首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Moist acidic and nonacidic tundra are two of the most common vegetation types of the tundra in the northern foothills of the Brooks Range, Alaska, and they differ considerably in vegetation, soil nutrient availability, and soil pH. Both occur on mesic, gentle slopes, but acidic tundra is more common on older glacial surfaces whereas nonacidic tundra is more common on younger surfaces. Although much prior research has focused on moist acidic tundra, nonacidic tundra is still relatively unstudied. We compared rates of soil carbon (C) and nitrogen (N) cycling and their response to warming and changes in moisture in moist acidic tundra on Itkillik I glacial drift (50,000–120,000 years old, pH = 3–4) and moist nonacidic tundra on Itkillik II glacial drift (11,500–60,000 year old, pH = 6–7). We hypothesized that rates of soil C and N cycling would be faster at the nonacidic site because it has a more favorable pH for microbial activity and higher-quality organic matter inputs arising from its greater herbaceous plant production relative to the acidic site. However, in contrast to our hypothesis, in situ soil respiration, as well as respiration, dissolved organic C production, and net N mineralization in laboratory incubations, was greater for soils from the acidic site. Nevertheless, the sites responded similarly to manipulations of temperature and moisture, exhibiting exponential increases in respiration with warming between 4°C and 15°C but surprisingly little sensitivity to changes in moisture between 300% and 700%. Slower soil organic matter decomposition at the nonacidic site likely results from the stabilization of soil organic matter by high concentrations of calcium. Received 27 August 2001; accepted 3 April 2002.  相似文献   

2.
To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using samples from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ultisols in Maryland [MDsoil]) comparing conventional grain systems (Conv) amended with inorganic fertilizers with 3 yr (Med) and longer (Long), more diverse cropping systems amended with manure. A double exponential model was used to estimate the size (Ca, Cs) and decay rates (ka, ks) of active and slow C pools which we compared with total particulate organic matter (POM) and occluded-POM (OPOM). The high-SOC IAsoil containing highly active smectite clays maintained smaller labile pools and higher decay rates than the low-SOC MDsoil containing semi-active kaolinitic clays. Net SOC loss was greater (2.6 g kg−1; 8.6%) from the IAsoil than the MDsoil (0.9 g kg−1, 6.3%); fractions and coefficients suggest losses were principally from IAsoil’s resistant pool. Cropping history did not alter SOC pool size or decay rates in IAsoil where rotation-based differences in OPOM-C were small. In MDsoil, use of diversified rotations and manure increased ka by 32% and ks by 46% compared to Conv; differences mirrored in POM- and OPOM-C contents. Residue addition prompted greater increases in Ca (340% vs 230%) and Cs (38% vs 21%) and decreases in ka (58% vs 9%) in IAsoil than MDsoil. Reduced losses of SOC from residue-amended MDsoil were associated with increased OPOM-C. Nitrogen addition dampened CO2-C release. Clay type and C saturation dominated the IAsoil’s response to external inputs and made labile and stable fractions more vulnerable to decay. Trends in OPOM suggest aggregate protection influences C turnover in the low active MDsoil. Clay charge and OPOM-C contents were better predictors of soil C dynamics than clay or POM-C contents.  相似文献   

3.
Restoring soil C pools by reducing land use intensity is a potentially high impact, rapidly deployable strategy for partially offsetting atmospheric CO2 increases. However, rates of C accumulation and underlying mechanisms have rarely been determined for a range of managed and successional ecosystems on the same soil type. We determined soil organic matter (SOM) fractions with the highest potential for sequestering C in ten ecosystems on the same soil series using both density- and incubation-based fractionation methods. Ecosystems included four annual row-crop systems (conventional, low input, organic and no-till), two perennial cropping systems (alfalfa and poplar), and four native ecosystems (early successional, midsuccessional historically tilled, midsuccessional never-tilled, and late successional forest). Enhanced C storage to 5 cm relative to conventional agriculture ranged from 8.9 g C m−2 y−1 in low input row crops to 31.6 g C m−2 y−1 in the early successional ecosystem. Carbon sequestration across all ecosystems occurred in aggregate-associated pools larger than 53 μm. The density-based fractionation scheme identified heavy-fraction C pools (SOM > 1.6 g cm−3 plus SOM < 53 μm), particularly those in macroaggregates (>250 μm), as having the highest potential C accumulation rates, ranging from 8.79 g C m−2 y−1 in low input row crops to 29.22 g C m−2 y−1 in the alfalfa ecosystem. Intra-aggregate light fraction pools accumulated C at slower rates, but generally faster than in inter-aggregate LF pools. Incubation-based methods that fractionated soil into active, slow and passive pools showed that C accumulated primarily in slow and resistant pools. However, crushing aggregates in a manner that simulates tillage resulted in a substantial transfer of C from slow pools with field mean residence times of decades to active pools with mean residence times of only weeks. Our results demonstrate that soil C accumulates almost entirely in soil aggregates, mostly in macroaggregates, following reductions in land use intensity. The potentially rapid destruction of macroaggregates following tillage, however, raises concerns about the long-term persistence of these C pools.  相似文献   

