共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrogen immobilization in fresh litter represents a significant N flux in forest ecosystems, and changes in this process resulting from atmospheric N deposition could have important implications for ecosystem responses. We conducted two leaf decay experiments, using 15N-labeled sugar maple leaf litter, to quantify N transport from old litter and soil to fresh litter during early stages of decomposition, and we examined the influence of litter N concentration and soil N availability on upward N transfer in a northern hardwood forest. After one year of decay, the average N transfer from soil to fresh litter (2.63 mg N g?1 litter) was much higher than the N transfer from older litter (1- to 2-years-old) to fresh litter (0.37 mg N g?1 litter). We calculated the ratio of annual N transfer per unit of excess 15N pool for these two N sources. The ratio was not significantly different between old litter and soil, suggesting that fungi utilize N in the old litter and mineral soil pools for transport to decaying fresh litter with similar efficiency. Initial litter N concentration had a significant effect on upward N flux into decaying leaf litter, whereas no effect of soil N fertilization was observed. Reduction in the flux from soil to fresh litter owing to anthropogenic N inputs probably contributes significantly to changing soil N dynamics. Future work is needed on fungal N acquisition and transport as well as the fungal taxa involved in this process and their responses to changing environments. 相似文献
2.
Peter M. Groffman Janet P. Hardy Melany C. Fisk Timothy J. Fahey Charles T. Driscoll 《Ecosystems》2009,12(6):927-943
We exploited the natural climate gradient in the northern hardwood forest at the Hubbard Brook Experimental Forest (HBEF)
to evaluate the effects of climate variation similar to what is predicted to occur with global warming over the next 50–100 years
for northeastern North America on soil carbon (C) and nitrogen (N) cycle processes. Our objectives were to (1) characterize
differences in soil temperature, moisture and frost associated with elevation at the HBEF and (2) evaluate variation in total
soil (TSR) and microbial respiration, N mineralization, nitrification, denitrification, nitrous oxide (N2O) flux, and methane (CH4) uptake along this gradient. Low elevation sites were consistently warmer (1.5–2.5°C) and drier than high elevation sites.
Despite higher temperatures, low elevation plots had less snow and more soil frost than high elevation plots. Net N mineralization
and nitrification were slower in warmer, low elevation plots, in both summer and winter. In summer, this pattern was driven
by lower soil moisture in warmer soils and in winter the pattern was linked to less snow and more soil freezing in warmer
soils. These data suggest that N cycling and supply to plants in northern hardwood ecosystems will be reduced in a warmer
climate due to changes in both winter and summer conditions. TSR was consistently faster in the warmer, low elevation plots.
N cycling processes appeared to be more sensitive to variation in soil moisture induced by climate variation, whereas C cycling
processes appeared to be more strongly influenced by temperature. 相似文献
3.
Extracellular Enzyme Activities and Soil Organic Matter Dynamics for Northern Hardwood Forests receiving Simulated Nitrogen Deposition 总被引:5,自引:0,他引:5
Anthropogenic nitrogen enrichment alters decomposition processes that control the flux of carbon (C) and nitrogen (N) from
soil organic matter (SOM) pools. To link N-driven changes in SOM to microbial responses, we measured the potential activity
of several extracellular enzymes involved in SOM degradation at nine experimental sites located in northern Michigan. Each
site has three treatment plots (ambient, +30 and +80 kg N ha−1 y−1). Litter and soil samples were collected on five dates over the third growing season of N treatment. Phenol oxidase, peroxidase
and cellobiohydrolase activities showed significant responses to N additions. In the Acer saccharum–Tilia americana ecosystem, oxidative activity was 38% higher in the litter horizon of high N treatment plots, relative to ambient plots,
while oxidative activity in mineral soil showed little change. In the A. saccharum–Quercus rubra and Q. velutina–Q. alba ecosystems, oxidative activities declined in both litter (15 and 23%, respectively) and soil (29 and 38%, respectively) in
response to high N treatment while cellobiohydrolase activity increased (6 and 39% for litter, 29 and 18% for soil, respectively).
