首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Monitoring of the ecosystem of Lake Mývatn, Iceland, since 1975 has revealed extreme fluctuations in important food web components, such as chironomids and cladocerans, with amplitudes of several orders of magnitude and a period of 5–8 years. This study uses sediment cores from the lake to examine if the food web fluctuations appear in the microfossil record of the sediment. 2. Dating was achieved by means of a combination of 137Cs and volcanic tephra and was fine‐tuned by wiggle‐matching of chironomid microfossil and monitoring data. 3. Cladocera exuviae and chironomid egg capsules in the uppermost 34 cm of sediment were compared with the monitoring record that consisted of 30 years of window trap catches of flying chironomids and a 16‐year record of chydorid Cladocera caught in activity traps. 4. The observed chironomid and cladoceran population fluctuations were reflected in the sediment record of chironomid eggs and of the exuviae of three of seven cladocerans: Alonella nana, Alona rectangula and Eurycercus lamellatus, which also had the most extreme fluctuations in the monitoring data (3–4 orders of magnitude). Chydorus sphaericus, and to some extent Alona quadrangularis and Acroperus harpae, showed regular fluctuations in the core that the monitoring did not reveal. Density of subfossil chironomid eggs correlated positively with that of larval head capsules but not with other microfossils. 5. This study shows a reasonably good correspondence between the fossil records of chironomids and cladocerans on the one hand and biomonitoring data on the other. The results pave the way for an extension of the food web history to much earlier time intervals of the ecosystem, allowing the study of long‐term variation in the food web dynamics, including the impact of climatic variation and other external forcing. The results also indicate the usefulness of chironomid egg capsules in palaeolimnological studies.  相似文献   

2.
Lake Balaton, the largest shallow lake in Central Europe, is about 20 000 years old. An enormous increase in tourism and the disproportionate building development of the last few decades has resulted in the acceleration of eutrophication in the lake. Widespread research to reveal the causes of water-quality deterioration and possible ways of protection against it have recently started. The investigation of the larvae of non-biting midges (Diptera: Chironomidae) in the sediment of the open-water zone has also begun. The contemporary faunal composition strongly correlates with the trophic gradient along the longitudinal axis of the lake. We therefore supposed that the eutrophication process should be identifiable from the analysis of subfossil chironomid head capsules from the upper (15 cm thick) layer of the sediment. We found that quantitative results could only be obtained when fragments as well as relatively intact head capsules are considered. Our data verify that the originally oligo-mesotrophic community has been gradually replaced by eutrophic species in a west to east direction. Large-bodied larvae belonging to the Chironomus plumosus group mix the sediment down to 15 cm as they build their tubes and consequently alter the original proportions of head capsules at the different levels. So the sequence of communities through the sediment-layers is not quite reliable.  相似文献   

3.
The subfossil remains of chironomids were analyzed from four short (35–50 cm) sediment cores in eutrophicated Lake Vanajavesi, southern Finland. The chironomid analysis was found to be a useful palaeolimnological technique for indicating the following aspects: (1) The pollution history of the lake during the last 150 years. A succession from an oligotrophic Micropsectra-Monodiamesa community, through eutrophic Chironomus communities, to the disappearance of the chironomid fauna, was detected. (2) The bottom dynamic conditions at the sampling site. (3) The water level changes of the lake. (4) The significance of bioturbation in the core chronology and stratigraphy. The disappearance of the chironomid remains in the cores was correlated with the occurrence of annually laminated sediment.The most important factor disturbing the interpretation of the cores was the redeposition of head capsules by erosion and transportation. Detailed identification of the remains is necessary to avoid the misinterpretations caused by redeposition. Bioturbation reduces the time resolution of the cores. It is necessary to use dating methods which take the effect of bioturbation into account.  相似文献   

4.
The composition and succession of the subfossil chironomid fauna has been studied in a sediment core from Lake Taylor. The sediments of the core are all within the Nothofagus phase of the last 3000 years within the Aranuian. In the older sediments of the core the chironomid fauna was dominated by Tanytarsini and Orthocladiinae whereas Chironomini dominated in the more recent sediments. The species diversity is very high compared with the results of other studies of the recent chironomid fauna of lakes in the South Island. The most abundant head capsules belong to the taxa Chironomus zealandicus, Tanytarsus vespertinus, Corynocera sp., and Eukiefferiella sp. Several additional taxa which have not yet been described also occurred in large numbers. It is not possible to correlate any definite changes in the composition of the subfossil chironomid fauna with a change in climatic conditions or the trophic status of the lake.  相似文献   

