首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The state dependence of Na channel modification by batrachotoxin (BTX) was investigated in voltage-clamped and internally perfused squid giant axons before (control axons) and after the pharmacological removal of the fast inactivation by pronase, chloramine-T, or NBA (pretreated axons). In control axons, in the presence of 2-5 microM BTX, a repetitive depolarization to open the channels was required to achieve a complete BTX modification, characterized by the suppression of the fast inactivation and a simultaneous 50-mV shift of the activation voltage dependence in the hyperpolarizing direction, whereas a single long-lasting (10 min) depolarization to +50 mV could promote the modification of only a small fraction of the channels, the noninactivating ones. In pretreated axons, such a single sustained depolarization as well as the repetitive depolarization could induce a complete modification, as evidenced by a similar shift of the activation voltage dependence. Therefore, the fast inactivated channels were not modified by BTX. We compared the rate of BTX modification of the open and slow inactivated channels in control and pretreated axons using different protocols: (a) During a repetitive depolarization with either 4- or 100-ms conditioning pulses to +80 mV, all the channels were modified in the open state in control axons as well as in pretreated axons, with a similar time constant of approximately 1.2 s. (b) In pronase-treated axons, when all the channels were in the slow inactivated state before BTX application, BTX could modify all the channels, but at a very slow rate, with a time constant of approximately 9.5 min. We conclude that at the macroscopic level BTX modification can occur through two different pathways: (a) via the open state, and (b) via the slow inactivated state of the channels that lack the fast inactivation, spontaneously or pharmacologically, but at a rate approximately 500-fold slower than through the main open channel pathway.  相似文献   

2.
Ion permeation through voltage-gated sodium channels is modulated by various drugs and toxins. The atomistic mechanisms of action of many toxins are poorly understood. A steroidal alkaloid batrachotoxin (BTX) causes persistent channel activation by inhibiting inactivation and shifting the voltage dependence of activation to more negative potentials. Traditionally, BTX is considered to bind at the channel-lipid interface and allosterically modulate the ion permeation. However, amino acid residues critical for BTX action are found in the inner helices of all four repeats, suggesting that BTX binds in the pore. In the octapeptide segment IFGSFFTL in IIIS6 of a cockroach sodium channel BgNa(V), besides Ser_3i15 and Leu_3i19, which correspond to known BTX-sensing residues of mammalian sodium channels, we found that Gly_3i14 and Phe_3i16 are critical for BTX action. Using these data along with published data as distance constraints, we docked BTX in the Kv1.2-based homology model of the open BgNa(V) channel. We arrived at a model in which BTX adopts a horseshoe conformation with the horseshoe plane normal to the pore axis. The BTX ammonium group is engaged in cation-π interactions with Phe_3i16 and BTX moieties interact with known BTX-sensing residues in all four repeats. Oxygen atoms at the horseshoe inner surface constitute a transient binding site for permeating cations, whereas the bulky BTX molecule would resist the pore closure, thus causing persistent channel activation. Our study reinforces the concept that steroidal sodium channel agonists bind in the inner pore of sodium channels and elaborates the atomistic mechanism of BTX action.  相似文献   

3.
Currents through batrachotoxin (BTX)-modified sodium channels were measured under voltage clamp conditions on the Ranvier node membrane. Potential-dependence of the fraction of activated BTX-modified channels was determined on the basis of data showing nonlinearity of the momentary current-voltage characteristic curve in the region of high negative potentials. BTX induces a shift of the sodium channel activation curve toward negative potentials on average by 67 mV, but does not, under these circumstances, alter the potential-sensitivity of their activation mechanism. The results of experiments with preliminary depolarization, of varied amplitude and duration, showed that BTX-modified sodium channels are capable of partial inactivation. The high level of steady-state conduction of the modified channels is evidently due to the fact that as a result of modification by BTX the open state of the channel becomes energetically more advantageous than the inactivated state. It is concluded that the action of BTX on inactivation differs in principle from the action of pronase.Institute of Cytology, Academy of Sciences of the USSR, Leningrad. A. V. Vishnevskii Institute of Surgery, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 18–26. January–February, 1984.  相似文献   

