首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invasive alien grasses can substantially alter fuel loads and fire regimes which could have significant consequences for fire-mediated nutrient losses. The effects of the alien grass Andropogon gayanus Kunth. (Gamba grass) on fire-mediated nutrient losses was evaluated in Australia’s tropical savannas. Losses of macronutrients during fire were determined by comparing the nutrient pools contained in the fine fuel before fire and in the ash after fire. Pre-fire grass nutrient pools were significantly higher in A. gayanus plots than in native grass plots for all nutrients measured (N, P, K, S, Ca, and Mg). Nutrient losses were substantially higher in A. gayanus plots, with 113% higher losses for N, 80% for P, 56% for K, 63 for S, 355% for Ca, and 345% for Mg. However, only losses of N and Mg varied significantly between grass types. A simplified savanna ecosystem nutrient budget estimated that A. gayanus fires led to the net N loss of 20 kg ha−1 y−1. This is a conservative estimate because total fuel loads were relatively low (7.85 t ha−1) for A. gayanus invaded plots leading to a relatively moderate intensity fire (6,408 kW m−1). Higher A. gayanus fuel loads and fire intensities could potentially lead to losses of up to 61.5 kg N ha−1 from the grass fuel. Over the long term, this is likely to lead to depletion of soil nutrients, particularly N, in the already low-fertility tropical savanna soils.  相似文献   

2.
3.
Patches of fire‐sensitive vegetation often occur within fire‐prone tropical savannas, and are indicative of localized areas where fire regimes are less severe. These may act as important fire refugia for fire‐sensitive biota. The fire‐sensitive tree Callitris intratropica occurs in small patches throughout the fire‐prone northern Australian savannas, and is widely seen as an indicator of low‐severity fire regimes and of good ecosystem health. Here, we address the question: to what extent do Callitris patches act as refuges for other fire‐sensitive biota, and therefore play a broader conservation role? We contrast floral and faunal species composition between Callitris patches and surrounding eucalypt savanna, using three case studies. In the first case study, a floristic analysis of 47 Callitris patches across Western Australia's Kimberley region showed that woody species in these patches were overwhelmingly widespread, fire‐tolerant savanna taxa. No species of special conservation concern occurred disproportionately within Callitris patches. Similarly, there was no concentration of fire‐sensitive fauna or flora in five Callitris patches in the East Kimberley. Finally, there was no difference in ant species composition among 12 Callitris patches and surrounding eucalypt savannas in Kakadu National Park, Northern Territory, and there were no fire‐sensitive ant species in Callitris patches. Our three case studies from throughout the northwestern Australia provide no evidence that Callitris patches act as important refuges for fire‐sensitive flora or fauna within fire‐prone eucalypt savannas. This calls into question the notion that Callitris is a strong indicator of general ecosystem health.  相似文献   

4.
Abstract We investigated effects of fire frequency, seasonal timing, and plant community on patchiness and intensity of prescribed fires in subtropical savannas in the Long Pine Key region of Everglades National Park, Florida (U.S.A.). We measured patchiness and intensity in different plant communities along elevation gradients in “fire blocks.” These blocks were prescribed burned at varying times during the lightning season and at different frequencies between 1995 and 2000. Fire frequency, seasonal timing, and plant community all influenced the patchiness and intensity of prescribed fires. Fires were less patchy and more intense, probably because of drier conditions and pyrogenic fuels, in higher elevation plant communities (e.g., high pine savannas) than in lower elevation communities (e.g., long‐hydroperiod prairies). In all plant communities fires became increasingly patchy and less intense as the wet season progressed and moisture accumulated in fuels. Frequent prescribed fire resulted in increased patchiness but a wider range of intensities; higher intensities appeared to result from regrowth of more flammable vegetation. Our study suggests that frequent early lightning season prescribed fires produce a wider range of post‐fire conditions than less frequent late lightning season prescribed fires. Our study also suggests that natural early lightning season fires readily carried through pine savannas and short‐hydroperiod prairies, but lower elevation long‐hydroperiod prairies functioned as firebreaks. Natural fires probably crossed these firebreaks only during drier years, potentially producing large landscape‐level fires. Knowledge of how patchily and intensely fires burn across a savanna landscape should be useful for developing landscape‐level fire management.  相似文献   

