首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Through the input of disproportionate quantities of chemically distinct litter, invasive plants may potentially influence the fate of organic matter associated with soil mineral and aggregate fractions in some of the ecosystems they invade. Although context dependent, these native ecosystems subjected to prolonged invasion by exotic plants may be instrumental in distinguishing the role of plant–microbe–mineral interactions from the broader edaphic and climatic influences on the formation of soil organic matter (SOM). We hypothesized that the soils subjected to prolonged invasion by an exotic plant that input recalcitrant litter (Japanese knotweed, Polygonum cuspidatum) would have a greater proportion of plant‐derived carbon (C) in the aggregate fractions, as compared with that in adjacent soil inhabited by native vegetation that input labile litter, whereas the soils under an invader that input labile litter (kudzu, Pueraria lobata) would have a greater proportion of microbial‐derived C in the silt‐clay fraction, as compared with that in adjacent soils that receive recalcitrant litter. At the knotweed site, the higher C content in soils under P. cuspidatum, compared with noninvaded soils inhabited by grasses and forbs, was limited to the macroaggregate fraction, which was abundant in plant biomarkers. The noninvaded soils at this site had a higher abundance of lignins in mineral and microaggregate fractions and suberin in the macroaggregate fraction, partly because of the greater root density of the native species, which might have had an overriding influence on the chemistry of the above‐ground litter input. At the kudzu site, soils under P. lobata had lower C content across all size fractions at a 0–5 cm soil depth despite receiving similar amounts of Pinus litter. Contrary to our prediction, the noninvaded soils receiving recalcitrant Pinus litter had a similar abundance of plant biomarkers across both mineral and aggregate fractions, potentially because of the higher surface area of soil minerals at this site. The plant biomarkers were lower in the aggregate fractions of the P. lobata‐invaded soils, compared with noninvaded pine stands, potentially suggesting a microbial co‐metabolism of pine‐derived compounds. These results highlight the complex interactions among litter chemistry, soil biota, and minerals in mediating soil C storage in unmanaged ecosystems; these interactions are particularly important under global changes that may alter plant species composition and hence the quantity and chemistry of litter inputs in terrestrial ecosystems.  相似文献   

2.
3.
Warmer climates have been associated with reduced bioreactivity of soil organic matter (SOM) typically attributed to increased diagenesis; the combined biological and physiochemical transformation of SOM. In addition, cross‐site studies have indicated that ecosystem regime shifts, associated with long‐term climate warming, can affect SOM properties through changes in vegetation and plant litter production thereby altering the composition of soil inputs. The relative importance of these two controls, diagenesis and inputs, on SOM properties as ecosystems experience climate warming, however, remains poorly understood. To address this issue we characterized the elemental, chemical (nuclear magnetic resonance spectroscopy and total hydrolysable amino acids analysis), and isotopic composition of plant litter and SOM across a well‐constrained mesic boreal forest latitudinal transect in Atlantic Canada. Results across forest sites within each of three climate regions indicated that (1) climate history and diagenesis affect distinct parameters of SOM chemistry, (2) increases in SOM bioreactivity with latitude were associated with elevated proportions of carbohydrates relative to plant waxes and lignin, and (3) despite the common forest type across regions, differences in SOM chemistry by climate region were associated with chemically distinct litter inputs and not different degrees of diagenesis. The observed climate effects on vascular plant litter chemistry, however, explained only part of the regional differences in SOM chemistry, most notably the higher protein content of SOM from warmer regions. Greater proportions of lignin and aliphatic compounds and smaller proportions of carbohydrates in warmer sites' soils were explained by the higher proportion of vascular plant relative to moss litter in the warmer relative to cooler forests. These results indicate that climate change induced decreases in the proportion of moss inputs not only impacts SOM chemistry but also increases the resistance of SOM to decomposition, thus significantly altering SOM cycling in these boreal forest soils.  相似文献   

4.

Background

Ferns are an important plant group, and older phylogenies of non-polypod ferns contain relatively high concentrations of aliphatic leaf waxes, lignins, and tannins that could contribute to soil organic matter (SOM) biochemistry and stability.