Over 3 years, SOM content in the high N plots has decreased in the Acer–Tilia ecosystem and increased in the two Quercus ecosystems, relative to ambient plots. For all three ecosystems, differences in SOM content in relation to N treatment were
directly related (r2 = 0.92) to an enzyme activity factor that included both oxidative and hydrolytic enzyme responses. 相似文献
4.
5.
We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow. 相似文献
6.
Ecosystems - Temperate forest soils are an important sink for methane (CH4); however, disturbance through forest management and the creation of skid trails may significantly decrease soil’s... 相似文献
7.
8.
Calcium Additions and Microbial Nitrogen Cycle Processes in a Northern Hardwood Forest 总被引:1,自引:0,他引:1
Peter M. Groffman Melany C. Fisk Charles T. Driscoll Gene E. Likens Timothy J. Fahey Christopher Eagar Linda H. Pardo 《Ecosystems》2006,9(8):1289-1305
Evaluating, and possibly ameliorating, the effects of base cation depletion in forest soils caused by acid deposition is an
important topic in the northeastern United States. We added 850 kg Ca ha−1 as wollastonite (CaSiO3) to an 11.8-ha watershed at the Hubbard Brook Experimental Forest (HBEF), a northern hardwood forest in New Hampshire, USA,
in fall 1999 to replace calcium (Ca) leached from the ecosystem by acid deposition over the past 6 decades. Soil microbial
biomass carbon (C) and nitrogen (N) concentrations, gross and potential net N mineralization and nitrification rates, soil
solution and stream chemistry, soil:atmosphere trace gas (CO2, N2O, CH4) fluxes, and foliar N concentrations have been monitored in the treated watershed and in reference areas at the HBEF before
and since the Ca addition. We expected that rates of microbial C and N cycle processes would increase in response to the treatment.
By 2000, soil pH was increased by a full unit in the Oie soil horizon, and by 2002 it was increased by nearly 0.5 units in
the Oa soil horizon. However, there were declines in the N content of the microbial biomass, potential net and gross N mineralization
rates, and soil inorganic N pools in the Oie horizon of the treated watershed. Stream, soil solution, and foliar concentrations
of N showed no response to treatment. The lack of stimulation of N cycling by Ca addition suggests that microbes may not be
stimulated by increased pH and Ca levels in the naturally acidic soils at the HBEF, or that other factors (for example, phosphorus,
or Ca binding of labile organic matter) may constrain the capacity of microbes to respond to increased pH in the treated watershed.
Possible fates for the approximately 10 kg N ha−1 decline in microbial and soil inorganic pools include components of the plant community that we did not measure (for example,
seedlings, understory shrubs), increased fluxes of N2 and/or N storage in soil organic matter. These results raise questions about the factors regulating microbial biomass and
activity in northern hardwood forests that should be considered in the context of proposals to mitigate the depletion of nutrient
cations in soil. 相似文献
9.
Cross-site syntheses of litter decomposition studies have shown that litter calcium (Ca) concentration may have a role in controlling the extent of decomposition of tree foliage. We used an ongoing watershed CaSiO3 addition experiment at the Hubbard Brook Experimental Forest in New Hampshire, USA, to test the hypotheses that increased Ca in litter would have no effect on the initial rates of litter decay but would increase the extent or completeness (limit value) of foliar litter decomposition. We tested these hypotheses with a 6-year litter decomposition experiment using foliar litter of four tree species that are prominent at this site and in the Northern Hardwood forest type of North America: sugar maple (Acer saccharum Marsh), American beech (Fagus grandifolia Ehrh.), yellow birch (Betula alleghaniensis Britt.), and white ash (Fraxinus americana L.). The experiment used a reciprocal transplant design with the Ca-treated watershed and a control site providing two sources of litter and two placement sites. The litter from the Ca-treated site was 10–92% higher in Ca concentration, depending on species, than the litter from the control site. After about 3 years of decomposition, the Ca concentrations in the litter reflected the placement of the litter (that is, the site in which it was incubated) rather than the source of the litter. The source of the litter had no significant effect on measures of initial decomposition rate, cumulative mass loss (6 years), or limit value. However, the placement of the litter had a highly significant effect on extent of decomposition. Some litter types responded more than others; in particular, beech litter placed in the Ca-treated site had a significantly higher limit value, indicating more complete decomposition, and maple litter in the Ca-treated site had a marginally higher limit value. These results indicate that Ca may influence the extent of litter decomposition, but it is the Ca at the incubation site rather than the initial litter Ca that matters most. The results also suggest that loss of Ca from the soil due to decades of acid deposition at this site may have impeded late-stage litter decomposition, possibly leading to greater soil C storage, especially in forest stands with a substantial component of beech. Likewise, de-acidification may lead to a reduction in soil C. 相似文献
10.