4.
5.
Permafrost soils are a significant global store of carbon (C) with the potential to become a large C source to the atmosphere. Climate change is causing permafrost to thaw, which can affect primary production and decomposition, therefore affecting ecosystem C balance. To understand future responses of permafrost soils to climate change, we inventoried current soil C stocks, investigated ∆14C, C:N, δ13C, and δ15N depth profiles, modeled soil C accumulation rates, and calculated decadal net ecosystem production (NEP) in subarctic tundra soils undergoing minimal, moderate, and extensive permafrost thaw near Eight Mile Lake (EML) in Healy, Alaska. We modeled decadal and millennial soil C inputs, decomposition constants, and C accumulation rates by plotting cumulative C inventories against C ages based on radiocarbon dating of surface and deep soils, respectively. Soil C stocks at EML were substantial, over 50 kg C m−2 in the top meter, and did not differ much among sites. Carbon to nitrogen ratio, δ13C, and δ15N depth profiles indicated most of the decomposition occurred within the organic soil horizon and practically ceased in deeper, frozen horizons. The average C accumulation rate for EML surface soils was 25.8 g C m−2 y−1 and the rate for the deep soil accumulation was 2.3 g C m−2 y−1, indicating these systems have been C sinks throughout the Holocene. Decadal net ecosystem production averaged 14.4 g C m−2 y−1. However, the shape of decadal C accumulation curves, combined with recent annual NEP measurements, indicates soil C accumulation has halted and the ecosystem may be becoming a C source. Thus, the net impact of climate warming on tundra ecosystem C balance includes not only becoming a C source but also the loss of C uptake capacity these systems have provided over the past ten thousand years.  相似文献   

6.
Nitrogen (N) inputs to many terrestrial ecosystems are increasing, and most of these inputs are sequestered in soil organic matter within 1–3 years. Rapid (minutes to days) immobilization focused previous N retention research on actively cycling plant, microbial, and inorganic N pools. However, most ecosystem N resides in soil organic matter that is not rapidly cycled. This large, stable soil N pool may be an important sink for elevated N inputs. In this study, we measured the capacity of grassland soils to retain 15N in a pool that was not mineralized by microorganisms during 1-year laboratory incubations (called “the stable pool”). We added two levels (2.5 and 50 g N m−2) of 15NH4 + tracer to 60 field plots on coarse- and fine-textured soils along a soil carbon (C) gradient from Texas to Montana, USA. We hypothesized that stable tracer 15N retention and stable bulk soil (native + tracer) N pools would be positively correlated with soil clay and C content and stable soil C pools (C not respired during the incubation). Two growing seasons after the 15N addition, soils (0- to 20-cm depth) contained 71% and 26% of the tracer added to low- and high-N treatments, respectively. In both N treatments, 50% of the tracer retained in soil was stable. Total soil C (r 2 = 0.72), stable soil C (r 2 = 0.68), and soil clay content (r 2 = 0.27) were correlated with stable bulk soil N pools, but not with stable 15N retention. We conclude that on annual time scales, substantial quantities of N are incorporated into stable organic pools that are not readily susceptible to microbial remineralization or subsequent plant uptake, leaching losses, or gaseous losses. Stable N formation may be an important pathway by which rapid soil N immobilization translates into long-term N retention. Received 2 April 2001; accepted 12 November 2001.  相似文献   

