首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partitioning of Respiration in an Intensively Managed Grassland   总被引:1,自引:0,他引:1  
Total (RTOT) and heterotrophic (RH) respiration were measured in an intensively managed perennial ryegrass (Lolium perenne L.) grassland. The overall aim of the study was to partition RTOT into RH and autotrophic respiration (RA). This was achieved as follows: (1) analyse the effect of air temperature, soil moisture content and leaf area index on RTOT and the influence of soil temperature and soil moisture content on RH; (2) combine these effects into separate empirical models for RTOT and RH and; (3) use these models to determine temporal trends in RTOT and RH and to assess the relative contribution of RH and RA to RTOT. CO2 fluxes were measured using a vented and thermostatically controlled perspex chamber in conjunction with a portable infrared gas analyser. RTOT was measured in plots with grass and RH in plots with bare soil. RTOT was related to air temperature and RH to soil temperature using exponential relationships. Both RTOT and RH were related to soil moisture content using lognormal relationships. RTOT was related to leaf area index using a linear relationship. These relationships were combined to produce statistical response functions that explained 87% and 84% of the variation in RTOT and RH, respectively. These relationships were combined with meteorological and leaf area index data to reconstruct daily and seasonal fluxes. RTOT values in wintertime were ~4 g C m−2 day−1 increasing to ~10 g C m−2 day−1 in summertime when temperatures and leaf area index were higher and soils were drier. RH has a similar seasonal trend to RTOT but was consistently lower. Wintertime values were ~2 g C m−2 day−1 and increased to ~5 g C m−2 day−1 in summertime. Before day of year 143, and after day of year 259 RH and RA represented 62% and 38% of RTOT, respectively. In the period between these days RH and RA both accounted for 50% of RTOT. In total during 2004 RTOT, RH and RA were 2.34, 1.31 and 1.03 kg C m−2, respectively.  相似文献   

2.
Abstract: Conservation and management of native species on landscapes managed for intensive wood production represents an ongoing challenge to forest managers. Previous research suggests that impacts of forest practices on stream-associated amphibians (SAA; giant [Dicamptodon spp.], torrent [Rhyacotriton spp.], and plethodontid [Plethodon spp.] salamanders and coastal tailed frogs [Ascaphus truei]) in Oregon and Washington, USA, vary spatially and temporally as a result of biotic and abiotic factors, some of which can be influenced by management treatments. Although individual harvest units can encompass multiple stream reaches and entire second-order basins, nearly all published research studies used stream reaches of various lengths as sample units. To address this discrepancy between research and operational scales, we sampled first-, second-, and third-order streams in 70 randomly selected third-order basins in Oregon and Washington in 2007 and 2008 to estimate detection and occupancy parameters for SAA and to develop basin-level density estimates for different species and genera. We estimated occupancy probabilities of 0.99 (95% CL = 0.96–1.00) for torrent and giant salamanders, 0.93 (95% CL = 0.76–0.92) for Dunn's salamanders (Plethodon dunni), and 0.60 (95% CL = 0.46–0.72) for tailed frogs. Our estimates can be compared with estimates for unmanaged third-order basins in Oregon and Washington to provide a relative measure of potential impacts of forest management on these taxa. In addition, our estimates provide baseline information with which to assess potential effects of future environmental changes on the 4 genera.  相似文献   

3.
4.
5.
The flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined effect of these global change factors is especially uncertain because of their potential for interactions and indirectly mediated conditions such as soil moisture. Here, we present observations of CO2 fluxes from a multi-factor experiment in semi-arid grassland that suggests a potentially strong climate – carbon cycle feedback under combined elevated [CO2] and warming. Elevated [CO2] alone, and in combination with warming, enhanced ecosystem respiration to a greater extent than photosynthesis, resulting in net C loss over four years. The effect of warming was to reduce respiration especially during years of below-average precipitation, by partially offsetting the effect of elevated [CO2] on soil moisture and C cycling. Carbon losses were explained partly by stimulated decomposition of soil organic matter with elevated [CO2]. The climate – carbon cycle feedback observed in this semiarid grassland was mediated by soil water content, which was reduced by warming and increased by elevated [CO2]. Ecosystem models should incorporate direct and indirect effects of climate change on soil water content in order to accurately predict terrestrial feedbacks and long-term storage of C in soil.  相似文献   