5.
The effects of chironomid larvae,Chironomus plumosus, and tubificid worms,Limnodrilus spp., on particle redistribution in lake sediment were investigated experimentally using pots containing sediments obtained from Lake Suwa, Japan. The chironomids and tubificids increased the water content of surface sediment. The chironomid larvae had no effect on particle size distribution, while tubificids continuously accumulated small particles on the surface sediment through their selective feeding activity. Particles larger than 0.125 mm were buried at a sediment depth of 6 cm. In Lake Suwa, long diatom frustules, large plant debris and blue-green algal flocs were found to accumulate in the deeper layer of the lake sediment inhabited by tubificids at high density.  相似文献   

6.
1. Surface sediment samples of subfossil chironomid head capsules from 47 lakes in southern West Greenland were analysed using multivariate numerical methods in order to explore the relationship between chironomid assemblages and selected environmental variables. The study lakes are located along a climate gradient ranging from coastal maritime conditions near the Davis Strait to a continental climate near the margin of the Greenland ice sheet. 2. High‐resolution surface water temperatures were measured through the summer season using automatic data loggers in 21 of the study lakes. The mean July surface water temperature (1999) ranged from 7.3 to 16.5 °C in the data set. 3. In all lakes, a total of 24 chironomid taxa were recorded; Micropsectra, Psectrocladius, Chironomus and Procladius were the dominant genera. There was a strong correlation between the trophic variables [total nitrogen and total phosphorus (TN, TP)] and temperature, and in redundancy analysis (RDA) the three variables explained almost equal significant amounts of variation in the chironomid data (19.8–22.3%). However, temperature lost significant explanatory power when the effect of TN was partialled out in RDA. 4. The lakes were classified using two‐way indicator species analysis (TWINSPAN ) into eight groups defined by temperature, trophic variables, salinity (conductivity) and lake‐morphometric data. Fourteen chironomid taxa showed significant differences in percentage abundances among groups, with Heterotrissocladius, Micropsectra, Ablabesmyia and Chironomus as the most robust group‐indicator taxa. Forward selection of taxa in multiple discriminant analysis was used to fit chironomid assemblages into lake groups. Using only eight taxa, 95% of lakes were correctly classified at a second TWINSPAN division level (four groups) and 85% of lakes at a third division level (eight groups). 5. This study showed that there is considerable potential in using subfossil chironomid head capsules as paleoenvironmental indicators in both short‐ and long‐term (down‐core) studies of lake ontogeny and palaeoclimate conditions in West Greenland. However, because of the strong correlation between temperature and trophic variables, a quantitative reconstruction of lake‐ and habitat‐type is recommended, in combination with direct reconstruction of single variables such as temperature.  相似文献   

7.
  • 1 The larval chironomid community of the sediment surface and the hyporheic inters titial was investigated in two longitudinal transects of an alpine gravel stream between September 1984 and August 1985. Eighty larval species and species groups were identified, most of which belonged to the subfamily Orthocladiinae. Of all larval individuals 51.1% inhabited the first 10cm of the bed sediments, and 93.2% occurred between the surface and 40cm depth.
  • 2 The spatial species turnover showed marked variations between horizontally adjacent sampling sites in each of the four sediment depth layers. In both transects the species composition showed a significantly lower turnover in the upper 10cm of the bed sediments than in the deeper layers.
  • 3 Spatial community stability showed an oscillating pattern between all sampling sites due to density shifts of larvae between depth layers. Temporal differences in resilience (local stability) were significantly and positively related to changes in the cumulative discharge pattern in the gravel brook, thus indicating the apparent ability of the community to recover quickly following disturbances.
  • 4 The five abundant species, Corynoneura lobata, Synorthocladius semivirens, Tvetenia calvescens, Micropsectra atrofasciata and Rheotanytarsus nigricauda, exhibited significant differences in their sediment depth distribution, with density maxima shifting between depth layers. Spatial autocorrelations suggest that these larvae form patches between neighbouring sampling sites with varying sizes and inter-patch distances in each of four sediment layers. A simulation test, in which individuals of each species were randomly permuted between microhabitats of each depth layer separately, indicated that the patches might have arisen by chance.
  • 5 To evaluate the significance of observed spatial resource overlap values amongst these five chironomid species, neutral models were developed based on 300 randomizations of each possible species pair-wise association of individuals and patches of species. The spatial organization of a larval chironomid assemblage in the stream Oberer Seebach seemed to be governed by coexistence due to random patch formation and dispersal patterns within the interstitial habitats, which reduce the probability of strong competitive interactions.
  相似文献   