4.
Deltamethrin, a pyrethroid insecticide, and BTG 502, an alkylamide insecticide, target voltage-gated sodium channels. Deltamethrin binds to a unique receptor site and causes prolonged opening of sodium channels by inhibiting deactivation and inactivation. Previous 22Na+ influx and receptor binding assays using mouse brain synaptoneurosomes showed that BTG 502 antagonized the binding and action of batrachotoxin (BTX), a site 2 sodium channel neurotoxin. However, the effect of BTG 502 has not been examined directly on sodium channels expressed in Xenopus oocytes. In this study, we examined the effect of BTG 502 on wild-type and mutant cockroach sodium channels expressed in Xenopus oocytes. Toxin competition experiments confirmed that BTG 502 antagonizes the action of BTX and possibly shares a common receptor site with BTX. However, unlike BTX which causes persistent activation of sodium channels, BTG 502 reduces the amplitude of peak sodium current. A previous study showed that BTG 502 was more toxic to pyrethroid-resistant house flies possessing a super-kdr (knockdown resistance) mechanism than to pyrethroid-susceptible house flies. However, we found that the cockroach sodium channels carrying the equivalent super-kdr mutations (M918T and L1014F) were not more sensitive to BTG 502 than the wild-type channel. Instead, a kdr mutation, F1519I, which reduces pyrethroid binding, abolished the action of BTG 502. These results provide evidence the actions of alkylamide and pyrethroid insecticides require a common sodium channel residue.  相似文献   

5.
Depolarization of sodium channels initiates at least three gating pathways: activation, fast inactivation, and slow inactivation. Little is known about the voltage sensors for slow inactivation, a process believed to be separate from fast inactivation. Covalent modification of a cysteine substituted for the third arginine (R1454) in the S4 segment of the fourth domain (R3C) with negatively charged methanethiosulfonate-ethylsulfonate (MTSES) or with positively charged methanethiosulfonate-ethyltrimethylammonium (MTSET) produces a marked slowing of the rate of fast inactivation. However, only MTSES modification produces substantial effects on the kinetics of slow inactivation. Rapid trains of depolarizations (2-20 Hz) cause a reduction of the peak current of mutant channels modified by MTSES, an effect not observed for wild-type or unmodified R3C channels, or for mutant channels modified by MTSET. The data suggest that MTSES modification of R3C enhances entry into a slow-inactivated state, and also that the effects on slow inactivation are independent of alterations of either activation or fast inactivation. This effect of MTSES is observed only for cysteine mutants within the middle of this S4 segment, and the data support a helical secondary structure of S4 in this region. Mutation of R1454 to the negatively charged residues aspartate or glutamate cannot reproduce the effects of MTSES modification, indicating that charge alone cannot account for these results. A long-chained derivative of MTSES has similar effects as MTSES, and can produce these effects on a residue that does not show use-dependent current reduction after modification by MTSES, suggesting that the sulfonate moiety can reach a critical site affecting slow inactivation. The effects of MTSES on R3C are partially counteracted by a point mutation (W408A) that inhibits slow inactivation. Our data suggest that a region near the midpoint of the S4 segment of domain 4 plays an important role in slow inactivation.  相似文献   

6.
Lidocaine produces voltage- and use-dependent inhibition of voltage-gated Na+ channels through preferential binding to channel conformations that are normally populated at depolarized potentials and by slowing the rate of Na+ channel repriming after depolarizations. It has been proposed that the fast-inactivation mechanism plays a crucial role in these processes. However, the precise role of fast inactivation in lidocaine action has been difficult to probe because gating of drug-bound channels does not involve changes in ionic current. For that reason, we employed a conformational marker for the fast-inactivation gate, the reactivity of a cysteine substituted at phenylalanine 1304 in the rat adult skeletal muscle sodium channel α subunit (rSkM1) with [2-(trimethylammonium)ethyl]methanethiosulfonate (MTS-ET), to determine the position of the fast-inactivation gate during lidocaine block. We found that lidocaine does not compete with fast-inactivation. Rather, it favors closure of the fast-inactivation gate in a voltage-dependent manner, causing a hyperpolarizing shift in the voltage dependence of site 1304 accessibility that parallels a shift in the steady state availability curve measured for ionic currents. More significantly, we found that the lidocaine-induced slowing of sodium channel repriming does not result from a slowing of recovery of the fast-inactivation gate, and thus that use-dependent block does not involve an accumulation of fast-inactivated channels. Based on these data, we propose a model in which transitions along the activation pathway, rather than transitions to inactivated states, play a crucial role in the mechanism of lidocaine action.  相似文献   