6.
Although it is widely accepted that elevated atmospheric carbon dioxide (CO2), nitrogen (N) deposition, and climate change will alter ecosystem productivity and function in the coming decades, the combined effects of these environmental changes may be nonadditive, and their interactions may be altered by disturbances, such as fire. We examined the influence of a summer wildfire on the interactive effects of elevated CO2, N deposition, and increased precipitation in a full-factorial experiment conducted in a California annual grassland. In unburned plots, primary production was suppressed under elevated CO2. Burning alone did not significantly affect production, but it increased total production in combination with nitrate additions and removed the suppressive effect of elevated CO2. Increased production in response to nitrate in burned plots occurred as a result of the enhanced aboveground production of annual grasses and forbs, whereas the removal of the suppressive effect of elevated CO2 occurred as a result of increased aboveground forb production in burned, CO2-treated plots and decreased root production in burned plots under ambient CO2.The tissue nitrogen–phosphorus ratio, which was assessed for annual grass shoots, decreased with burning and increased with nitrate addition. Burning removed surface litter from plots, resulting in an increase in maximum daily soil temperatures and a decrease in soil moisture both early and late in the growing season. Measures of vegetation greenness, based on canopy spectral reflectance, showed that plants in burned plots grew rapidly early in the season but senesced early. Overall, these results indicate that fire can alter the effects of elevated CO2 and N addition on productivity in the short term, possibly by promoting increased phosphorus availability.  相似文献   

7.
应用同位素氚(T_2)和~13C(~13CO_2),证明了水稻联合固氮菌——粪产碱菌A—15是一种含有吸氢酶的兼性化能自养细菌,具有较强的吸氢能力,吸氨酶活性可达到13.11μmol H_2 ml~(-1) cultureh~(-1);同时,它还可利用H_2为能源同化CO_2营化能自养生活,其RuBPC活性为24.65 nmolCO_2 mg~(-1) protein min~(-1)。无论在自养还是异养条件下,H_2都支持、并促进固氮活性。粪产碱菌培养在N_2条件下比在NH_4~ 条件下能积累更多的多聚-β羟基丁酸(PHB)。  相似文献   

8.
Nitrogen (N) inputs to many terrestrial ecosystems are increasing, and most of these inputs are sequestered in soil organic matter within 1–3 years. Rapid (minutes to days) immobilization focused previous N retention research on actively cycling plant, microbial, and inorganic N pools. However, most ecosystem N resides in soil organic matter that is not rapidly cycled. This large, stable soil N pool may be an important sink for elevated N inputs. In this study, we measured the capacity of grassland soils to retain 15N in a pool that was not mineralized by microorganisms during 1-year laboratory incubations (called “the stable pool”). We added two levels (2.5 and 50 g N m−2) of 15NH4 + tracer to 60 field plots on coarse- and fine-textured soils along a soil carbon (C) gradient from Texas to Montana, USA. We hypothesized that stable tracer 15N retention and stable bulk soil (native + tracer) N pools would be positively correlated with soil clay and C content and stable soil C pools (C not respired during the incubation). Two growing seasons after the 15N addition, soils (0- to 20-cm depth) contained 71% and 26% of the tracer added to low- and high-N treatments, respectively. In both N treatments, 50% of the tracer retained in soil was stable. Total soil C (r 2 = 0.72), stable soil C (r 2 = 0.68), and soil clay content (r 2 = 0.27) were correlated with stable bulk soil N pools, but not with stable 15N retention. We conclude that on annual time scales, substantial quantities of N are incorporated into stable organic pools that are not readily susceptible to microbial remineralization or subsequent plant uptake, leaching losses, or gaseous losses. Stable N formation may be an important pathway by which rapid soil N immobilization translates into long-term N retention. Received 2 April 2001; accepted 12 November 2001.  相似文献   