5.
Flow regimes are fundamental to sustaining ecological characteristics of rivers worldwide, including their associated floodplains. Recent advances in understanding tropical river–floodplain ecosystems suggest that a small set of basic ecological concepts underpins their biophysical characteristics, especially the high levels of productivity, biodiversity and natural resilience. The concepts relate to (1) river-specific flow patterns, (2) processes ‘fuelled’ by a complex of locally generated carbon and nutrients seasonally mixed with carbon and nutrients from floodplains and catchments, (3) seasonal movements of biota facilitated by flood regimes, (4) food webs and overall productivity sustained by hydrological connectivity, (5) fires in the wet/dry tropical floodplains and riparian zones being major consumers of carbon and a key factor in the subsequent redistribution of nutrients, and (6) river–floodplains having inherent resilience to natural variability but only limited resilience to artificial modifications. Understanding these concepts is particularly timely in anticipating the effects of impending development that may affect tropical river–floodplains at the global scale. Australia, a region encompassing some of the last relatively undisturbed tropical riverine landscapes in the world, provides a valuable case study for understanding the productivity, diversity and resilience of tropical river–floodplain systems. However, significant knowledge gaps remain. Despite substantial recent advances in understanding, present knowledge of these highly complex tropical rivers is insufficient to predict many ecological responses to either human-generated or climate-related changes. The major research challenges identified herein (for example, those related to food web structure, nutrient transfers, productivity, connectivity and resilience), if accomplished in the next decade, will offer substantial insights toward assessing and managing ecological changes associated with human alterations to rivers and their catchments.  相似文献   

6.
The shrubby vine Cryptostegia grandiflora and the shrub Ziziphus mauritiana were both introduced to northern Australia over 100 years ago and have become invasive in savanna woodland environments. Data from a land resource survey were used to examine regional- and landscape-scale distribution patterns of these species in the Dalrymple Shire, an area of over 6 1/2 million hectares in northeast Queensland. Each species was present at 10% of the 2362 sites examined and most frequent and abundant close to Charters Towers, the major settlement of the regions. C. grandiflora was recorded at 50 % of sites within 20 km of the town and in 14 out of 21 of the region's major sub-catchments. Z. mauritiana was recorded at 32 % of sites within 20km of Charters Towers, but in only three sub-catchments. Little of the variation in frequency and abundance of C. grandiflora and Z. mauritiana was accounted for by landscape factors, including geology, soils, or vegetation. While survey results do not absolutely distinguish between history, habitat and disturbance in explaining the weed's current distributions within the region, a strong influence of historical factors is suggested. Both exotic species were much less abundant than Carissa spp., a native taxon that has purportedly increased in the region in recent decades. In spite of their current prominence as weeds, there is potential for further increase by both C. grandiflora and Z. mauritiana. This increase could include expansion from the zone of high abundance and proliferation within that zone. While the results of such surveys must be interpreted with caution, they can yield useful information about regional patterns of plant invasion.  相似文献   

7.
8.
Adame  M. F.  Reef  R.  Wong  V. N. L.  Balcombe  S. R.  Turschwell  M. P.  Kavehei  E.  Rodríguez  D. C.  Kelleway  J. J.  Masque  P.  Ronan  M. 《Ecosystems》2020,23(2):454-466
Ecosystems - Wetlands of Melaleuca spp. in Australia form large forests that are highly threatened by deforestation and degradation. In America, Melaleuca has invaded large areas of native wetlands...  相似文献   