8.
L. Cardona  P. Royo  X. Torras 《Hydrobiologia》2001,462(1-3):233-240
Some mugilid fish are known to enhance small phytoplankton in freshwater macrophyte-free environments due to zooplankton depletion. This suggests that they may have negative effects on natural macrophyte beds of freshwater and oligohaline lagoons due to phytoplantkon enhancement. To test this hypothesis, we compared the ecosystems of control enclosures that contained no fish with those of enclosures stocked with Liza saliens at two different densities. The occurrence of L. saliens at a density of 321±92.42 kg ha–1 reduced cladoceran density, depleted epiphytic chironomid larvae, enhanced mayfly nymphs and cyclopoid copepods and reduced the organic matter content of sediment, all in comparison with control enclosures. At a density of 673±42.04 kg ha–1, L. saliens reduced total zooplankton density, depleted epiphytic and sediment dwelling chironomid larvae and enhanced mayfly nymphs. The organic matter contents of sediment was not affected. These results showed that L. saliens was very effective in reducing zooplankton density even when macrophyte biomass was high. However, these effects do not affect phytoplankton density, probably because zooplankton was dominated by species with low filter-feeding rates and macrophytes depleted nutrients.  相似文献   

9.
Three lakes were studied in the High Tatra Mountains at altitudes from 2000 to 2157 m a.s.l., which represent three categories of acidity status recognised in the Tatra lakes in the 1980s: non-acidified, acidified, and strongly acidified. Subfossil chironomid remains from dated sediment cores covering ca. throughout 200 years were analysed. The chironomid thanatocoenoses of all cores layers reflected ultra-oligotrophic non-acidified conditions in L’adové pleso. Nevertheless, the finding of the acid-tolerant species Zalutschia tatrica in littoral samples in 1980s indicates that the littoral zone was more influenced by acidification than deeper areas of the lake. Three stages of lake developmental history can be distinguished in the acidified lake Vy?né Wahlenbergovo pleso based on the chironomid subfossil record: the pre-acidification stage before the 1920s, the anthropogenic acidification stage between the 1920–1980s, and the recovery of the lake from the end of the 1980s. The period of acidification was accompanied by a decline in chironomid numbers, while chironomid fauna composition was unchanged during the whole investigated history of the lake. None of the chironomid taxa present prior to the acidification period disappeared during the peak of acidification. The most apparent change in the sediment record taken from the strongly acidified lake Starolesnianske pleso was recognised in the layers corresponding to the period 1960–1980. It is characterised by the disappearance of the dominant acid-sensitive Tanytarsus lugens group and the dominance of acidtolerant Tanytarsus gregarius group. The most recent chironomid assemblage probably benefits from the amount of food resources as a result of increased lake productivity induced by acidification.  相似文献   

10.
Warlow  A. D.  Oldham  R. S. 《Hydrobiologia》1982,88(1-2):199-206
The diet of brown trout (Salmo trutta L.) and rainbow trout (S. gairdneri Richardson) in Rutland Water were compared during the first two fishing seasons (April–October 1977 and 1978).Fortnightly samples of approximately forty stomachs were obtained from boat and bank, rod-and-line caught trout giving a total of 1046 stomachs over the two seasons.During 1977 seasonal changes in the diet were divided into two phases; the first being a period of abundant drowned terrestrial food until June. This was followed by a period of more stable water level from July onwards when chironomid larvae and pupae were consistently the most important food items and the diversity of food also increased.In 1978 the proportion of chironomid pupae and larvae declined and they were replaced in the diet by Gammarus and Asellus.  相似文献   