9.
野外调查与历史资料相结合,对内蒙古锡林河流域一个永久试验样地内的羊草( Leymus chinensis (Trin.) Tzvel.)草原群落(原生草原群落)的碳素贮量、主要流量和周转速度等进行了估计.结果表明:1)该群落中地上部净初级生产的碳素固定量的多年平均值为79.8 g C*m-2*a-1,根系碳素输入量的多年平均值为311.9 g C*m-2*a-1,碳素输入总量为391.7 g C*m-2*a-1; 2)土壤净呼吸量为346.9 g C*m-2*a-1,动物(昆虫)采食量14.7 g C*m-2*a-1,地上立枯阶段的淋溶与光化学分解损失为3.2 g C*m-2*a-1,碳素输出总量为364.8 g C*m-2*a-1; 3)该群落中碳素输入略大于输出,净积累速率为26.9 g C*m-2*a-1,0-30 cm土壤中的碳素周转速率为6.2%,周转时间为16年.  相似文献   

10.
The study comprised 70,796 litters in 104 sow herds, observed from 1976 through 1982. Weaning age decreased from approx. 42 days to approx. 30 days during the observation period. Diseases and symptoms were recorded together with production parameters (feeding, barn construction, economic returns etc.). The mean incidence rate of pre-weaning diarrhoea was 6.8 % of litters, with considerable inter-herd differences (incidence rates from 0 to approx. 50%). There was a slight increase in incidence during the autumn (August through October). Incidence rates increased with litter size, with a peak incidence in litters of 11–13 piglets, and decreased with increasing parity of the sow. There was a positive association between occurrence of arthritis and pre-weaning diarrhoea in the litters, and litters from sows with post parturient disease (MMA complex) had 1.8 times higher risk of getting diarrhoea than litters from healthy sows. No important differences among breeds were found. Small herds (< 200 farrowings per year) had higher incidence rates than large herds (400–499 farrowings per year). Herds with a gilt proportion above 30 % had an incidence rate of 12.3 %, i. e. nearly twice as high as the overall mean (6.8 %). There was a trend towards a higher incidence rate in litters kept in traditional pens (i. e. large pens with solid floor and loose sows) than in intensive pens (i. e. small pens with slatted flooring and tethered sows). The overall pre-weaning mortality rate was 16.2 % of pigs born, half of which was due to stillbirths (6.3 %) and overlaid piglets (2.2 %). In litters with pre-weaning diarrhoea, the mortality rate was 19 %, compared to 13 % in litters without occurrence of diarrhoea. This difference accounts for an excess loss of 0.6 piglets from birth to weaning in diarrhoeic vs. non-diarrhoeic litters. Piglets from litters with pre-weaning diarrhoea had reduced weight gain. Thus, on the average, they were 2.2 days older at 25 kg bodyweight and weighed 0.4 kg less at 30 days than piglets from non-diarrhoeic litters. Also, litters with pre-weaning diarrhoea had a significantly increased risk of post-weaning diarrhoea. The present information forms a basis for defining acceptable disease thresholds in suckling litters in intensively managed herds.  相似文献   

11.
Soils are the largest terrestrial carbon store and soil respiration is the second-largest flux in ecosystem carbon cycling. Across China''s temperate region, climatic changes and human activities have frequently caused the transformation of grasslands to woodlands. However, the effect of this transition on soil respiration and soil organic carbon (SOC) dynamics remains uncertain in this area. In this study, we measured in situ soil respiration and SOC storage over a two-year period (Jan. 2007–Dec. 2008) from five characteristic vegetation types in a forest-steppe ecotone of temperate China, including grassland (GR), shrubland (SH), as well as in evergreen coniferous (EC), deciduous coniferous (DC) and deciduous broadleaved forest (DB), to evaluate the changes of soil respiration and SOC storage with grassland conversions to diverse types of woodlands. Annual soil respiration increased by 3%, 6%, 14%, and 22% after the conversion from GR to EC, SH, DC, and DB, respectively. The variation in soil respiration among different vegetation types could be well explained by SOC and soil total nitrogen content. Despite higher soil respiration in woodlands, SOC storage and residence time increased in the upper 20 cm of soil. Our results suggest that the differences in soil environmental conditions, especially soil substrate availability, influenced the level of annual soil respiration produced by different vegetation types. Moreover, shifts from grassland to woody plant dominance resulted in increased SOC storage. Given the widespread increase in woody plant abundance caused by climate change and large-scale afforestation programs, the soils are expected to accumulate and store increased amounts of organic carbon in temperate areas of China.  相似文献   