7.
Agricultural soils in North America can be a sink for rising atmospheric CO2 concentrations through the formation of soil organic matter (SOM) or humus. Humification is limited by the availability of nutrients such as nitrogen (N). Recommended management practices (RMPs) that optimize N availability foster humus formation. This review examines the management practices that contribute to maximizing N availability for optimizing sequestration of atmospheric CO2 into soil humus. Farming practices that enhance nutrient use, reduce or eliminate tillage, and increase crop intensity, together, affect N availability and, therefore, C sequestration. N additions, from especially, livestock manure and leguminous cover crops are necessary for increasing grain and biomass yields and returning crop residues to the soil thereby increasing soil organic carbon (SOC) concentration. Conservation tillage practices enhance also the availability of N and increase SOC concentration. Increase in cropping intensity and/or crop rotations produce higher quantity and quality of residues, increase availability of N, and therefore foster increase in C sequestration. The benefit of C sequestration from N additions may be negated by CO2 and N2O emissions associated with production and application of N fertilizers. More studies need to be conducted to ascertain the benefits of adding N via manuring versus N fertilizer additions. Furthermore, site specific adaptive research is needed to identify RMPs that optimize soil N use efficiency while improving crop yield and C sequestration thereby curbing greenhouse gas (GHG) emissions. Due to the wide range of climate in North America, there is a large range of C sequestration potential in agricultural soils through N management. Humid croplands may have the potential to sequester 8–298 Tg C yr?1 while dry croplands may sequester 1–35 Tg C yr?1. These estimates, however, are highly uncertain and wide-ranging. Clearly, more research is needed to quantify, more precisely, the C sequestration potential across different N management scenarios especially in Mexico and Canada.  相似文献   

8.
Yang  Yi  Knops  Johannes M. H. 《Ecosystems》2023,26(4):924-935
Ecosystems - Abandoned agricultural fields (old fields) are thought to accumulate soil organic matter (SOM) after cultivation cessation. However, most research on old fields soil carbon (C) and...  相似文献   

9.
The recovery of ecosystem processes in severely disturbed systems is often limited by biological resources in the soil. The objective of this study was to direct soil microbial biomass (SMB) size and activity with organic amendments. These amendments were applied to the soil at different amendment locations (incorporated versus surface‐applied) and amounts (none, light, and heavy) in a 2 × 3 factorial design. The size and activity of SMB, soil nutrients, and aboveground biomass were monitored over 3 years to determine the rate and direction of change. Contrary to expectations that SMB and carbon mineralization potential (C‐MIN) would be larger with amendment incorporation, SMB‐carbon was greatest in the surface‐heavy treatment and lowest in the incorporated‐control treatment. SMB‐nitrogen, C‐MIN, and organic carbon were greater in the surface than in the incorporated treatments and in amended plots compared to controls. This departure from expectations suggests that other factors, such as microclimate or vegetation, are interacting with the amendment to affect SMB. The degree of contribution, however, is unclear. The treatments only affected planted aboveground biomass early in the experiment, with greater total biomass in the surface‐light treatment in fall 2003. There was also a significant positive relationship between aboveground biomass and SMB in fall 2004. Inorganic nitrogen, total nitrogen, and the soil quality indicators qCO2 and Cmic/Corg did not vary systematically with amendment treatment. In general, amendment addition did enhance soil biotic properties and supported increased vegetation, but the complication of incorporating the amendment was not necessary for promoting biological development in disturbed soils.  相似文献   

10.
This study aimed to assess the combined effects of long-term nitrogen (N) supply and nitrogen deposition (N dep) on carbon (C) accumulation within Sitka spruce [Picea sitchensis (Bong.) Carr.] plantations in Scotland. Six study sites established from 1970 to 1982 were periodically N-fertilized, monitored over time and commonly surveyed in 2010. Soil, aboveground biomass, and ground vegetation C stock changes were analyzed; aboveground C stocks were correlated with total additional N experienced at each site, that is, the sum of experimental N supply (N add) and site-specific accumulated N dep from 1900 to 2010. Results showed a positive N effect on aboveground tree C stock and no decline in tree growth was observed either during fertilization or after the latest N addition. The amount of C in litter was significantly higher in experimentally N-treated plots, whereas the amount of C in understory vegetation was higher in control plots. Pooling all the compartments (that is, understory vegetation, litter, soil, and tree biomass) the total ecosystem C content was estimated for each site, and at most sites a higher C stock was estimated for N-treated plots. Differences in aboveground C accumulation rates between treated and control plots were lower at sites with high levels of accumulated N dep. Our results indicate that site-specific accumulated N dep should be considered to understand tree growth responses to N fertilization.  相似文献   