7.
The Stichopus japonicus arginine kinase (AK) is a significant dimeric enzyme. Its modification and inactivation course with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and the reactivation course of DTNB-modified AK by dithiothreitol were investigated on the basis of the kinetic theory of the substrate reaction during the modification of enzyme activity. The results show that the modification is a biphasic course while the inactivation is monophasic, with one essential reactive cysteine per subunit. The Cys274 (numbering from the Stichopus sequence) is exposed to DTNB and is near the ATP binding site. The modified AK can be reactivated by an excess concentration of dithiothreitol in a monophasic kinetic course. The presence of ATP or the transition-state analog markedly slows the apparent reactivation rate constant. The analog components, arginine-ADP-Mg2+ can induce conformational changes of the modified enzyme, but adding NO3- cannot induce further changes that occur with the native enzyme. The reactive cysteines' location and its role in the catalysis of AK are discussed. The results suggest that the cysteine may be located in the hinge area of the two domains of AK. The reactive cysteine of AK, which was proposed to be Cys274, may play an important role not in the binding of the transition-state analog but in the conformational changes caused by the transition-state analog.  相似文献   

8.
To probe the structure-function relationships of voltage-dependent sodium channels, we have been examining the mechanisms of channel modification by batrachotoxin (BTX), veratridine (VTD), and grayanotoxin-I (GTX), investigating the unifying mechanisms that underlie the diverse modifications of this class of neurotoxins. In this paper, highly purified sodium channel polypeptides from the electric organ of the electric eel were incorporated into planar lipid bilayers in the presence of GTX for comparison with our previous studies of BTX (Recio-Pinto, E., D. S. Duch, S. R. Levinson, and B. W. Urban. 1987. J. Gen. Physiol. 90:375-395) and VTD (Duch, D. S., E. Recio-Pinto, C. Frenkel, S. R. Levinson, and B. W. Urban. 1989. J. Gen. Physiol. 94:813-831) modifications. GTX-modified channels had a single channel conductance of 16 pS. An additional large GTX-modified open state (40-55 pS) was found which occurred in bursts correlated with channel openings and closings. Two voltage-dependent processes controlling the open time of these modified channels were characterized: (a) a concentration-dependent removal of inactivation analogous to VTD-modified channels, and (b) activation gating similar to BTX-modified channels, but occurring at more hyperpolarized potentials. The voltage dependence of removal of inactivation correlated with parallel voltage-dependent changes in the estimated K1/2 of VTD and GTX modifications. Ranking either the single channel conductances or the depolarization required for 50% activation, the same sequence is obtained: unmodified > BTX > GTX > VTD. The efficacy of the toxins as activators follows the same ranking (Catterall, W. A. 1977. J. Biol. Chem. 252:8669-8676).  相似文献   

9.
Previous work with N-ethylmaleimide (NEM) has defined two sites on the Neurospora plasma membrane H+-ATPase. Modification of one (the "fast" site) by NEM is rapid but does not affect ATPase activity, while modification of the other (the "slow" site) inactivates the enzyme and is protectable by MgATP or MgADP. In the present study, a wider array of sulfhydryl reagents have been used to examine the properties of both sites. The results show the following. (a) Both fast and slow sites react preferentially with hydrophobic compounds (N-pyrenemaleimide, dithiobisnitropyridine greater than N-naphthylmaleimide, dithiobisnitrobenzoate greater than N-phenylmaleimide greater than N-ethylmaleimide) and are virtually insensitive to hydrophilic sulfhydryl reagents such as iodoacetamide and iodoacetic acid. (b) The reaction rate of the slow site with NEM is approximately 2000-fold less rapid than that of the fast site. The slow site also has an unusually high pKa (greater than 9.5). (c) Whether or not cysteine modification leads to inactivation of the ATPase depends upon the site and the reagent. For example, when the fast site reacts with NEM, enzymatic activity is retained; when it reacts with N-pyrenemaleimide, activity is lost. Likewise, when the slow site is modified by any of the maleimides or by dithiobisnitropyridine or dithiobisnitrobenzoate, the ATPase is inactivated; when it is modified by methylmethanethiosulfonate, activity remains intact. Thus, neither cysteine can be considered to play an essential role in the reaction cycle of the ATPase, but the introduction of a sufficiently bulky substituent at either site can disrupt activity. (d) Upon reaction of methylmethanethiosulfonate at the slow site, the K1/2 for MgATP hydrolysis is reduced from 0.65 to 0.25 mM. This result strengthens the evidence for a conformational relationship between the slow site cysteine and the nucleotide binding site of the ATPase.  相似文献   