Methods

Pyrolysis gas-chromatography mass-spectrometry (py-GC/MS) analyzes biochemical fragments which can be related to lignin, polysaccharide, lipid, nitrogen (N)-bearing, non-lignin aromatics, and phenol source compounds. Thermochemolysis using tetramethylammonium hydroxide (TMAH) combined with py-GC/MS improves detection of lignin, cutin, and suberin-derived compounds. To examine the advantages and disadvantages of both methods for characterizing plant and soil biochemistry, we characterized non-polypod and polypod fern and angiosperm live tissues, roots and soils from the Kohala Mountains, Hawaii.

Results

Py-GC/MS provided a broad biochemical overview of compound groups including lignin, polysaccharide, lipid, N-bearing, non-lignin aromatics and phenol groups while TMAH-py-GC/MS detailed lignin units and fatty acids at the expense of the other categories. TMAH-py-GC/MS provided more detailed data on lignin, cutin, suberin and tannin-derived compounds. Both methods detected differences in lignin units between species, although p-coumaric and ferulic acids, predominantly found in ferns, were only observed with TMAH-py-GC/MS.

Conclusions

Both py-GC/MS and TMAH-py-GC/MS are methods to detect compound-specific plant biomarkers, but are most useful when combined for their complimentary results.  相似文献   

5.
Litter decay rates are often correlated with the initial lignin:N or lignin:cellulose content of litter, suggesting that interactions between lignin and more labile compounds are important controls over litter decomposition. The chemical composition of lignin may influence these interactions, if lignin physically or chemically protects labile components from microbial attack. We tested the effect of lignin chemical composition on litter decay in the field during a year-long litterbag study using the model system Arabidopsis thaliana. Three Arabidopsis plant types were used, including one with high amounts of guaiacyl-type lignin, one with high aldehyde- and p-hydroxyphenyl-type lignin, and a wild type control with high syringyl-type lignin. The high aldehyde litter lost significantly more mass than the other plant types, due to greater losses of cellulose, hemicellulose, and N. Aldehyde-rich lignins and p-hydroxyphenyl-type lignins have low levels of cross-linking between lignins and polysaccharides, supporting the hypothesis that chemical protection of labile polysaccharides and N is a mechanism by which lignin controls total litter decay rates. 2D NMR of litters showed that lignin losses were associated with the ratio of guaiacyl-to-p-hydroxyphenyl units in lignin, because these units polymerize to form different amounts of labile- and recalcitrant-linkages within the lignin polymer. Different controls over lignin decay and polysaccharide and N decay may explain why lignin:N and lignin:cellulose ratios can be better predictors of decay rates than lignin content alone.  相似文献   

6.
Labile, ‘high‐quality’, plant litters are hypothesized to promote soil organic matter (SOM) stabilization in mineral soil fractions that are physicochemically protected from rapid mineralization. However, the effect of litter quality on SOM stabilization is inconsistent. High‐quality litters, characterized by high N concentrations, low C/N ratios, and low phenol/lignin concentrations, are not consistently stabilized in SOM with greater efficiency than ‘low‐quality’ litters characterized by low N concentrations, high C/N ratios, and high phenol/lignin concentrations. Here, we attempt to resolve these inconsistent results by developing a new conceptual model that links litter quality to the soil C saturation concept. Our model builds on the Microbial Efficiency‐Matrix Stabilization framework (Cotrufo et al., 2013) by suggesting the effect of litter quality on SOM stabilization is modulated by the extent of soil C saturation such that high‐quality litters are not always stabilized in SOM with greater efficiency than low‐quality litters.  相似文献   

7.
Lignin is an aromatic plant compound that decomposes more slowly than other organic matter compounds; however, it was recently shown that lignin could decompose as fast as litter bulk carbon in minerals soils. In alpine Histosols, where organic matter dynamics is largely unaffected by mineral constituents, lignin may be an important part of soil organic matter (SOM). These soils are expected to experience alterations in temperature and/or physicochemical parameters as a result of global climate change. The effect of these changes on lignin dynamics remains to be examined and the importance of lignin as SOM compound in these soils evaluated. Here, we investigated the decomposition of individual lignin phenols of maize litter incubated for 2 years in‐situ in Histosols on an Alpine elevation gradient (900, 1300, and 1900 m above sea level); to this end, we used the cupric oxide oxidation method and determined the phenols’ 13C signature. Maize lignin decomposed faster than bulk maize carbon in the first year (86 vs. 78% decomposed); however, after the second year, lignin and bulk C decomposition did not differ significantly. Lignin mass loss did not correlate with soil temperature after the first year, and even correlated negatively at the end of the second year. Lignin mass loss also correlated negatively with the remaining maize N at the end of the second year, and we interpreted this result as a possible negative influence of nitrogen on lignin degradation, although other factors (notably the depletion of easily degradable carbon sources) may also have played a role at this stage of decomposition. Microbial community composition did not correlate with lignin mass loss, but it did so with the lignin degradation indicators (Ac/Al)s and S/V after 2 years of decomposition. Progressing substrate decomposition toward the final stages thus appears to be linked with microbial community differentiation.  相似文献   