11.
Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C), nitrogen (N) and phosphorus (P), in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle) of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD) and four N managements (control, N0; conventional urea at 240 kg N ha−1, UREA; controlled-release bulk blending fertilizer at 240 kg N ha−1, BBF; polymer-coated urea at 240 kg N ha−1, PCU). We found that water and N treatments had remarkable effects on the measured parameters in different plant tissues after transplanting, but the water and N interactions had insignificant effects. Tissue C:N, N:P and C:P ratios ranged from 14.6 to 52.1, 3.1 to 7.8, and 76.9 to 254.3 over the rice growing seasons, respectively. The root and stem-leaf C:N:P and panicle C:N ratios showed overall uptrends with a peak at harvest whereas the panicle N:P and C:P ratios decreased from filling to harvest. The AWD treatment did not affect the concentrations and accumulation of tissue C and N, but greatly decreased those of P, resulting in enhanced N:P and C:P ratios. N fertilization significantly increased tissue N concentration, slightly enhanced tissue P concentration, but did not affect tissue C concentration, leading to a significant increase in tissue N:P ratio but a decrease in C:N and C:P ratios. Our results suggested that the growth of rice in the Taihu Lake region was co-limited by N and P. These findings broadened our understanding of the responses of plant C:N:P stoichiometry to simultaneous water and N managements in subtropical high-yielding rice systems.  相似文献   

12.
We used long-term laboratory incubations and chemical fractionation to characterize the mineralization dynamics of organic soils from tussock, shrub, and wet meadow tundra communities, to determine the relationship between soil organic matter (SOM) decomposition and chemistry, and to quantify the relative proportions of carbon (C) and nitrogen (N) in tundra SOM that are biologically available for decomposition. In all soils but shrub, we found little decline in respiration rates over 1 year, although soils respired approximately a tenth to a third of total soil C. The lack of decline in respiration rates despite large C losses indicates that the quantity of organic matter available was not controlling respiration and thus suggests that something else was limiting microbial activity. To determine the nature of the respired C, we analyzed soil chemistry before and after the incubation using a peat fractionation scheme. Despite the large losses of soil C, SOM chemistry was relatively unchanged after the incubation. The decomposition dynamics we observed suggest that tundra SOM, which is largely plant detritus, fits within existing concepts of the litter decay continuum. The lack of changes in organic matter chemistry indicates that this material had already decomposed to the point where the breakdown of labile constituents was tied to lignin decomposition. N mineralization was correlated with C mineralization in our study, but shrub soil mineralized more and tussock soil less N than would have been predicted by this correlation. Our results suggest that a large proportion of tundra SOM is potentially mineralizable, despite the fact that decomposition was dependent on lignin breakdown, and that the historical accumulation of organic matter in tundra soils is the result of field conditions unfavorable to decomposition and not the result of fundamental chemical limitations to decomposition. Our study also suggests that the anticipated increases in shrub dominance may substantially alter the dynamics of SOM decomposition in the tundra. Received 31 January 2002; accepted 16 July 2002.  相似文献   

13.
Laboratory experiments were conducted to determine the mineralization rates of 1,3-dichloropropene (1,3-D) in surface and subsurface soil samples collected from three sites in Florida with different histories of 1,3-D exposure. Mineralization rates of uniformly labeled ¹⁴C-1,3-D in surface and subsurface samples collected from two of the three sites, one of which was treated with 1,3-D only once and the other which had not been treated with the chemical for 5 years, were similar to the corresponding samples collected from untreated plots, and the rates generally decreased with soil depth. Initial mineralization rates in surface and subsurface samples collected from the site that had repeatedly been treated with 1,3-D at least 6 of the past 12 years were more rapid than those in either the corresponding untreated samples or in samples collected from the two other sites. Not only were the initial mineralization rates in soil samples collected from this site greater, but also the disappearance rates of cis- and trans-l,3-D were greater than in the corresponding untreated samples. Trans-1,3-D was degraded much more rapidly in the enhanced soil than was the cis- form. In addition, no or little trans-3-chloroallyl alcohol (CAA), the hydrolysis product of trans-l,3-D, was formed; large amounts of cis-3-CAA, the hydrolysis product of cis-1,3-D, were detected. This suggest that biological hydrolysis is responsible for the hydrolysis of trans-l,3-D to trans-3-CAA in enhanced soil and chemical hydrolysis is responsible for the hydrolysis of cis- and trans-l,3-D to 3-CAA in nonenhanced soil.  相似文献   