11.
Population dynamics of chironomid larvae in the littoral zone of Lake Maarsseveen I were investigated to a depth of 6 m. No essential differences in the composition and density between various sampling stations in the shallow sand flats were found. Two species,Cladotanytarsus mancus andStictochironomus sticticus, were found to be the main components of the chironomid population to a depth of 4 m. The density ofCladotanytarsus, which occurred predominantly to a depth of 1 m, increased from June to a maximum in December. In May and June, the entireCladotanytarsus population emerged.Stictochironomus had its peak of abundance in June. From this cohort, a part, differing in size for each of the various years, emerged in August. The remainder of this population, together with the offspring of the August adults, emerged in May. The size of the August midges, and the number of its eggs was smaller than that of the May midges. At depths greater than 4 m,Tanytarsus bathophillus was found to be the dominant chironomid.In summer the abundance of the small (second and third instars)Stictochironomus was primarily affected by water mite predation. In autumn and winter,Cladotanytarsus was the main food source for water mites. In autumn, whenStictochironomus larvae have molted into the fourth instar, predation by bream decreased the density of these larvae. In winter, the impact of this fish is negligible.  相似文献   

12.
1. We investigated the distribution of chironomid taxa in urban wetlands in the greater Melbourne area, Australia, to test if their distribution was influenced by sediment pollution and other environmental variables. 2. For identification of the Chironomidae, DNA markers generated via polymerase chain reaction–restriction fragment length polymorphism of cytochrome c oxidase sub unit I (COI) were validated against morphology and reference specimens for more than 5000 chironomids representing over 80 species. DNA‐based identification generally concurred with morphological separation, but also indicated the existence of cryptic diversity in some genera. 3. Non‐metric multidimensional scaling (NMS) and canonical correspondence analysis (CCA) showed chironomid assemblages were structured among wetlands and could be linked to several habitat characteristics. However, Chironomidae assemblages were only weakly linked to sediment pollution. 4. Logistic regressions identified potential bioindicators of sediment pollution. Riethia stictoptera, Tanytarsus inextentus, Coelopynia and Chironomus ‘februarius’ were negatively associated and Chironomus duplex was positively associated with sediment pollution. Thresholds for the pollution sensitivities of specific species were mostly similar to those established with previous microcosm tests. 5. Several other environmental factors influenced the distribution of specific chironomid taxa. Salinity, substratum type and submerged and riparian vegetation were particularly important. 6. We conclude that specific chironomid taxa rather than assemblages have potential as bioindicators of sediment pollution provided their ecological preferences are considered and their pollution sensitivities are characterized using multiple methods. The integration of DNA‐based techniques should facilitate accurate and rapid identification of bioindicators species.  相似文献   

13.
A faunal record of chironomid remains was analyzed in the upper 280 cm of a 543 cm long sediment core from Ple?né jezero (Ple?né Lake), the Bohemian Forest (?umava, Böhmerwald), Czech Republic. The chronology of the sediment was established by means of 5 AMS-dated plant macroremains. The resolution of individual 3-cm sediment layers is ~115 years and the analyzed upper 280 cm of the sediment core represent 10.4 cal. ka BP. As the results of DCA show, two marked changes were recorded in the otherwise relatively stable Holocene chironomid composition: (1) at the beginning of the Holocene (ca. 10.4-10.1 cal. ka BP) only oligotrophic and cold-adapted taxa (Diamesa sp., M. insignilobus-type, H. grimshawi-type) were present in the chironomid assemblages, clearly reflecting a cool climate oscillation during the Preboreal period, and (2) during an event dated in the interval 1540–1771 AD, when most taxa vanished entirely and only Zavrelimyia sp. and Procladius sp. were alternately present accompanied by Tanytarsus sp. Although, the age of this event is in agreement with the dating of the Little Ice Age, the most probable reason for the elimination of many chironomid taxa was very low sums recorded in this part of the sediment, rather than cool conditions connected with the LIA. Variations in the chironomid fauna after the Preboreal period were reflected mainly by changes in abundances of dominant taxa rather than by changes in species composition. These variations could be explained by: (1) climatic changes, namely temperature and amount of rainfall resulting in oscillations in lake level, with changes in the occurrence of macrophytes in the littoral and (2) increasingly dense afforestation which led to a considerable input of organic material into the lake and a subsequent increase in the trophic status of the lake water.  相似文献   