9.
Life-cycle assessments (LCAs) of switchgrass (Panicum virgatum L.) grown for bioenergy production require data on soil organic carbon (SOC) change and harvested C yields to accurately estimate net greenhouse gas (GHG) emissions. To date, nearly all information on SOC change under switchgrass has been based on modeled assumptions or small plot research, both of which do not take into account spatial variability within or across sites for an agro-ecoregion. To address this need, we measured change in SOC and harvested C yield for switchgrass fields on ten farms in the central and northern Great Plains, USA (930 km latitudinal range). Change in SOC was determined by collecting multiple soil samples in transects across the fields prior to planting switchgrass and again 5 years later after switchgrass had been grown and managed as a bioenergy crop. Harvested aboveground C averaged 2.5?±?0.7 Mg C ha?1 over the 5 year study. Across sites, SOC increased significantly at 0–30 cm (P?=?0.03) and 0–120 cm (P?=?0.07), with accrual rates of 1.1 and 2.9 Mg C ha?1 year?1 (4.0 and 10.6 Mg CO2 ha?1 year?1), respectively. Change in SOC across sites varied considerably, however, ranging from ?0.6 to 4.3 Mg C ha?1 year?1 for the 0–30 cm depth. Such variation in SOC change must be taken into consideration in LCAs. Net GHG emissions from bioenergy crops vary in space and time. Such variation, coupled with an increased reliance on agriculture for energy production, underscores the need for long-term environmental monitoring sites in major agro-ecoregions.  相似文献   

10.
Northern peatlands are recognized as globally important stores of terrestrial carbon (C), yet we have limited understanding of how global changes, including land use, affect C cycling processes in these ecosystems. Making use of a long-term (>50?year old) peatland land management experiment in the UK, we investigated, using a 13CO2 pulse chase approach, how managed burning and grazing influenced the short-term uptake and cycling of C through the plant?Csoil system. We found that burning affected the composition and growth stage of the plant community, by substantially reducing the abundance of mature ericoid dwarf-shrubs. Burning also affected the structure of the soil microbial community, measured using phospholipid fatty acid analysis, by reducing fungal biomass. There was no difference in net ecosystem exchange of CO2, but burning was associated with an increase in photosynthetic uptake of 13CO2 and increased transfer of 13C to the soil microbial community relative to unburned areas. In contrast, grazing had no detectable effects on any measured C cycling process. Our study provides new insight into how changes in vegetation and soil microbial communities arising from managed burning affect peatland C cycling processes, by enhancing the uptake of photosynthetic C and the transfer of C belowground, whilst maintaining net ecosystem exchange of CO2 at pre-burn levels.  相似文献   

11.

Earth’s tropical savannas typically support high biomass of diverse grazing herbivores that depend on a highly fluctuating resource: high-quality forage. An annual wet–dry cycle, fire and herbivory combine to influence forage quality and availability throughout the year. In the savannas of northern Australia, a depauperate suite of large native (marsupial) herbivores (wallaroos [Osphranter spp.] and the agile wallaby [Notamacropus agilis]) compete for resources with non-native large herbivores introduced in the late nineteenth century, particularly bovines (feral and managed cattle [Bos spp.] and feral water buffalo [Bubalus bubalis]) that now dominate the landscape. Anecdotal reports of recent population declines of large macropods and negative impacts of bovines highlight the need to better understand the complex relationship between forage, fire and abundance of native and introduced large herbivores. The pyric herbivory conceptual model, which posits complex feedbacks between fire and herbivory and was developed outside Australia, predicts that native and introduced large herbivores will both respond positively to post-fire forage production in Australian savannas where they co-occur. We used grazing exclosures, forage biomass and nutrient analyses and motion-sensor camera-trapping to evaluate the overall robustness of the pyric herbivory model in the Australian context, specifically whether forage quantity and quality are impacted by herbivory, season and fire activity, and which forage attributes most influence large grazing herbivore abundance. Forage quantity, as measured by live, dead and total herbaceous biomass and proportion of biomass alive, was higher inside herbivore exclosures, even at relatively low densities of herbivores. Forage quality, as measured by fibre content, was not affected by herbivory, however, crude protein content of live herbaceous biomass was greater outside herbivore exclosures. Recent fire was an important predictor of all measures of forage quantity and quality. Recent fire occurrence decreased overall quantity (biomass) but increased quality (decreased fibre content and increased crude protein content); late dry season fires resulted in forage with the highest crude protein content. The predictions of the pyric herbivory conceptual model are consistent with observations of the feeding behaviour of introduced bovines and some large macropods in northern Australian savannas, lending support to the global generality of pyric herbivory in fire-prone grassy biomes.