10.
The fast inactivation of sodium currents and the immobolization of sodium gating charge are thought to be closely coupled to each other. This notion was tested in the squid axon in which kinetics and steady-state properties of the gating charge movement were compared before and after removal of the Na inactivation by batrachotoxin (BTX), pronase, or chloramine-T. The immobilization of gating charge was determined by measuring the total charge movement (QON) obtained by integrating the ON gating current (Ig,ON) using a double pulse protocol. After removal of the fast inactivation with pronase or chloramine-T, the gating charge movement was no longer immobilized. In contrast, after BTX modification, the channels still exhibited an immobilization of the gating charge (QON) with an onset time course and voltage dependence similar to that for the activation process. These results show that BTX can uncouple the charge immobilization from the fast Na inactivation mechanism, suggesting that the Na gating charge movement can be immobilized independently of the inactivation of the channel.  相似文献   

11.
We studied the effects of modification of native cysteines present in squid giant axon Na channels with methanethiosulfonates. We find that intracellular, but not extracellular, perfusion of axons with positively charged [(2-trimethylammonium)-ethyl]methanethiosulfonate (MTSET), or 3(triethylammonium)propyl]methanethiosulfonate (MTS-PTrEA) irreversibly reduces sodium ionic (INa) and gating (Ig) currents. The rate of modification of Na channels was dependent on the concentration of the modifying agent and the transmembrane voltage. Hyperpolarized membrane potentials (e.g., -110 mV) protected the channels from modification by MTS-PTrEA. In addition to reducing the amplitudes of INa and Ig, MTS-PTrEA also altered their kinetics such that the remaining INa did not appear to inactivate, whereas Ig was made sharper and declined to baseline more quickly. The shape and amplitude of Ig after modification of channels with MTS-PTrEA appeared to be "charge-immobilized," as if the modified channels were inactivated. MTS-PTrEA did not affect INa or Ig when inactivation was removed by internal perfusion of the axon with pronase. In addition, we find that the steady-state inactivation curve of modified Na channels is made much shallower and is markedly shifted to hyperpolarized potentials. The rates of activation, deactivation, or open-state inactivation were not altered in MTS-PTrEA-modified channels. The uncharged sulfhydryl reagent methymethanethiosulfonate (MMTS) did not affect either INa or Ig, but prevented the irreversible effects of MTS-PTrEA or MTSET on Na channels. It is proposed that the positively charged methanethiosulfonates MTS-PTrEA and MTSET modify a native internal cysteine(s) in squid Na channels, and by doing so promote inactivation from closed states, resulting in charge immobilization and reduction of INa.  相似文献   

12.
We have shown previously that NH(4)(+) binding to the external pore of a Kir2.1 channel induces channel inactivation possibly through conformational changes. In this study, we performed further biophysical analyses of the NH(4)(+)-induced inactivation modeled by a refined kinetic scheme. Also, we investigated the conformational change hypothesis by examining whether the chemical modification of single-cysteine substitution of amino acids located at the internal pore alters the kinetics of the NH(4)(+)-induced inactivation. In addition, we examined whether the mutation of amino acids located at various parts of a Kir2.1 channel influences the NH(4)(+)-induced inactivation. Kir2.1 channels were expressed in Xenopus oocytes and studied using patch-clamp techniques. The gating of the NH(4)(+)-induced inactivation was affected by mutation of several amino acids located at various regions of the Kir2.1 channel. These results suggest that amino acids from different parts of a Kir2.1 channel are involved in the channel closure. Furthermore, internal chemical modification of several cysteine mutants resulted in the block of inward currents and changes in the on and off rate for the NH(4)(+)-induced inactivation, suggesting that the internal pore mouth is involved in the closure of a Kir2.1 channel. Taken together these results provide new evidence for conformational changes affecting the NH(4)(+)-induced inactivation in the Kir2.1 channel.  相似文献   

13.
Paragracine, isolated from the coelenterate species Parazoanthus gracilis, selectively blocks sodium channels of squid axon membranes in a frequency-dependent manner. The blocking action depends on the direction and magnitude of the sodium current rather than on the absolute value of the membrane potential. Paragracine blocks the channels only from the axoplasmic side and does so only when the current is in the outward direction. This block may be reversed by generating inward sodium currents. In axons in which sodium inactivation has been removed by pronase, the frequency-dependent block persists, and a slow time-dependent block is observed. A slow interaction with its binding site in the channel may account for the frequency-dependent block.  相似文献   