Two previously published models, after minor modification, areamalgamated to give a model that describes the major carbonand nitrogen pools and fluxes in a plantation forest soil system.The first model is a transport-resistance model of forest growthand dry-matter partitioning. The second is a soil organic mattermodel that was constructed for temperate grasslands. The combinedmodel is used to examine the relations between plantation growth,soil organic matter content, nitrogen deposition rate from theatmosphere, mineralization flux, nitrogen uptake by the plantation,dry matter partitioning between foliage and root, litter productionand the timing and quantity of fertilizer application. The highdemand for N by even-aged plantations during the period of canopybuilding is highlighted. The marked ontogenetic shifts in thegrowth pattern during plantation development is emphasized,indicating several phases of forest development. The resultsindicate that the potential growth of even-aged plantationsmay be greater than that realized in poor soils with commonlevels of atmospheric N deposition and normal fertilizer regimes.The simulations show how the concentrations of soil mineralN change during the development of a plantation, and point towardsthe importance of atmospheric N deposition. They also show thatfertilizer application must be accurately matched to growthstage if fertilizer is to be used efficiently. The nitrogencycle (N-uptake by plant 相似文献
11.
The dynamics of litter stock, microbial biomass, and composition and structure of microbial communities, were studied in the course of soil organic matter transformation during vegetation season. The dynamics of litter stock in coniferous and deciduous forests proved to correlate with the biomass and total abundance of microorganisms, particularly, with the proportion of microfungi in the microbial community. 相似文献
12.
Sarah E. Hobbie 《Ecosystems》2000,3(5):484-494
Previous work in a young Hawaiian forest has shown that nitrogen (N) limits aboveground net primary production (ANPP) more
strongly than it does decomposition, despite low soil N availability. In this study, I determined whether (a) poor litter
C quality (that is, high litter lignin) poses an overriding constraint on decomposition, preventing decomposers from responding
to added N, or (b) high N levels inhibit lignin degradation, lessening the effects of added N on decomposition overall. I
obtained leaf litter from one species, Metrosideros polymorpha, which dominates a range of sites in the Hawaiian Islands and whose litter lignin concentration declines with decreasing
precipitation. Litter from three dry sites had lignin concentrations of 12% or less, whereas litter from two wet sites, including
the study site, had lignin concentrations of more than 18%. This litter was deployed 2.5 years in a common site in control
plots (receiving no added nutrients) and in N-fertilized plots. Nitrogen fertilization stimulated decomposition of the low-lignin
litter types more than that of the high-lignin litter types. However, in contrast to results from temperate forests, N did
not inhibit lignin decomposition. Rather, lignin decay increased with added N, suggesting that the small effect of N on decomposition
at this site results from limitation of decomposition by poor C quality rather than from N inhibition of lignin decay. Even
though ANPP is limited by N, decomposers are strongly limited by C quality. My results suggest that anthropogenic N deposition
may increase leaf litter decomposition more in ecosystems characterized by low-lignin litter than in those characterized by
high-lignin litter.
Received 26 October 1999; accepted 2 June 2000. 相似文献
13.