  相似文献   

12.
Cross-Scale Analysis of Fire Regimes   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
Burkholderia pseudomallei, the cause of the severe disease melioidosis in humans and animals, is a gram-negative saprophyte living in soil and water of areas of endemicity such as tropical northern Australia and Southeast Asia. Infection occurs mainly by contact with wet contaminated soil. The environmental distribution of B. pseudomallei in northern Australia is still unclear. We developed and evaluated a direct soil B. pseudomallei DNA detection method based on the recently published real-time PCR targeting the B. pseudomallei type III secretion system. The method was evaluated by inoculating different soil types with B. pseudomallei dilution series and by comparing B. pseudomallei detection rate with culture-based detection rate for 104 randomly collected soil samples from the Darwin rural area in northern Australia. We found that direct soil B. pseudomallei DNA detection not only was substantially faster than culture but also proved to be more sensitive with no evident false-positive results. This assay provides a new tool to detect B. pseudomallei in soil samples in a fast and highly sensitive and specific manner and is applicable for large-scale B. pseudomallei environmental screening studies or in outbreak situations. Furthermore, analysis of the 104 collected soil samples revealed a significant association between B. pseudomallei-positive sites and the presence of animals at these locations and also with moist, reddish brown-to-reddish gray soils.  相似文献   

15.
The attitudes held by Euro-Australians about "bush fires" are markedly different from those of Aborigines. These contrasting perspectives confront each other in different practices of prescribed burning employed by Aborigines and Australian National Parks and Wildlife Service (ANPWS) rangers at Kakadu National Park in the Northern Territory. A large part of the problem that ANPWS personnel have in understanding Aboriginal knowledge and practice involves the perceptions that Euro-Australians have about "simple technologies," "aboriginality," and what is or is not "traditional."  相似文献   

16.
Globally, soil CO2 efflux rates (Fs) have been linked to changes in soil water content (SWC), rainfall and temperature and/or productivity. However, within an ecosystem, Fs can vary based on site structure and function, which can be affected by a combination of abiotic and biotic factors. This becomes particularly important when an ecosystem is faced with disturbances, such as drought or fire. Site-specific compensatory responses to disturbances may therefore alter C mineralization, as well as root respiration. Hence, single location Fs estimates may not be a representative for ecosystems across their distributional ranges. We conducted a 6-year study along an edaphic moisture gradient of longleaf pine ecosystems that were maintained with prescribed fire, using eddy covariance and soil respiration measurements to address how Fs varies with changes in ecosystem structure and function, as well as disturbances. Lower air temperatures (Tair) decreased Fs at all sites, but that response was also affected by productivity and SWC. Productivity significantly altered Fs rates at all sites, especially when we accounted for changes in temperature and SWC. Plant regrowth post-fire temporarily increased Fs (10–40%), whereas drought reduced Fs at all sites. Our results show that site productivity, Fs and the degree to which ecosystems adapt to climate variations and disturbance can be site specific. Hence, model forecasting of carbon dynamics would strongly benefit from multi-location measurements of Fs across the distributional range of an ecosystem.  相似文献   