8.
 Over the past century, overgrazing and drought in New Mexico’s Jornada Basin has promoted the replacement of native black grama (Bouteloua eriopoda Torr.) grass communities by shrubs, primarily mesquite (Prosopis glandulosa Torr.). We investigated the effects of shrub expansion on the distribution, origin, turnover, and quality of light (LFC) and heavy (HFC) soil organic matter (SOM) fractions using δ13C natural abundance to partition SOM into C4 (grass) and C3 (shrub) sources. Soil organic matter beneath grasses and mesquite was isotopically distinct from associated plant litter, providing evidence of both recent shrub expansion and Holocene plant community changes. Our δ13C analyses indicated that SOM derived from mesquite was greatest beneath shrub canopies, but extended at least 3 m beyond canopy margins, similar to the distribution of fine roots. Specific 14C activities of LFC indicated that root litter is an important source of SOM at depth. Comparison of turnover rates for surface LFC pools in grass (7 or 40 years) and mesquite (11 or 28 years) soils and for HFC pools by soil depth (∼150–280 years), suggest that mesquite may enhance soil C storage relative to grasses. We conclude that the replacement of semiarid grasslands by woody shrubs will effect changes in root biomass, litter production, and SOM cycling that influence nutrient availability and long-term soil C sequestration at the ecosystem level. Received: 17 May 1996 / Accepted: 12 November 1996  相似文献   

9.
The objective of this study was to examine the chemical structure of the organic matter (SOM) of Oxisols soils in slash and burn agriculture, in relation to its biological properties and soil fertility. The CP/MAS 13C technique was used to identify the main structural groups in litter and fine roots as SOM precursors; to identify the changes on the nature of the SOM upon cultivation and the proportion of labile and stable components; and to identify the nature of the organics present in water extracts (DOC). Carbohydrates were the main structural components in litter whereas components such as carbonyl C, carboxyl C,O-alkyl C and alkyl C were more common in SOM. Phenolic C and the degree of aromaticity were similar in litter and SOM. Cultivation resulted in a small decrease in the relative proportion of carbohydrates in SOM, little change in the levels of O-alkyl C and carbonyl C, but an increase in carboxyl C, phenolic C and aromaticity of the SOM. The level of alkyl C in soil was higher than the level of O-alkyl C, indicating the importance of long-chain aliphatics along with lignins in the stabilization of the SOM in Oxisols. The SOM of Mollisols from the Canadian Prairies differed from the Oxisol, with a generally stronger expression of aromatic structures, particularly in a cultivated soil in relation to a native equivalent. Carbohydrate components were the predominant structures in the DOC, indicating their importance in nutrient cycling and vertical translocations in the Oxisol.  相似文献   

10.
Bracken (Pteridium aquilinum) is aggressively displacing heather (Calluna vulgaris) on many moorlands in Britain. We investigated the use of lignin derivatives to identify the distribution of soil organic matter (SOM) derived from bracken in moorland soil profiles formed under heather. Phenylpropanoids extracted from recently senesced litters, roots and SOM, using alkaline CuO oxidation, showed distinct signatures for bracken and heather, with vanillyl moieties dominating bracken litter extracts and vanillyl and syringyl dominating heather litter extracts. Ratios of vanillyl and syringyl concentrations characterised the SOM derived from heather and bracken better than the concentrations of the individual moieties. The analysis showed up to a depth of 5 cm under pure bracken cover, and at the interface between heather and bracken, the SOM was largely derived from bracken litter but below that depth SOM was apparently derived from heather. The use of these methods to identify the plant origin of SOM not only enables understanding the effects of changing vegetation cover on organic matter dynamics in moorland soils but could also facilitate management techniques in moorland/heathland restoration which involve the removal of comparatively nutrient-rich SOM derived from bracken. Received: 30 November 1997 / Accepted: 11 April 1998  相似文献   