12.
锡林河流域一个原生草原群落的碳素平衡研究   总被引:10,自引:0,他引:10  
野外调查与历史资料相结合 ,对内蒙古锡林河流域一个永久试验样地内的羊草 (Leymuschinensis (Trin .)Tzvel.)草原群落 (原生草原群落 )的碳素贮量、主要流量和周转速度等进行了估计。结果表明 :1 )该群落中地上部净初级生产的碳素固定量的多年平均值为 79.8gC·m-2 ·a-1 ,根系碳素输入量的多年平均值为 31 1 .9gC·m-2 ·a-1 ,碳素输入总量为 391 .7gC·m-2 ·a-1 ;2 )土壤净呼吸量为 34 6 .9gC·m-2 ·a-1 ,动物 (昆虫 )采食量 1 4 .7gC·m-2·a-1 ,地上立枯阶段的淋溶与光化学分解损失为 3 .2gC·m-2 ·a-1 ,碳素输出总量为 36 4 .8gC·m-2 ·a-1 ;3)该群落中碳素输入略大于输出 ,净积累速率为 2 6 .9gC·m-2 ·a-1 ,0 - 30cm土壤中的碳素周转速率为 6 .2 % ,周转时间为1 6年。  相似文献   

13.
Carbon Dioxide and pH in Relation to Salt Uptake by Beetroot Tissue   总被引:2,自引:0,他引:2  
The enhancement of cation uptake in beetroot disks with increasingpH is confirmed. In disks taken from growing beet, the presenceof 2 per cent carbon dioxide in air results in a further promotionof cation uptake at pH 7.4, but not at lower pH levels. Theability to respond to added carbon dioxide is often absent indisks cut from dormant roots in winter storage, but may be partlyrestored by pre-washing the disks for a suitable period. Theinfluence of various washing pre-treatrnents indicates thatthe carbon dioxide effect is most pronounced when excess cationuptake is at a maximum. The additional cation uptake at highpH with or without 2 per cent carbon dioxide, and part of thecation uptake at pH 5.6, is balanced by an equivalent synthesisof organic acids. It is concluded that cation uptake is notprimarily determined by the external bicarbonate concentration,and that the pH effect is a genuine one. An electrochemicalapproach shows that the observed effects of high pH and of carbondioxide can be largely accounted for in terms of passive diffusionof ions across the cell membrane, whilst cation accumulationat low pH may involve a hydrogen ion excretion pump.  相似文献   

14.
15.
The enzymic fractionation of the stable carbon isotopes of CO2 (Δco2) was determined using a purified preparation of ribulose-1,5-bisphosphate (RuBP) carboxylase isolated from cotton (a C3 plant) leaves. The bicarbonate concentration in the reaction mixture saturated the enzyme and furnished an infinite pool of 12CO2 and 13CO2 for enzyme fractionation. The RuBP was 96 to 98% pure. The phosphoglycerate synthesized in the reaction mixtures was purified free of RuBP, phosphoglycolate, and other phosphate esters by column chromatography on Dowex 1-Cl resin. The average Δco2 value of −27.1% was determined from five separate experiments. A discussion of the isotope fractionation associated with photosynthetic CO2 fixation in plants shows that the enzymic fractionation of stable carbon isotopes of CO2 by RuBP carboxylase is of major importance in determining the δ13C values of C3 plants.  相似文献   

