首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biological reduction of Fe(III) ethylenediaminetetraacetic acid (EDTA) is a key step for NO removal in a chemical absorption–biological reduction integrated process. Since typical flue gas contain oxygen, NO2 and NO3 would be present in the absorption solution after NO absorption. In this paper, the interaction of NO2 , NO3 , and Fe(III)EDTA reduction was investigated. The experimental results indicate that the Fe(III)EDTA reduction rate decrease with the increase of NO2 or NO3 addition. In the presence of 10 mM NO2 or NO3 , the average reduction rate of Fe(III)EDTA during the first 6-h reaction was 0.076 and 0.17 mM h−1, respectively, compared with 1.07 mM h−1 in the absence of NO2 and NO3 . Fe(III)EDTA and either NO2 or NO3 reduction occurred simultaneously. Interestingly, the reduction rate of NO2 or NO3 was enhanced in presence of Fe(III)EDTA. The inhibition patterns observed during the effect of NO2 and NO3 on the Fe(III)EDTA reduction experiments suggest that Escherichia coli can utilize NO2 , NO3 , and Fe(III)EDTA as terminal electron acceptors.  相似文献   

2.
采用营养液培养试验,通过添加不同浓度(0.05、0.1、0.2、0. mmol·L-1)的硝普钠(SNP)作为NO供体,研究外源NO对NO3-胁迫下黄瓜幼苗生长及叶片抗氧化酶活性的影响.结果表明: 140 mmol·L-1 NO3-胁迫下,外加0.1 mmol·L-1 SNP处理1 d和7 d后,黄瓜幼苗叶片中SOD、CAT和APX活性显著升高;MDA含量显著降低,可溶性蛋白含量增加,说明外加0.1 mmol·L-1 SNP增强了黄瓜幼苗对活性氧的清除能力,降低了膜脂过氧化程度,幼苗生长势增加,对高浓度NO3-胁迫的抗性增强;当SNP浓度达0.3 mmol·L-1处理7 d后,SOD、POD、CAT和APX活性均开始降低,MDA含量增加,黄瓜幼苗受害加重.外加一定浓度(0.1~0.2 mmol·L-1)的外源NO可缓解NO3-胁迫对黄瓜幼苗的影响.  相似文献   

3.
Nitrate (NO3) and nitrite (NO2) are the physiological sources of nitric oxide (NO), a key biological messenger molecule. NO3/NO2 exerts a beneficial impact on NO homeostasis and its related cardiovascular functions. To visualize the physiological dynamics of NO3/NO2 for assessing the precise roles of these anions, we developed a genetically encoded intermolecular fluorescence resonance energy transfer (FRET)-based indicator, named sNOOOpy (sensor for NO3/NO2 in physiology), by employing NO3/NO2-induced dissociation of NasST involved in the denitrification system of rhizobia. The in vitro use of sNOOOpy shows high specificity for NO3 and NO2, and its FRET signal is changed in response to NO3/NO2 in the micromolar range. Furthermore, both an increase and decrease in cellular NO3 concentration can be detected. sNOOOpy is very simple and potentially applicable to a wide variety of living cells and is expected to provide insights into NO3/NO2 dynamics in various organisms, including plants and animals.  相似文献   

4.
Abstract

NO? alone is a poorly reactive species; however, it is able to undergo secondary reactions to form highly oxidizing and nitrating species, NO2?, N2O3, and ONOO?. These secondary reactive nitrogen species (RNS) are capable of modifying a diversity of biomolecular structures in the cell. The chemical properties of individual RNS will be discussed, along with their ability to react with amino acids, metal cofactors, lipids, cholesterol, and DNA bases and sugars. Many of the identified RNS-induced modifications have been observed both in vitro and in vivo. Several of these chemical modifications have been attributed with a functional role in the cell, such as the modulation of enzyme activity. Other areas in the field will be discussed, including the ability of RNS to react with metabolites, RNA, and substrates in the mitochondrion, and the cellular removal/repair of RNS-modified structures.  相似文献   