11.
Neal A. Scott  Dan Binkley 《Oecologia》1997,111(2):151-159
The feedback between plant litterfall and nutrient cycling processes plays a major role in the regulation of nutrient availability and net primary production in terrestrial ecosystems. While several studies have examined site-specific feedbacks between litter chemistry and nitrogen (N) availability, little is known about the interaction between climate, litter chemistry, and N availability across different ecosystems. We assembled data from several studies spanning a wide range of vegetation, soils, and climatic regimes to examine the relationship between aboveground litter chemistry and annual net N mineralization. Net N mineralization declined strongly and non-linearly as the litter lignin:N ratio increased in forest ecosystems (r 2 = 0.74, P < 0.01). Net N mineralization decreased linearly as litter lignin concentration increased, but the relationship was significant (r 2 = 0.63, P < 0.01) only for tree species. Litterfall quantity, N concentration, and N content correlated poorly with net N mineralization across this range of sites (r 2 < 0.03, P = 0.17–0.26). The relationship between the litter lignin:N ratio and net N mineralization from forest floor and mineral soil was similar. The litter lignin:N ratio explained more of the variation in net N mineralization than climatic factors over a wide range of forest age classes, suggesting that litter quality (lignin:N ratio) may exert more than a proximal control over net N mineralization by influencing soil organic matter quality throughout the soil profile independent of climate. Received: 16 December 1996 / Accepted: 8 February 1997  相似文献   

12.
Waldrop MP  Firestone MK 《Oecologia》2004,138(2):275-284
Little is known about how the structure of microbial communities impacts carbon cycling or how soil microbial community composition mediates plant effects on C-decomposition processes. We examined the degradation of four 13C-labeled compounds (starch, xylose, vanillin, and pine litter), quantified rates of associated enzyme activities, and identified microbial groups utilizing the 13C-labeled substrates in soils under oaks and in adjacent open grasslands. By quantifying increases in non-13C-labeled carbon in microbial biomarkers, we were also able to identify functional groups responsible for the metabolism of indigenous soil organic matter. Although microbial community composition differed between oak and grassland soils, the microbial groups responsible for starch, xylose, and vanillin degradation, as defined by 13C-PLFA, did not differ significantly between oak and grassland soils. Microbial groups responsible for pine litter and SOM-C degradation did differ between the two soils. Enhanced degradation of SOM resulting from substrate addition (priming) was greater in grassland soils, particularly in response to pine litter addition; under these conditions, fungal and Gram + biomarkers showed more incorporation of SOM-C than did Gram – biomarkers. In contrast, the oak soil microbial community primarily incorporated C from the added substrates. More 13C (from both simple and recalcitrant sources) was incorporated into the Gram – biomarkers than Gram + biomarkers despite the fact that the Gram + group generally comprised a greater portion of the bacterial biomass than did markers for the Gram – group. These experiments begin to identify components of the soil microbial community responsible for decomposition of different types of C-substrates. The results demonstrate that the presence of distinctly different plant communities did not alter the microbial community profile responsible for decomposition of relatively labile C-substrates but did alter the profiles of microbial communities responsible for decomposition of the more recalcitrant substrates, pine litter and indigenous soil organic matter.  相似文献   