14.
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is gated by intracellular factors; however, conformational changes in the channel pore associated with channel activation have not been identified. We have used patch clamp recording to investigate the state-dependent accessibility of substituted cysteine residues in the CFTR channel pore to a range of cysteine-reactive reagents applied to the extracellular side of the membrane. Using functional modification of the channel current-voltage relationship as a marker of modification, we find that several positively charged reagents are able to penetrate deeply into the pore from the outside irrespective of whether or not the channels have been activated. In contrast, access of three anionic cysteine-reactive reagents, the methanesulfonate sodium (2-sulfonatoethyl)methanesulfonate, the organic mercurial p-chloromercuriphenylsulfonic acid, and the permeant anion Au(CN)(2)(-), to several different sites in the pore is strictly limited prior to channel activation. This suggests that in nonactivated channels some ion selectivity mechanism exists to exclude anions yet permit cations into the channel pore from the extracellular solution. We suggest that activation of CFTR channels involves a conformational change in the pore that removes a strong selectivity against anion entry from the extracellular solution. We propose further that this conformational change occurs in advance of channel opening, suggesting that multiple distinct closed pore conformations exist.  相似文献   

15.
G E Flynn  W N Zagotta 《Neuron》2001,30(3):689-698
In cyclic nucleotide-gated channels (CNG), direct binding of cyclic nucleotides in the carboxy-terminal region is allosterically coupled to opening of the pore. A CNG1 channel pore was probed using site-directed cysteine substitution to elucidate conformational changes associated with channel opening. The effects of cysteine modification on permeation suggest a structural homology between CNG and KcsA pores. We found that intersubunit disulfide bonds form spontaneously between S399C residues in the helix bundle when channels are in the closed but not in the open state. While MTSET modification of pore-lining residues was state dependent, Ag(+) modification of V391C, in the inner vestibule, occurred at the same diffusion-limited rate in both open and closed states. Our results suggest that the helix bundle undergoes a conformational change associated with gating but is not the activation gate for CNG channels.  相似文献   

16.
Phycomyces blakesleeanus isocitrate lyase (EC 4.1.3.1) is in vivo reversibly inactivated by hydrogen peroxide. The purified enzyme showed reversible inactivation by an ascorbate plus Fe(2+) system under aerobic conditions. Inactivation requires hydrogen peroxide; was prevented by catalase, EDTA, Mg(2+), isocitrate, GSH, DTT, or cysteine; and was reversed by thiols. The ascorbate served as a source of hydrogen peroxide and also reduced the Fe(3+) ions produced in a "site-specific" Fenton reaction. Two redox-active cysteine residues per enzyme subunit are targets of oxidative modification; one of them is located at the catalytic site and the other at the metal regulatory site. The oxidized enzyme showed covalent and conformational changes that led to inactivation, decreased thermal stability, and also increased inactivation by trypsin. These results represent an example of redox regulation of an enzymatic activity, which may play a role as a sensor of redox cellular status.  相似文献   

17.
Previously we obtained evidence based on engineering of Zn2+ binding sites that the extracellular parts of transmembrane segment 7 (TM7) and TM8 in the human dopamine transporter are important for transporter function. To further evaluate the role of this domain, we have employed the substituted cysteine accessibility method and performed 10 single cysteine substitutions at the extracellular ends of TM7 and TM8. The mutants were made in background mutants of the human dopamine transporter with either two (E2C) or five endogenous cysteines substituted (X5C) that render the transporter largely insensitive to cysteine modification. In two mutants (M371C and A399C), treatment with the sulfhydryl-reactive reagent [2-(trimethylammonium)-ethyl]methanethiosulfonate (MTSET) led to a substantial inhibition of [3H]dopamine uptake. In M371C this inactivation was enhanced by Na+ and blocked by dopamine. Inhibitors such as cocaine did not alter the effect of MTSET in M371C. The protection of M371C inactivation by dopamine required Na+. Because dopamine binding is believed to be Na+-independent, this suggests that dopamine induces a transport-associated conformational change that decreases the reactivity of M371C with MTSET. In contrast to M371C, cocaine decreased the reaction rate of A399C with MTSET, whereas dopamine had no effect. The protection by cocaine can either reflect that Ala-399 lines the cocaine binding crevice or that cocaine induces a conformational change that decreases the reactivity of A399C. The present findings add new functionality to the TM7/8 region by providing evidence for the occurrence of distinct Na+-, substrate-, and perhaps inhibitor-induced conformational changes critical for the proper function of the transporter.  相似文献   