14.
The aim of this study was to determine the first effect of lead on microbial activity in soil. The study was carried out in the soil samples from four different radish (Raphanus sativus L. var. radicula, Brassicaceae) fields along the highway in a district (Kadirli, Osmaniye) of the Eastern Mediterranean Region, Turkey. After the calculation of Pb contents, the Pb amounts of the soil samples were brought up to 50 and 100 mg Pb kg?1 by treatment with Pb(NO 3 ) 2 , and the samples for the carbon and the nitrogen mineralization were incubated under controlled conditions (28°C, constant moist). The carbon mineralization was determined by a CO 2 respiration method for 30 days. The nitrogen mineralization was observed in vitro for 6 weeks. The untreated group was statistically different from the 50 and 100 mg Pb kg?1 treatments in the aspect of the C(CO 2 ) outlet during mineralization (P ≤ 0.05), but difference between the 50 and 100 mg Pb kg?1 treatments was not significant. NH 4 -N and NO 3 -N contents of each soil were shown differences between across treatments. Based on these results, it is possible to conclude that the addition of 50 and 100 mg Pb kg?1 provided a toxic effect threshold for the microbial activity into 30 days.  相似文献   

15.
施氮对不同品种冬小麦氮素累积和运转的影响   总被引:1,自引:0,他引:1  
在鄂北岗地以当地主栽的5个冬小麦品种‘鄂麦14'、‘鄂麦18'、‘鄂麦23'、‘郑麦9023'、和‘洛麦1号'为试验材料,通过田间裂区试验在不施氮(0 kg/hm2)和施氮(195 kg/hm2)条件下研究不同品种小麦氮素的累积、转移与分配规律的差异.结果表明:(1)在扬花期,不施氮处理叶片、茎鞘和穗部氮素累积量均为‘鄂麦14' 最大,积累量分别达到14.2 、16.6 和10.8 kg/hm2;施氮后‘鄂麦23' 的叶片氮素积累量最大(71.5 kg/hm2),‘鄂麦14' 的茎鞘积累量最大(69.0 kg/hm2),‘鄂麦18'的穗部积累量最大(34.2 kg/hm2).(2)成熟后不同部位氮素转移效率表现为叶片>穗>茎鞘,且叶、茎鞘、穗氮素转移效率存在品种差异;不同品种间氮肥效率差异显著,并以‘鄂麦23'的氮肥利用率、氮肥农学效率最高,而‘郑麦9023'的氮肥生理效率最高.(3)在氮胁迫条件下,扬花前‘鄂麦14'各器官氮素累积量、成熟期的氮素转移率及籽粒氮素累积量都显著高于其它品种;而在施氮条件下,冬小麦各器官氮素的累积、转移与分配因品种不同而异,‘鄂麦14'和‘鄂麦23'籽粒及植株氮素累积量都显著高于其它品种.研究发现,冬小麦氮素的累积、转移与分配受品种与氮素调控共同影响;施氮能显著提高各器官氮素的累积量,且提高的幅度因品种而异.  相似文献   

16.
Bauxite residue disposal areas may be amended and re‐vegetated to facilitate the ecosystem restoration process. However, the development of the belowground system during restoration is frequently overlooked. In turn, although vegetation establishment on bauxite residue is well studied, virtually nothing is known about concurrent changes in the soil biota. In order to understand how different amendments and re‐vegetation influence the belowground community, we compared nematode assemblages from bauxite residues that differed in their treatment history (compost addition, gypsum addition, and time since re‐vegetation), and examined whether any differences were related to changes in soil properties. No nematodes were present in the unamended treatment, thus indicating a need for amelioration of substrate properties. However, there were differences in the nematode assemblage between the other amended treatments. The quantity of gypsum reduced nematode density, but had no effect on taxa richness or the Maturity Index in treatments amended in the same year. Nematode taxa richness and the Maturity Index were greatest in the treatment re‐vegetated earliest. Moreover, the Maturity Index was negatively correlated to soil pH and percentage Na. These findings indicate that sufficient amendment and re‐vegetation are crucial to address inhibitory characteristics of the residue and aid restoration of the belowground system in bauxite residues.  相似文献   