13.
Abstract. Facilitation of the establishment of certain plant species by nurse plants is a common phenomenon in arid and semiarid ecosystems. The most commonly reported mechanisms of facilitation include cooler temperatures and increased soil nutrients beneath the nurse plant canopy, which favor establishment of other plant species. During conversion of upland grasslands to thorn woodland in southern Texas, Prosopis glandulosa appears to facilitate establishment of other woody plants, including Celtis pallida, whereas Acacia smallii occurs only in habitats between P. glandulosa canopies. We tested the hypothesis that light intensity and soils under P. glandulosa canopies facilitate seedling emergence and growth of C. pallida but inhibit seedling emergence and growth of A. smallii. In the field, C. pallida and A. smallii seeds were planted under P. glandulosa canopies and in adjacent interspaces. Percent emergence of C. pallida seedlings was greater under the canopy of P. glandulosa, whereas percent emergence of A. smallii seedlings was greater in interspaces. In a greenhouse experiment, seeds of each species were planted in pots filled with soil from under P. glandulosa canopies or from adjacent interspaces. Two treatments, shade and sunlight, were imposed and plants harvested seven weeks later. Seedling mass of both species was greater in canopy soil than in interspace soil in sunlight but mass of the two species did not differ between soil sources in shade. Canopy soils contained more total and available nitrogen than interspace soils. These results suggest that light is more limiting than nutrients under shaded conditions and so neither species can take advantage of the high nutrients beneath P. glandulosa. Shade and greater soil nutrients beneath P. glandulosa do not appear to be the major factors that facilitate C. pallida or inhibit A. smallii. Aggregation of C. pallida beneath P. glandulosa canopies appears to be a complex process that involves both passive facilitation (seed dispersal by birds) and active facilitation (reduction of seed dormancy by under-canopy temperatures) operating only during the seed germination stage with successional mechanisms other than facilitation operating during later stages of shrub establishment and growth.  相似文献   

14.
Lignin mineralization represents a critical flux in the terrestrial carbon (C) cycle, yet little is known about mechanisms and environmental factors controlling lignin breakdown in mineral soils. Hypoxia is thought to suppress lignin decomposition, yet potential effects of oxygen (O2) variability in surface soils have not been explored. Here, we tested the impact of redox fluctuations on lignin breakdown in humid tropical forest soils during ten‐week laboratory incubations. We used synthetic lignins labeled with 13C in either of two positions (aromatic methoxyl or propyl side chain Cβ) to provide highly sensitive and specific measures of lignin mineralization seldom employed in soils. Four‐day redox fluctuations increased the percent contribution of methoxyl C to soil respiration relative to static aerobic conditions, and cumulative methoxyl‐C mineralization was statistically equivalent under static aerobic and fluctuating redox conditions despite lower soil respiration in the latter treatment. Contributions of the less labile lignin Cβ to soil respiration were equivalent in the static aerobic and fluctuating redox treatments during periods of O2 exposure, and tended to decline during periods of O2 limitation, resulting in lower cumulative Cβ mineralization in the fluctuating treatment relative to the static aerobic treatment. However, cumulative mineralization of both the Cβ‐ and methoxyl‐labeled lignins nearly doubled in the fluctuating treatment relative to the static aerobic treatment when total lignin mineralization was normalized to total O2 exposure. Oxygen fluctuations are thought to be suboptimal for canonical lignin‐degrading microorganisms. However, O2 fluctuations drove substantial Fe reduction and oxidation, and reactive oxygen species generated during abiotic Fe oxidation might explain the elevated contribution of lignin to C mineralization. Iron redox cycling provides a potential mechanism for lignin depletion in soil organic matter. Couplings between soil moisture, redox fluctuations, and lignin breakdown provide a potential link between climate variability and the biochemical composition of soil organic matter.  相似文献   

15.
Abstract We studied the influence of tree species on soil carbon and nitrogen (N) dynamics in a common garden of replicated monocultures of fourteen angiosperm and gymnosperm, broadleaf and needleleaf species in southwestern Poland. We hypothesized that species would influence soil organic matter (SOM) decomposition primarily via effects on biogeochemical recalcitrance, with species having tissues with high lignin concentrations retarding rates of decomposition in the O and A horizons. Additionally, because prior work demonstrated substantial divergence in foliar and soil base cation concentrations and soil pH among species, we hypothesized that species would influence chemical stabilization of SOM via cation bridging to mineral surfaces in the A-horizon. Our hypotheses were only partially supported: SOM decomposition and microbial biomass were unrelated to plant tissue lignin concentrations, but in the mineral horizon, were significantly negatively related to the percentage of the cation exchange complex (CEC) occupied by polyvalent acidic (hydrolyzing) cations (Al and Fe), likely because these cations stabilize SOM via cation bridging and flocculation and/or because of inhibitory effects of Al or low pH on decomposers. Percent CEC occupied by exchangeable Al and Fe was in turn related to both soil clay content (a parent material characteristic) and root Ca concentrations (a species characteristic). In contrast, species influenced soil N dynamics largely via variation in tissue N concentration. In both laboratory and in situ assays, species having high-N roots exhibited faster rates of net N mineralization and nitrification. Nitrification:mineralization ratios were greater, though, under species with high exchangeable soil Ca2+. Our results indicate that tree species contribute to variation in SOM dynamics, even in the mineral soil horizons. To our knowledge the influence of tree species on SOM decomposition via cation biogeochemistry has not been demonstrated previously, but could be important in other poorly buffered systems dominated by tree species that differ in cation nutrition or that are influenced by acidic deposition.  相似文献   