14.
The eutrophicated Enäjärvi was studied by paleolimnological analyses and sediment mapping. The sedimentary record indicates that the lake nutrient balance had deteriorated due to lowering of the lake water level in the year 1928. From that event onwards Chironomus plumosus and Cyclotella astraea characterize the chironomid and diatom communities. The concentrations of sedimentary total and mobile phosphorus show that since then the internal load of phosphorus has controlled the nutrient cycle of the lake. The areal distribution of mobile phosphorus can be explained by dominant wind directions and wind resuspension of the sediment is the key factor in the nutrient cycle. Restoration of Enäjärvi must be based on actions which stabilize the surface sediment and improve its natural phosphorus-binding capacity. They include the regulation of lake water to as high a level as possible and the removal of the majority of roach.  相似文献   

15.
Torras  X.  Cardona  L.  Gisbert  E. 《Hydrobiologia》2000,429(1-3):49-57
Flathead grey mullet (Mugil cephalus L.) stocked in fish ponds were long considered to feed primarily on detritus. However, recent research has found that they obtain much of their food from plankton and that they have a detrimental effect on pond zooplankton and large phytoplankton, whilst enhancing small phytoplankton. It has been suggested that flathead grey mullet may also increase the internal phosphorus loading of the ecosystem, which would also increase phytoplankton density. To test whether zooplankton removal or nutrient release from the sediment is the better explanation for phytoplankton enhancement in the presence of flathead grey mullet, the ecosystems of fish-less tanks, tanks with a 60 m mesh filter and tanks stocked at a fish density of 243 g m-3 were compared. In the presence of flathead grey mullets, cladocerans, ostracods and chironomid larvae became scarcer than in the control tanks, while there were more small phytoplankton and mud snails. The green algae Cladophora sp. did not occur at all. The presence of a mechanical filter also reduced cladoceran, ostracod and chironomid densities and increased phtyoplankton and mud snail density. However, the situation observed in filter tanks was intermediate between that observed in the fish tanks and the control tanks, due to the lower filtering efficiency of the mechanical filter. The organic matter content of the sediment decreased throughout the experiment in the control and filter tanks, but remained stable in fish tanks. Phosphorus and nitrogen concentrations were not affected by any treatment. These results showed that flathead grey mullet enhanced phytoplankton development due to the removal of large cladocerans and not as a consequence of nutrient release. Furthermore, the flathead grey mullet strongly modified the benthic community, probably due to direct predation.  相似文献   

16.
Although seasonal floodplains represent one of the most dynamic and productive of aquatic ecosystems, the sources of this productivity are poorly understood. We examined composition and sources of chironomid drift in the Yolo Bypass, the primary floodplain of the Sacramento River. We found that invertebrate drift during winter floodplain inundation is dominated by a single species, the newly identified chironomid Hydrobaenus saetheri (Diptera: Chironomidae). In order to determine sources of chironomids in the Yolo Bypass, invertebrates were sampled from several potential sources prior to and during initial floodplain inundation. Rehydration of dried floodplain sediments from several locations showed that H. saetheri dominated insect emergence from this colonization pathway. By contrast, H. saetheri was not a substantial component of inundated floodplain ponds or of tributary inputs to the floodplain. We conclude that the initial pulse of invertebrate abundance in Yolo Bypass floodwaters is dominated by chironomid emergence from sediments in multiple regions of the floodplain. Handling editor: S. Declerck  相似文献   

17.
We conducted a microcosm experiment to evaluate the capability of fauna inhabiting or being transported by drifting filamentous algae to colonize defaunated sediment. We expected meiofauna would perform a quicker and more effective re-colonization of disturbed areas by means of the algal mats than their macrofaunal counterparts. Similarly, within meiofauna, we expected more mobile taxa such as ostracods and harpacticoids to colonize the sediment more readily than other more sedentary ones such as nematodes. Naturally drifting algae were collected from the field and placed in 1 l aquaria on top of 5 cm of defaunated sediment. After 3 and 6 days, one core sample (5 cm deep) was taken from each aquarium; the first 2 cm were sliced into 2 mm layers, and the remaining fraction into 1 cm layers. The sediment remaining in the aquaria was sieved through a 0.5 mm sieve to collect the re-colonizing macrofauna. The dominant macrofaunal taxa inhabiting the algae were juvenile bivalves and gastropods, with Cerastoderma glaucum accounting for the majority of the bivalves and Hydrobia sp. for most of the gastropods. After 3 and 6 days, the most abundant macrofaunal taxa colonizing the sediment were Cerastoderma glaucum, Hydrobia sp. and gammarid amphipods. Higher abundances were found after 6 days than after 3, though differences were not significant for any of the major taxa. Meiofauna inhabiting the algae were dominated by rotifers, nematodes, ostracods, chironomid larvae and harpacticoid copepods. Contrary to our predictions, nematode and harpacticoid species inhabiting the drifting algae were not driven to sediment re-colonization but remained in the algae. Our results indicate that some benthic animals may indeed benefit from drifting algal mats as a means of dispersal and re-colonization of previously defaunated sediments in relatively short periods of time. Also, they may contribute to explain some of the trends found in other studies, regarding species increase under drifting algae and the recovery patterns found in areas often exposed to algal conglomerates.  相似文献   