16.
An attempt was made to determine the relative importance ofthe stomata in restricting CO2 uptake under conditions of waterstress. The air-phase and liquid-phase resistances to uptakeof CO2 were determined from measurements of the rates of assimilationand transpiration and the corresponding concentration gradientsof CO2 and H2O vapour. The results showed that the air-phaseresistances (stomata) could account for only half the reductionin the rate of photosynthesis accompanying water stress. Experimentsin which air was passed through the leaf confirmed that waterstress restricted CO2 fixation within the leaf itself. The resultsand their possible explanation are discussed in relation toother work.  相似文献   

17.
18.
The suitability of five plant species was studied for phytoextraction and phytostabilisation in a region with temperate maritime climate of coastal British Columbia, Canada. Pot experiments were conducted using Lolium perenne L (perennial rye grass), Festuca rubra L (creeping red fescue), Helianthus annuus L (sunflower), Poa pratensis L (Kentucky bluegrass) and Brassica napus L (rape) in soils treated with three different metal (Cu, Pb, Mn, and Zn) concentrations. The bio-metric characters of plants in soils with multiple-metal contaminations, their metal accumulation characteristics, translocation properties and metal removal were assessed at different stages of plant growth, 90 and 120 DAS (days after sowing). Lolium was found to be suitable for the phytostabilisation of Cu and Pb, Festuca for Mn and Poa for Zn. Metal removal was higher at 120 than at 90 days after sowing, and metals concentrated more in the underground tissues with less translocation to the aboveground parts. Bioconcentration factors indicate that Festuca had the highest accumulation for Cu, Helianthus for Pb and Zn and Poa for Mn.  相似文献   

19.
The aim of this study was to determine how Chondrus crispus, a marine red macroalga, acquires the inorganic carbon (Ci) it utilizes for photosynthetic carbon fixation. Analyses of Ci uptake were done using silicone oil centrifugation (using multicellular fragments of thallus), infrared gas analysis, and gas chromatography. Inhibitors of carbonic anhydrase (CA), the band 3 anion exchange protein and Na+/K+ exchange were used in the study. It was found that: (a) C. crispus does not accumulate Ci internally above the concentration attainable by diffusion; (b) the initial Ci fixtion rate of C. crispus fragments saturates at approximately 3 to 4 millimolar Ci; (c) CA is involved in carbon uptake; its involvement is greatest at high HCO3 and low CO2 concentration, suggesting its participation in the dehydration of HCO3 to CO2; (d) C. crispus has an intermediate Ci compensation point; and (e) no evidence of any active or facilitated mechanism for the transport of HCO3 was detected. These data support the view that photosynthetic Ci uptake does not involve active transport. Rather, CO2, derived from HCO3 catalyzed by external CA, passively diffuses across the plasma membrane of C. crispus. Intracellular CA also enhances the fixation of carbon in C. crispus.  相似文献   

20.
Area of bamboo forest (Phyllostachys praecox) has rapidly increased in southern China during the last 20 years due to its high economic value. Aims of this study were to analyse the temporal and spatial variations of soil organic matter (SOM) in heavily winter mulched bamboo stands and to estimate potential for carbon sequestration. Total of 60 soil profiles with 0–15 years of bamboo plantation were sampled from three towns in Lin’an County. Results showed that with increased plantation years, SOM decreased slightly at the beginning (1–5 years), and then rose up steadily. Based on the average of the three locations, the highest SOM content of 75.82 g/kg was the surface layer (0–10 cm) of the 15 years. As plantation year increased, the variation of SOM in the surface layer (0–10 cm) was represented by a parabolic shape, and in the second layer (10–20 cm), it was a similar mode, but less vigorous. Soil organic carbon (SOC) storage significantly increased during 5 to 15 years after it reached full production, and the calculated annual SOC increment in 0–40 cm soil profile was about 6.3 t C/ha/year. Therefore, extended Phyllostachys praecox forests can be considered as one option for countering CO2 emissions and regional climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号