16.
潘萍  赵芳  欧阳勋志  臧颢  宁金魁  国瑞 《生态学报》2018,38(11):3988-3997
以飞播马尾松林为研究对象,通过典型样地调查和样品测定,采用配对样本t检验和冗余分析(RDA)方法分析芒萁类和禾草类两种林下植被类型土壤碳、氮特征及其与凋落物质量之间的关系。结果表明:(1)土壤有机碳、微生物量碳、可溶性有机碳、全氮、速效氮、微生物量氮和可溶性有机氮含量在0-10、10-20 cm土层均表现为禾草类显著高于芒萁类(P < 0.05),而在20-40、40-80 cm土层两种植被类型碳氮指标的大小未表现出相同的变化规律,且差异不显著(P > 0.05)。(2)两种植被类型凋落物半分解和未分解层的C含量及C/N值均表现为芒萁类显著高于禾草类(P < 0.05),而N含量则表现为禾草类显著高于芒萁类(P < 0.05);同一植被类型的未分解层C含量及C/N值均显著大于半分解层,N含量则半分解层显著大于未分解层(P < 0.05)。(3)0-10 cm土层两种类型凋落物C/N值和C含量均与土壤碳氮各指标呈显著负相关(P < 0.05),N含量与土壤碳氮各指标的相关性不显著(P > 0.05);10-20 cm土层,芒萁类的半分解层C/N值与土壤碳氮各指标存在显著相关性(P < 0.05),禾草类的凋落物C含量与土壤碳氮各指标也存在显著相关性(P < 0.01)。林下植被凋落物C/N值越小,其分解速率越快,有利于土壤养分的积累,禾草类凋落物C/N值低于芒萁类是导致其土壤碳氮指标高于芒萁类的重要原因。  相似文献   

17.
Grassland degradation is a worldwide problem that often leads to substantial loss of soil organic matter (SOM). To estimate the potential for carbon (C) accumulation in degraded grassland soils, we first need to understand how SOM content influences the transformation of plant C and its stabilization within the soil matrix. We conducted a greenhouse experiment using C3 soils with six levels of SOM content; we planted the C4 grass Cleistogenes squarrosa or added its litter to the soils to investigate how SOM content regulates the storage of new soil C derived from litter and roots, the decomposition of extant soil C, and the formation of soil aggregates. We found that with the increase in SOM content, microbial biomass carbon (MBC) and the mineralization of litter C increased. Both the litter addition and planted treatments increased the amount of new C inputs to soil. However, the mineralization of extant soil C was significantly accelerated by the presence of living roots but was not affected by litter addition. Accordingly, the soil C content was significantly higher in the litter addition treatments but was not affected by the planted treatments by the end of the experiment. The soil macroaggregate fraction increased with SOM content and was positively related to MBC. Our experiment suggests that as SOM content increases, plant growth and soil microbial activity increase, which allows microbes to process more plant-derived C and promote new soil C formation. Although long-term field experiments are needed to test the robustness of our findings, our greenhouse experiment suggests that the interactions between SOM content and plant C inputs should be considered when evaluating soil C turnover in degraded grasslands.  相似文献   