5.
The lung can be exposed to a variety of reactive nitrogen intermediates through the inhalation of environmental oxidants and those produced during inflammation. Reactive nitrogen species (RNS) include, nitrogen dioxide (.NO2) and peroxynitrite (ONOO-). Classically known as a major component of both indoor and outdoor air pollution, .NO2 is a toxic free radical gas. .NO2 can also be formed during inflammation by the decomposition of ONOO- or through peroxidase-catalyzed reactions. Due to their reactive nature, RNS may play an important role in disease pathology. Depending on the dose and the duration of administration, .NO, has been documented to cause pulmonary injury in both animal and human studies. Injury to the lung epithelial cells following exposure to .NO2 is characterized by airway denudation followed by compensatory proliferation. The persistent injury and repair process may contribute to airway remodeling, including the development of fibrosis. To better understand the signaling pathways involved in epithelial cell death by .NO2 or otherRNS, we routinely expose cells in culture to continuous gas-phase .NO2. Studies using the .NO2 exposure system revealed that lung epithelial cell death occurs in a density dependent manner. In wound healing experiments, .NO2 induced cell death is limited to cells localized in the leading edge of the wound. Importantly, .NO2-induced death does not appear to be dependent on oxidative stress per se. Potential cell signaling mechanisms will be discussed, which include the mitogen activated protein kinase, c-Jun N-terminal Kinase and the Fas/Fas ligand pathways. During periods of epithelial loss and regeneration that occur in diseases such as asthma or during lung development, epithelial cells in the lung may be uniquely susceptible to death. Understanding the molecular mechanisms of epithelial cell death associated with the exposure to .NO2 will be important in designing therapeutics aimed at protecting the lung from persistent injury and repair.  相似文献   

6.
We studied the export of inorganic carbon and nitrous oxide (N2O) from a Danish freshwater wetland. The wetland is situated in an agricultural catchment area and is recharged by groundwater enriched with nitrate (NO3 ) (1000 M). NO3 in recharging groundwater was reduced (57.5 mol NO3 m–2 yr) within a narrow zone of the wetland. Congruently, the annual efflux of carbon dioxide (CO2) from the sediment was 19.1 mol C m–2 when estimated from monthly in situ measurements. In comparison the CO2 efflux was 4.8 mol C m–2 yr–1 further out in the wetland, where no NO3 reduction occurred. Annual exports of inorganic carbon in groundwater and surface water was 78.4 mol C m–2 and 6.1 mol C m–2 at the two sites, respectively. N2O efflux from the sedimenst was detectable on five out of twelve sampling dates and was significantly (P < 0.0001) higher in the NO3 reduction zone (0.35–9.40 mol m–2 h–1, range of monthly means) than in the zone without NO3 reduction (0.21–0.41 mol m–2 h–1). No loss of dissolved N2O could be measured. Total annual export of N2O was not estimated. The reduction of oxygen (O2) in groundwater was minor throughout the wetland and did not exceed 0.2 mol 02 m–2yr–1. Sulfate (SO4 ––) was reduced in groundwater (2.1 mol SO4 –– m–2 yr–1) in the zone without NO3 reduction. Although the NO3 in our wetland can be reduced along several pathways our results strongly suggest that NO3 loading of freshwater wetlands disturb the carbon balance of such areas, resulting in an accelerated loss of inorganic carbon in gaseous and dissolved forms.  相似文献   

7.
The ability of an ecosystem to retain anthropogenic nitrogen (N) deposition is dependent upon plant and soil sinks for N, the strengths of which may be altered by chronic atmospheric N deposition. Sugar maple (Acer saccharum Marsh.), the dominant overstory tree in northern hardwood forests of the Lake States region, has a limited capacity to take up and assimilate NO3. However, it is uncertain whether long-term exposure to NO3 deposition might induce NO3 uptake by this ecologically important overstory tree. Here, we investigate whether 10 years of experimental NO3deposition (30 kg N ha−1 y−1) could induce NO3 uptake and assimilation in overstory sugar maple (approximately 90 years old), which would enable this species to function as a direct sink for atmospheric NO3 deposition. Kinetic parameters for NH4+ and NO3 uptake in fine roots, as well as leaf and root NO3 reductase activity, were measured under conditions of ambient and experimental NO3 deposition in four sugar maple-dominated stands spanning the geographic distribution of northern hardwood forests in the Upper Lake States. Chronic NO3 deposition did not alter the V max or K m for NO3 and NH4+ uptake nor did it influence NO3 reductase activity in leaves and fine roots. Moreover, the mean V max for NH4+ uptake (5.15 μmol 15N g−1 h−1) was eight times greater than the V max for NO3 uptake (0.63 μmol 15N g−1 h−1), indicating a much greater physiological capacity for NH4+ uptake in this species. Additionally, NO3 reductase activity was lower than most values for woody plants previously reported in the literature, further indicating a low physiological potential for NO3 assimilation in sugar maple. Our results demonstrate that chronic NO3 deposition has not induced the physiological capacity for NO3 uptake and assimilation by sugar maple, making this dominant species an unlikely direct sink for anthropogenic NO3 deposition.  相似文献   