17.
We assessed how consequences of future land-use change may affect size and spatial shifts of C stocks under three potential trends in policy—(a) business-as-usual: continuation of land-use trends observed during the past 15 years; (b) extensification: full extensification of open-land; and (c) liberalization: full reforestation potential. The build-up times for the three scenarios are estimated at 30, 80 and 100 years, respectively. Potential C-stock change rates are derived from the literature. Whereas the business-as-usual scenario would cause marginal changes of 0.5%, liberalization would provoke a 13% increase in C stocks (+62 MtC). Gains of 24% would be expected for forests (+95 MtC), whereas open-land C stock would decrease 27% (−33 MtC). Extensification would lead to a C stock decrease of 3% (−12 MtC). Whereas forest C is expected to increase 12% (+36.5 MtC) at high elevations, stocks of open-land C would decline 38.5% (−48.5 MtC). Most affected are unfavorable grasslands, which increase in area (+59%) but contribute only 14.5% to the C stocks. C sinks would amount to 0.6 MtC y−1 assuming a build-up time of 100 years for the liberalization scenario. C stocks on the current forest area are increasing by 1 MtC y−1. The maximal total C sink of 1.6 MtC might thus suffice to compensate for agricultural greenhouse gases (2004: 1.4 Mt CO2–C equivalents), but corresponds only to 11–13% of the anthropogenic greenhouse gas emission in Switzerland. Thus, even the largest of the expected terrestrial C stocks under liberalization will be small in comparison with current emissions of anthropogenic greenhouse gases.  相似文献   

18.
Tropical soils account for 10%–20% of the 15–35 Tg of atmospheric methane (CH4) consumed annually by soils, although tropical deforestation could be changing the soil sink. The objectives of this study were (a) to quantify differences in soil CH4 fluxes among primary forest, secondary forest, active pasture, and degraded pasture in eastern Amazonia; and (b) to investigate controlling mechanisms of CH4 fluxes, including N availability, gas-phase transport, and soil respiration. At one ranch, Fazenda Vitória, annual uptake estimates (kg CH4ha−1 y−1) based on monthly measurements were: primary forest, 2.1; secondary forest, 1.0; active pasture, 1.3; degraded pasture, 3.1. The lower annual uptake in the active pasture compared with the primary forest was due to CH4 production during the wet season in the pasture soils, which is consistent with findings from other studies. In contrast, the degraded pasture was never a CH4 source. Expressing uptake as a negative flux and emission as a positive flux, CH4 fluxes were positively correlated with CO2 fluxes, indicating that root and microbial respiration in the productive pastures, and to a lesser extent in the primary forest, contributed to the formation of anaerobic microsites where CH4 was produced, whereas this productivity was absent in the degraded pasture. In all land uses, uptake rates of atmospheric CH4 were greater in the dry season than in the wet season, indicating the importance of soil water content and gas transport on CH4 fluxes. These clay soils had low annual uptake rates relative to reported rates on sandy soils, which also is consistent with gas transport within the soil being a limiting factor. Nitrogen availability indices did not correlate with CH4 fluxes, indicating that inhibition of CH4 oxidation was not an important mechanism explaining differences among land uses. At another ranch, Fazenda Agua Parada, no significant effect of pasture age was observed along a chronosequence of pasture ages. We conclude that land-use change can either increase or decrease the soil sink of CH4, depending on the duration of wet and dry seasons, the effects of seasonal precipitation on gas-phase transport, and the phenology and relative productivity of the vegetation in each land use.  相似文献   

19.
20.
不同种类氮素对苋菜硝酸盐积累及分配的影响   总被引:1,自引:0,他引:1  
应用15N核素示踪技术,研究了不同氮肥种类对苋菜硝酸盐积累与分配的关系及氮素的去向。结果表明:(1)苋菜可食部分中茎较叶更易富集硝酸盐,茎中硝酸盐含量为叶中的1.5倍左右,施用硝态氮肥苋菜叶与茎中的硝酸盐含量都偏高。(2)苋菜硝酸盐主要来源于土壤,达到80%以上,而来自肥料部分不足20%。(3)苋菜施用尿素其肥料利用率达到46.27%,土壤残留氮素达到17.01%,均高于硫铵与硝酸钠,尿素损失率为40.32%,远低于硫铵与硝酸钠,表明施用尿素有利于土壤氮素储量的保持和提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号