18.
Voltage-gated Na+ channels are dynamic transmembrane proteins responsible for the rising phase of the action potential in excitable membranes. Local anesthetics (LAs) and structurally related antiarrhythmic and anticonvulsant compounds target specific sites in voltage-gated Na+ channels to block Na+ currents, thus reducing excitability in neuronal, cardiac, or central nervous tissue. A high-affinity LA block is produced by binding to open and inactivated states of Na+ channels rather than to resting states and suggests a binding site that converts from a low- to a high-affinity conformation during gating. Recent findings using site-directed mutagenesis suggest that multiple S6 segments together form an LA binding site within the Na+ channel. While the selectivity filter may form the more extracellular-located part of this binding site, the role of the fast inactivation gate in LA binding has not yet been resolved. The receptor of the neurotoxin batrachotoxin (BTX) is adjacent to or even overlaps with the LA binding site. The close proximity of the LA and BTX binding sites to residues critical for inactivation, together with gating transitions through S6 segments, might explain the strong impact of LAs and BTX on inactivation of voltage-gated Na+ channels and might help elucidate the mechanisms underlying voltage- and frequency-dependent LA block.  相似文献   

19.
In Kv1.5, protonation of histidine 463 in the S5-P linker (turret) increases the rate of depolarization-induced inactivation and decreases the peak current amplitude. In this study, we examined how amino acid substitutions that altered the physico-chemical properties of the side chain at position 463 affected slow inactivation and then used the substituted cysteine accessibility method (SCAM) to probe the turret region (E456-P468) to determine whether residue 463 was unique in its ability to modulate the macroscopic current. Substitutions at position 463 of small, neutral (H463G and H463A) or large, charged (H463R, H463K, and H463E) side groups accelerated inactivation and induced a dependency of the current amplitude on the external potassium concentration. When cysteine substitutions were made in the distal turret (T462C-P468C), modification with either the positively charged [2-(trimethylammonium)ethyl] methanethiosulfonate bromide (MTSET) or negatively charged sodium (2-sulfonatoethyl) methanethiosulfonate reagent irreversibly inhibited current. This inhibition could be antagonized either by the R487V mutation (homologous to T449V in Shaker) or by raising the external potassium concentration, suggesting that current inhibition by MTS reagents resulted from an enhancement of inactivation. These results imply that protonation of residue 463 does not modulate inactivation solely by an electrostatic interaction with residues near the pore mouth, as proposed by others, and that residue 463 is part of a group of residues within the Kv1.5 turret that can modulate P/C-type inactivation. electrophysiology; voltage-gated potassium channels; substituted cysteine accessibility method  相似文献   

20.
Cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels are gated by binding and hydrolysis of ATP at the nucleotide-binding domains (NBDs). We used covalent modification of CFTR channels bearing a cysteine engineered at position 334 to investigate changes in pore conformation that might accompany channel gating. In single R334C-CFTR channels studied in excised patches, modification by [2-(trimethylammonium)ethyl] methanethiosulfonate (MTSET+), which increases conductance, occurred only during channel closed states. This suggests that the rate of reaction of the cysteine was greater in closed channels than in open channels. R334C-CFTR channels in outside-out macropatches activated by ATP alone were modified with first order kinetics upon rapid exposure to MTSET+. Modification was much slower when channels were locked open by the addition of nonhydrolyzable nucleotide or when the R334C mutation was coupled to a second mutation, K1250A, which greatly decreases channel closing rate. In contrast, modification was faster in R334C/K464A-CFTR channels, which exhibit prolonged interburst closed states. These data indicate that the reactivity of the engineered cysteine in R334C-CFTR is state-dependent, providing evidence of changes in pore conformation coupled to ATP binding and hydrolysis at the NBDs. The data also show that maneuvers that lock open R334C-CFTR do so by locking channels into the prominent s2 subconductance state, suggesting that the most stable conducting state of the pore reflects the fully occupied, prehydrolytic state of the NBDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号