17.
Forest (or tree) age has been identified as an important determinant of the carbon (C) storage potential of forest soils. A large part of Central Europe’s current forested area was affected by land use change with long periods of cultivation in past centuries suggesting that the organic C stocks in the soil (SOC) under recent forest may partly be legacies of the past and that stand age effects have to be distinguished from forest continuity effects (that is, the time since re-afforestation). We examined the influence of mean tree age and forest continuity on the SOC pool and the stores of total N and available P, Ca, Mg, and K in the soil (mineral soil and organic layer) across a sample of 14 beech (Fagus sylvatica) forests on sandy soil with variable tree age (23–189 years) and forest continuity (50-year-old afforestation to ancient (‘permanent’) forest, that is, >230 years of proven continuity). Ancient beech forests (>230 years of continuity) stored on average 47 and 44% more organic C and total N in the soil than recent beech afforestation (50–128 years of continuity). Contrary to expectation, we found large and significant C and N pool differences between the forest categories in the mineral soil but not in the organic layer indicating that decade- or century-long cultivation has reduced the subsoil C and nutrient stores while the organic layer element pools have approached a new equilibrium after only 50–128 years. PCA and correlation analyses suggest that forest continuity cannot be ignored when trying to understand the variation in soil C stocks between different stands. Forest clearing, subsequent cultivation, and eventual re-afforestation with beech resulted in similar relative stock reductions of C and N and, thus, no change in soil C/N ratio. We conclude that the continuity of forest cover, which may or may not be related to tree age, is a key determinant of the soil C and nutrient stores of beech forests in the old cultural landscape of Central Europe.  相似文献   

18.
Summary A treatment regime is a rule that assigns a treatment, among a set of possible treatments, to a patient as a function of his/her observed characteristics, hence “personalizing” treatment to the patient. The goal is to identify the optimal treatment regime that, if followed by the entire population of patients, would lead to the best outcome on average. Given data from a clinical trial or observational study, for a single treatment decision, the optimal regime can be found by assuming a regression model for the expected outcome conditional on treatment and covariates, where, for a given set of covariates, the optimal treatment is the one that yields the most favorable expected outcome. However, treatment assignment via such a regime is suspect if the regression model is incorrectly specified. Recognizing that, even if misspecified, such a regression model defines a class of regimes, we instead consider finding the optimal regime within such a class by finding the regime that optimizes an estimator of overall population mean outcome. To take into account possible confounding in an observational study and to increase precision, we use a doubly robust augmented inverse probability weighted estimator for this purpose. Simulations and application to data from a breast cancer clinical trial demonstrate the performance of the method.  相似文献   

19.
20.
Soil Carbon and Nitrogen Storage in Upper Montane Riparian Meadows   总被引:1,自引:0,他引:1  
Though typically limited in aerial extent, soils of high-elevation riparian wetlands have among the highest density of soil carbon (C) and nitrogen (N) of terrestrial ecosystems and therefore contribute disproportionally to ecosystem services such as water retention, forage production, wildlife habitat, and reactive N removal. Because much soil C and N is stored in labile forms in anaerobic conditions, management activities or environmental changes that lead to drying cause mineralization of labile soil organic matter, and loss of C and N. Meadows are focal points of human activities in mountain regions, often with incised stream channels from historically heavy grazing exacerbated by extreme runoff events. To quantify soil C and N stores in montane riparian meadows across hydrologic conditions, 17 meadows between 1950- and 2675-m elevation were selected in the central Sierra Nevada Range, California, that were classified using the proper functioning condition (PFC) system. Results indicate that C and N density in whole-solum soil cores were equivalent at forest edge positions of properly functioning, functioning at-risk, and nonfunctioning condition. Soils under more moist meadow positions in properly functioning meadows have at least twice the C, N, dissolved organic C, and dissolved organic N (DON) than those under nonfunctioning meadows. Densities of total N and DON, but not C, of functioning at-risk meadows are significantly lower (P < 0.05) than those of properly functioning meadows at mid-slope and stream-bank positions, suggesting accelerated loss of N early in degradation processes. Though variable, the soil attributes measured correspond well to the PFC riparian wetland classification system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号