Soil Moisture Alters the Response of Soil Organic Carbon Mineralization to Litter Addition 总被引:2,自引:0,他引:2
Increasing rainfall and longer drought conditions lead to frequent changes in soil moisture that affect soil organic carbon (SOC) mineralization. However, how soil moisture affects response of SOC mineralization to litter addition in forest ecosystems remains unexplored. We added 13C-labeled litter to subtropical forest soils with three mass water contents (L, 21%; M, 33%; H, 45%). Carbon dioxide production was monitored, and the composition of soil microbial communities was determined by phospholipid fatty acid (PLFA). When no litter was added, SOC mineralization was greater in the M-treated soil. Litter addition promoted SOC mineralization, but this promotion was altered by soil moisture and litter type. Priming effects induced by P. massoniana leaf litter in the M-moistened soil were significantly (P < 0.05) higher than those in other treatments. Litter-derived C was approximately 55% incorporated into 18:1ω9c and 16:0 PLFAs, and this proportion was not significantly affected by soil moisture. Soil moisture affected the distribution of litter-13C in i15:0, i17:0, and cy19:0 individual PLFAs. The primed C evolution was significantly related to the ratio of Gram-positive to Gram-negative bacteria. These results suggest that changes in soil moisture could affect SOC mineralization in forest ecosystems. 相似文献
14.
刘建才;陈金玲;金光泽 《植物研究》2014,34(1):121-130
为探讨氮沉降对典型阔叶红松(Pinus koraiensis)林的影响,从2008年6月~2010年8月进行了人工模拟氮沉降实验,实验分为对照、低N、中N、高N4个处理,每个处理3个重复。所施氮肥为CO(NH2)2,以溶液的形式喷施,4个处理浓度分别为0、30、60、120 kg·hm-2·a-1。在氮沉降进行1年后,采集各处理0~20、20~40和40~60 cm的土壤样品,测定其土壤有机C、全N、碱解N和速效P、速效K。结果表明:相同处理下,有机C和全N含量随土层的加深均逐渐减少。总体上低、中N处理显著增加了土壤有机C、碱解N和速效K含量,中、高N处理显著降低了土壤速效P含量(P<0.05),而对全N含量影响不显著(P>0.05)。土壤有机C与土壤全N、碱解N、速效P、速效K之间存在极显著正相关关系(P<0.001)。有机C和土壤养分对氮沉降的响应说明氮沉降在短期内可能影响阔叶红松林土壤碳库积累和土壤肥力水平。 相似文献
15.
The Role of Dissolved Organic Carbon, Dissolved Organic Nitrogen, and Dissolved Inorganic Nitrogen in a Tropical Wet Forest Ecosystem 总被引:3,自引:0,他引:3
Although tropical wet forests play an important role in the global carbon (C) and nitrogen (N) cycles, little is known about the origin, composition, and fate of dissolved organic C (DOC) and N (DON) in these ecosystems. We quantified and characterized fluxes of DOC, DON, and dissolved inorganic N (DIN) in throughfall, litter leachate, and soil solution of an old-growth tropical wet forest to assess their contribution to C stabilization (DOC) and to N export (DON and DIN) from this ecosystem. We found that the forest canopy was a major source of DOC (232 kg C ha–1 y–1). Dissolved organic C fluxes decreased with soil depth from 277 kg C ha–1 y–1 below the litter layer to around 50 kg C kg C ha–1 y–1 between 0.75 and 3.5m depth. Laboratory experiments to quantify biodegradable DOC and DON and to estimate the DOC sorption capacity of the soil, combined with chemical analyses of DOC, revealed that sorption was the dominant process controlling the observed DOC profiles in the soil. This sorption of DOC by the soil matrix has probably led to large soil organic C stores, especially below the rooting zone. Dissolved N fluxes in all strata were dominated by mineral N (mainly NO3−). The dominance of NO3– relative to the total amount nitrate of N leaching from the soil shows that NO3– is dominant not only in forest ecosystems receiving large anthropogenic nitrogen inputs but also in this old-growth forest ecosystem, which is not N-limited. 相似文献
16.