18.
The submersed freshwater macrophyte Utricularia inflata is a recent invader of Adirondack Mountain lakes (NY, USA). Previous experiments suggested that U. inflata can indirectly change nutrient cycling in Adirondack lake ecosystems by reducing the growth of native isoetid macrophytes, which in turn affects sediment chemistry. A 13-week greenhouse experiment was conducted to test the hypothesis that shading can explain the detrimental effect of U. inflata on the native short-statured isoetid, Eriocaulon aquaticum. Eriocaulon aquaticum has a dense root system that oxidizes sediment by releasing oxygen; it also takes up carbon dioxide from sediment. Growth and asexual reproduction of E. aquaticum grown under shaded conditions was reduced significantly compared to an unshaded control (< 0.001). Shading resulted in sediment changes: redox potential fell from 216 mV in the absence of shading to 76 mV under four layers of shade cloth (< 0.0001). Shading also increased the concentration of extractable sediment ammonium (P < 0.01), as well as carbon dioxide concentrations (< 0.0001) and pH of porewater (P < 0.05). The effect of U. inflata on the native isoetids and consequently on sediment chemistry closely matched the impact of shade cloth with similar light attenuation. Our results indicate that the principal mechanism by which U. inflata affects native isoetids and sediment chemistry is shading.  相似文献   

19.
Benthic Cladocera were monitored at five sites in Lake Myvatn, Iceland, over a decade (1990–1999), as part of a programme documenting the population fluctuations of animals at different trophic levels in the lake. The species composition remained relatively stable over the first seven years, but in 1997 the population of Eurycercus lamellatus was greatly reduced at all sites. The following year saw a mass occurrence of Alona rectangula and Alonella nana that were previously abundant only locally and rare at most sites. Alona affinis, A. quadrangularis, Acroperus harpae and Chydorus sphaericus were not affected. In 1999 the Cladocera assemblages returned to the pre-1997 situation. The shift was from large-bodied epibenthic and planktonic species (Eurycercus, Daphnia) to small infaunal (Alona rectangula) and ubiquitous (Alonella nana) species. Medium sized (Alona, Acroperus) and some small cladocerans (Chydorus) were not affected. The course of events was reminiscent of a trophic cascade caused by a change in size-selective predation pressure. If so, the impact of a predatory fish population (three-spined stickleback, Gasterosteus aculeatus) depended on whether cyclic chironomid populations were in a high or a low phase. The change in the Cladocera coincided with profound changes in the sediment characteristics associated with low chironomid abundance. We suggest that the relative competitive ability of the Cladocera species is reversed when the sediment has become homogeneous and nutrient-poor after overexploitation by the dominant, tube building and detritivorous chironomid Tanytarsus gracilentus.  相似文献   

20.
Long-term changes in distribution and taxonomic composition of chironomid larvae and oligochaetes in two water storage reservoirs in The Netherlands were studied. A succession among the chironomid species was observed. In the last 10–15 years chironomid densities varied. Compared with other lakes chironomid densities were high. Densities of chironomids were higher in the littoral zone than in the profundal zone. The opposite was found for oligochaetes. Densities and composition of the chironomid fauna in the two reservoirs were similar.Procladius, Tanytarsus andHarnischia dominated at all depths. However, pupal exuviae samples showed some differences in chironomid taxonomic composition between the two reservoirs. Orthocladiinae, rarely found in bottom samples, abounded in pupal exuviae samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号