18.
We used long-term laboratory incubations and chemical fractionation to characterize the mineralization dynamics of organic soils from tussock, shrub, and wet meadow tundra communities, to determine the relationship between soil organic matter (SOM) decomposition and chemistry, and to quantify the relative proportions of carbon (C) and nitrogen (N) in tundra SOM that are biologically available for decomposition. In all soils but shrub, we found little decline in respiration rates over 1 year, although soils respired approximately a tenth to a third of total soil C. The lack of decline in respiration rates despite large C losses indicates that the quantity of organic matter available was not controlling respiration and thus suggests that something else was limiting microbial activity. To determine the nature of the respired C, we analyzed soil chemistry before and after the incubation using a peat fractionation scheme. Despite the large losses of soil C, SOM chemistry was relatively unchanged after the incubation. The decomposition dynamics we observed suggest that tundra SOM, which is largely plant detritus, fits within existing concepts of the litter decay continuum. The lack of changes in organic matter chemistry indicates that this material had already decomposed to the point where the breakdown of labile constituents was tied to lignin decomposition. N mineralization was correlated with C mineralization in our study, but shrub soil mineralized more and tussock soil less N than would have been predicted by this correlation. Our results suggest that a large proportion of tundra SOM is potentially mineralizable, despite the fact that decomposition was dependent on lignin breakdown, and that the historical accumulation of organic matter in tundra soils is the result of field conditions unfavorable to decomposition and not the result of fundamental chemical limitations to decomposition. Our study also suggests that the anticipated increases in shrub dominance may substantially alter the dynamics of SOM decomposition in the tundra. Received 31 January 2002; accepted 16 July 2002.  相似文献   

19.
Soil microorganisms play a pivotal role in soil organic matter (SOM) turn-over and their diversity is discussed as a key to the function of soil ecosystems. However, the extent to which SOM dynamics may be linked to changes in soil microbial diversity remains largely unknown. We characterized SOM degradation along a microbial diversity gradient in a two month incubation experiment under controlled laboratory conditions. A microbial diversity gradient was created by diluting soil suspension of a silty grassland soil. Microcosms containing the same sterilized soil were re-inoculated with one of the created microbial diversities, and were amended with 13C labeled wheat in order to assess whether SOM decomposition is linked to soil microbial diversity or not. Structural composition of wheat was assessed by solid-state 13C nuclear magnetic resonance, sugar and lignin content was quantified and labeled wheat contribution was determined by 13C compound specific analyses. Results showed decreased wheat O-alkyl-C with increasing microbial diversity. Total non-cellulosic sugar-C derived from wheat was not significantly influenced by microbial diversity. Carbon from wheat sugars (arabinose-C and xylose-C), however, was highest when microbial diversity was low, indicating reduced wheat sugar decomposition at low microbial diversity. Xylose-C was significantly correlated with the Shannon diversity index of the bacterial community. Soil lignin-C decreased irrespective of microbial diversity. At low microbial diversity the oxidation state of vanillyl–lignin units was significantly reduced. We conclude that microbial diversity alters bulk chemical structure, the decomposition of plant litter sugars and influences the microbial oxidation of total vanillyl–lignins, thus changing SOM composition.  相似文献   

20.
Large herbivores may alter carbon and nutrient cycling in soil by changing above- and below-ground litter decomposition dynamics. Grazing effects may reflect changes in plant allocation patterns, and thus litter quality, or the site conditions for decomposition, but the relative roles of these broad mechanisms have rarely been tested. We examined plant and soil mediated effects of grazing history on litter mass loss and nutrient release in two grazing-tolerant grasses, Lolium multiflorum and Paspalum dilatatum, in a humid pampa grassland, Argentina. Shoot and root litters produced in a common garden by conspecific plants collected from grazed and ungrazed sites were incubated under both grazing conditions. We found that grazing history effects on litter decomposition were stronger for shoot than for root material. Root mass loss was neither affected by litter origin nor incubation site, although roots from the grazed origin immobilised more nutrients. Plants from the grazed site produced shoots with higher cell soluble contents and lower lignin:N ratios. Grazing effects mediated by shoot litter origin depended on the species, and were less apparent than incubation site effects. Lolium shoots from the grazed site decomposed and released nutrients faster, whereas Paspalum shoots from the grazed site retained more nutrient than their respective counterparts from the ungrazed site. Such divergent, species-specific dynamics did not translate into consistent differences in soil mineral N beneath decomposing litters. Indeed, shoot mass loss and nutrient release were generally faster in the grazed grassland, where soil N availability was higher. Our results show that grazing influenced nutrient cycling by modifying litter breakdown within species as well as the soil environment for decomposition. They also indicate that grazing effects on decomposition are likely to involve aerial litter pools rather than the more recalcitrant root compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号