A procedure, based on measurement of the stable carbon isotope 13C, has been developed for determining the extent to which petroleum carbon is incorporated into soil organic matter (SOM) by humification of biomass produced during biodegradation of the petroleum in soil. We have shown that a crude oil having a δ13C of-27.4%, when biodegraded in a soil containing SOM with a δ13C of-15.7%, resulted in a change of the δ13C of the bound SOM reflecting that of petroleum carbon. Comparison of five soil biodegradation tests using different amounts and types of fertilizer to stimulate biodegradation of the oil in this soil showed that the extent of the δ13C change in the bound SOM varied with the extent of oil biodegradation observed. To obtain 13C data on the SOM, the residual petroleum was first removed by rigorous extraction with dichloromethane using a Soxhlet apparatus. The extracted soil was then combusted to release bound carbon as CO2, which was analyzed for 13C. Where the SOM has a δ13C similar to that of petroleum, 14C measurements of SOM would give similar results. This type of data, referred to as the petroleum “footprint” in the SOM, could be useful in identifying or confirming intrinsic biodegradation of petroleum in contaminated soil. 相似文献
17.
Catherine E. Stewart Jason C. Neff Kathryn L. Amatangelo Peter M. Vitousek 《Ecosystems》2011,14(3):382-397
We examined chemical changes from leaf tissue to soil organic matter (SOM) to determine the persistence of plant chemistry into soil aggregate fractions. We characterized a slow (Dicranopteris linearis) and fast-decomposing species (Cheirodendron trigynum) and surface (O), and subsurface (A-horizon) SOM beneath each species using pyrolysis-gas chromatography/mass spectrometry (py-GC/MS), with and without derivatization. The live tissues of Dicranopteris had greater lignin content whereas Cheirodendron had a greater lipid, N-bearing, and polysaccharide component. Despite this difference in leaf chemistry, SOM chemistry was similar between soil aggregate fractions, but different between horizons. The O-horizon contained primarily lignin and polysaccharide biomarkers whereas the A-horizon contained polysaccharide, aromatic, and N-derived compounds, indicating considerable microbial processing of plant litter. The soils beneath Cheirodendron inherited a greater lipid signal composed of cutin and suberin biomarkers whereas the soils beneath Dicranopteris contained greater aromatic biomarker content, possibly derived from plant lignins. The soils beneath both species were more similar to root polysaccharides, lipids, and lignins than aboveground tissue. This study indicates that although plant-derived OM is processed vigorously, species-specific biomarkers and compound class differences persist into these soils and that differences in plant chemical properties may influence soil development even after considerable reworking of plant litter by microorganisms. 相似文献
18.
Youngil Cho Charles T. Driscoll Chris E. Johnson Joel D. Blum Timothy J. Fahey 《Ecosystems》2012,15(3):416-434
Watershed 1 (W1) at the Hubbard Brook Experimental Forest in New Hampshire, with chronically low pH and acid neutralizing
capacity (ANC) in surface water, was experimentally treated with calcium silicate (CaSiO3; wollastonite) in October 1999 to assess the role of calcium (Ca) supply in the structure and function of base-poor forest
ecosystems. Wollastonite addition significantly increased the concentrations and fluxes of Ca, dissolved silica (Si), and
ANC and decreased the concentrations and fluxes of inorganic monomeric Al (Ali) and hydrogen ion (H+) in both soil solution and stream water in all sub-watersheds of W1. Mass balances indicate that 54% of the added Ca remained
undissolved or was retained by vegetation during the first 6 years after treatment. Of the remaining added Ca, 44% was retained
on O horizon cation exchange sites. The Ca:Si ratio in the dissolution products was greater than 2.0, more than twice the
molar ratio in the applied wollastonite. This suggests that Ca was preferentially leached from the applied wollastonite and/or
Si was immobilized by secondary mineral formation. Approximately 2% of the added Ca and 7% of the added Si were exported from
W1 in streamwater in the first 6 years after treatment. Watershed-scale Ca amendment with wollastonite appears to be an effective
approach to mitigating effects of acidic deposition. Not only does it appear to alleviate acidification stress to forest vegetation,
but it also provides for the long-term supply of ANC to acid-impacted rivers and lakes downstream. 相似文献
19.
