylglycerols. To investigate the possible second messenger function of diacylglycerols in PMN activation, we tested the ability of a series of synthetic sn 1,2-diacylglycerols, known to stimulate protein kinase C in other systems, to promote superoxide anion release, oxygen consumption, lysosomal enzyme secretion, and chemotaxis. None of the diacylglycerols initiated the chemotactic migration of PMN. Several of the diacylglycerols however, were, active in stimulating superoxide anion release and lysozyme secretion, with dioctanoylglycerol (diC8) being the most potent. Unexpectedly, didecanoylglycerol (diC10) induced lysosomal enzyme secretion, but failed to stimulate superoxide production or oxygen consumption. All other biologically active diacylglycerols tested displayed similar EC50 for stimulating lysozyme secretion and superoxide production. The ability of the diacylglycerols to compete for phorbol dibutyrate (PDBu) binding in intact PMN suggested a mechanism for the divergent biological activity of diC10. Although the compounds that stimulated both superoxide production and lysosomal enzyme secretion competed for essentially all [3H]PDBu binding from its receptor, diC10, which only stimulated secretion, competed for 45% of the bound [3H]PDBu. Thus diacylglycerols can selectively activate certain functions of leukocyte chemoattractant receptor. The data suggest that a discrete pool of protein kinase C may mediate activation of the respiratory burst in PMN.  相似文献   

19.
When Swiss 3T3 fibroblasts were incubated with bradykinin, prostaglandin E2 (PGE2) synthesis was stimulated. Phorbol esters or the diacylglycerol analog 1-oleoyl-2-acetylglycerol (OAG), by themselves, did not acutely stimulate PGE2 synthesis. However, when cells were preincubated with phorbol esters or OAG, bradykinin-stimulated PGE2 synthesis was potentiated markedly. When phorbol esters and OAG were added together, bradykinin-stimulated PGE2 synthesis was potentiated in an additive manner. When cells were preincubated for 48 h with phorbol esters, then bradykinin added, amplification of bradykinin-stimulated PGE2 synthesis by phorbol ester or OAG was still apparent, even though prolonged pretreatment with phorbol esters abolished protein kinase C (Ca2+/phospholipid-dependent enzyme) activity in cell-free preparations. Further, the protein kinase C antagonist, H-7, only slightly inhibited phorbol ester or OAG amplification of bradykinin-stimulated PGE2 synthesis. The possibility is raised that diacylglycerol, formed in response to many receptors, may serve as a transducer of receptor-receptor interactions. Since desensitization or inhibition of protein kinase C only partially reduced the amplification of bradykinin-stimulated PGE2 synthesis by phorbol esters or OAG, the possibility is raised that diacylglycerol mimetics may have actions in addition to activation of protein kinase C.  相似文献   

20.
Previous studies demonstrated that phorbol esters and thyrotropin-releasing hormone (TRH) stimulated phosphatidylcholine synthesis via protein kinase C in GH3 pituitary cells (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 14525-14530). Since phosphatidylcholine may serve as the precursor for sphingomyelin synthesis, studies were performed to assess the effect of protein kinase C on sphingomyelin synthesis. The potent phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), stimulated time- and concentration-dependent incorporation of 32Pi into the head group of sphingomyelin in cells short term labeled with 32Pi and resuspended in medium without radiolabel. TPA (10(-7) M) increased incorporation at a rate 1.4-fold of control after 2 h; EC50 congruent to 2 x 10(-9) M TPA. This correlated closely to TPA-induced phosphatidylcholine synthesis; EC50 congruent to 9 x 10(-10) M TPA. TRH (10(-7) M), which activates protein kinase C via a receptor-mediated mechanism, similarly stimulated 32Pi incorporation into sphingomyelin at a rate 1.5-fold of control; EC50 congruent to 5 x 10(-10) M TRH. This correlated closely with TRH-induced phosphatidylcholine and phosphatidylinositol synthesis; EC50 congruent to 2 x 10(-10) and 1.5 x 10(-10) M TRH, respectively. In cells short term labeled with [3H]palmitate, TRH induced a time- and concentration-dependent reduction in the level of [3H]ceramide and a quantitative increase in the level of [3H]sphingomyelin. Compositional analysis of the incorporated [3H]palmitate revealed that TRH increased radiolabel into both the sphingoid base and the fatty acid moieties of sphingomyelin. Similarly, TRH increased incorporation of [3H] serine into sphingomyelin to 145 +/- 8% of control after 3 h. TPA also stimulated these events. Like the effect of TRH on phosphatidylcholine synthesis, TRH-induced sphingomyelin synthesis was abolished in cells "down-modulated" for protein kinase C. In contrast, TRH-induced phosphatidylinositol synthesis still occurred in these cells. These studies suggest that protein kinase C stimulates coordinate synthesis of phosphatidylcholine and sphingomyelin. This is the first report of stimulation of sphingomyelin synthesis via a cell surface receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号