Carbon Dioxide Variation in a Hardwood Forest Stream: An Integrative Measure of Whole Catchment Soil Respiration 总被引:5,自引:3,他引:5
The concentration of CO2 in stream water is a product of not only instream metabolism but also upland, riparian, and groundwater processes and as
such can provide an integrative measure of whole catchment soil respiration. Using a 5-year dataset of pH, alkalinity, Ca2+, and Mg2+ in surface water of the West Fork of Walker Branch in eastern Tennessee in conjunction with a hydrological flowpath chemistry
model, we investigated how CO2 concentrations and respiration rates in stream, bedrock, and soil environments vary seasonally and interannually. Dissolved
inorganic carbon concentration was highest in summer and autumn (P < 0.05) although the proportion as free CO2 (pCO2) did not vary seasonally (P > 0.05). Over the 5 years, pCO2 was always supersaturated with respect to the atmosphere ranging from 374 to 3626 ppmv (1.0- to 10.1-fold greater than atmospheric
equilibrium), and CO2 evasion from the stream to the atmosphere ranged from 146 to 353 mmol m−2 d−1. Whereas pCO2 in surface water exhibited little intra-annual or interannual variation, distinct seasonal patterns in soil and bedrock pCO2 were revealed by the catchment CO2 model. Seasonally, soil pCO2 increased from a winter low of 8167 ppmv to a summer high of 27,068 ppmv. Driven by the seasonal variation in gas levels,
evasion of CO2 from soils to the atmosphere ranged from 83 mmol m−2 d−1 in winter to 287 mmol m−2 d−1 in summer. The seasonal variation in soil CO2 tracked soil temperature (r
2= 0.46, P < 0.001) and model-derived estimates of CO2 evasion rate from soils agreed with previously reported fluxes measured using chambers (Pearson correlation coefficient =
0.62, P < 0.05) supporting the model assumptions. Although rates of CO2 evasion were similar between the stream and soils, the overall rate of evasion from the channel was only 0.4% of the 70,752
mol/d that evaded from soils due to the vastly different areas of the two subsystems. Our model provides a means to assess
whole catchment CO2 dynamics from easily collected and measured stream-water samples and an approach to study catchment scale variation in soil
ecosystem respiration.
Received 24 July 1997; accepted 14 November 1997. 相似文献
20.
The future capacity of forest ecosystems to sequester atmospheric carbon is likely to be influenced by CO2-mediated shifts in nutrient cycling through changes in litter chemistry, and by interactions with pollutants like O3. We evaluated the independent and interactive effects of elevated CO2 (560 μl l−1) and O3 (55 nl l l−1) on leaf litter decomposition in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) at the Aspen free air CO2 enrichment (FACE) site (Wisconsin, USA). Fumigation treatments consisted of replicated ambient, +CO2, +O3, and +CO2 + O3 FACE rings. We followed mass loss and litter chemistry over 23 months, using reciprocally transplanted litterbags to separate
substrate quality from environment effects. Aspen decayed more slowly than birch across all treatment conditions, and changes
in decomposition dynamics of both species were driven by shifts in substrate quality rather than by fumigation environment.
Aspen litter produced under elevated CO2 decayed more slowly than litter produced under ambient CO2, and this effect was exacerbated by elevated O3. Similarly, birch litter produced under elevated CO2 also decayed more slowly than litter produced under ambient CO2. In contrast to results for aspen, however, elevated O3 accelerated birch decay under ambient CO2, but decelerated decay under enriched CO2. Changes in decomposition rates (k-values) were due to CO2- and O3-mediated shifts in litter quality, particularly levels of carbohydrates, nitrogen, and tannins. These results suggest that
in early-successional forests of the future, elevated concentrations of CO2 will likely reduce leaf litter decomposition, although the magnitude of effect will vary among species and in response to
interactions with tropospheric O3. 相似文献