8.
Our results show that AtNRT2.1 expression has a positive effect on the NH4+ ion influx, mediated by the HATS, as also occurs with AtAMT1.1 expression on the NO3 ion influx. AtNRT2.1 expression plays a key role in the regulation of AtAMT1.1 expression and in the NH4+ ion influx, differentiating the nitrogen source, and particularly, the lack of it. Nitrogen starvation produces a compensatory effect by AtAMT1.1 when there is an absence of the AtNRT2.1 gene. Our results also show that, in the atnrt2 mutant lacking both AtNRT2.1 and AtNRT2.2, gene functions present different kinetic parameters on the NH4+ ion influx mediated by the HATS, according to the source and availability of nitrogen. Finally, the absence of AMT1.1 also produces changes in the kinetic parameters of the NO3 influx, showing different Vmax values depending on the source of nitrogen available.  相似文献   

9.
Temperatures above the optimum are sensed as heat stress (HS) by all living organisms and represent one of the major environmental challenges for plants. Plants can cope with HS by activating specific defense mechanisms to minimize damage and ensure cellular functionality. One of the most common effects of HS is the overproduction of reactive oxygen and nitrogen species (ROS and RNS). The role of ROS and RNS in the regulation of many plant physiological processes is well established. On the contrary, in plants very little is known about the physiological role of peroxynitrite (ONOO?), the RNS species generated by the interaction between NO and O2?. In this work, the role of ONOO? on some of the stress responses induced by HS in tobacco BY-2 cultured cells has been investigated by measuring these responses both in the presence and in the absence of 2,6,8-trihydroxypurine (urate), a specific scavenger of ONOO?. The obtained results suggest a potential role for ONOO? in some of the responses induced by HS in tobacco cultured cells. In particular, ONOO? seems implicated in a form of cell death showing apoptotic features and in the regulation of the levels of proteins involved in the response to stress.  相似文献   

10.
Urban streams often contain elevated concentrations of nitrogen (N) which can be amplified in systems receiving effluent from wastewater treatment plants (WWTP). In this study, we evaluated the importance of denitrification in a stream draining urban Greensboro, NC, USA, using two approaches: (1) natural abundance of 15N–NO3 in conjunction with background NO3–N concentrations along a 7 km transect downstream of a WWTP; and (2) C2H2 block experiments at three sites and at three habitat types within each site. Overall lack of a longitudinal pattern of δ15N–NO3 and NO3–N, combined with high concentrations of NO3–N suggested that other factors were controlling NO3–N flux in the study transect. However, denitrification did appear to be significant along one portion of the transect. C2H2 block experiments showed that denitrification rates were much higher downstream of the WWTP compared to upstream, and showed that denitrification rates were highest in erosional and depositional areas downstream of the WWTP and in erosional areas upstream of the plant. Thus, the combination of the two methods for evaluating denitrification provided more insight into the spatial dynamics of denitrification activity than either approach alone. Denitrification appeared to be a significant sink for NO3–N upstream of the WWTP, but not downstream. Approximately 46% of the total NO3–N load was removed via denitrification in the upstream, urban section of the stream, while only 2.3% of NO3–N was lost downstream of the plant. This result suggests that controlling NO3–N loading from the plant could result in considerable improvement of downstream water quality.  相似文献   

11.
A new bidentate chelating pyrazolylpyrimidine ligand bearing a strong electron-donating substituent, i.e. 4-(3,5-diphenyl-1H-pyrazol-1-yl)-6-(piperidin-1-yl)pyrimidine (L) (Scheme 1), has been synthesized and used to obtain the copper(II) complexes by reaction with CuCl2. The molar ratio Cu:L = 1:2 leads to isolation of a complex having CuL2Cl2 empirical formula, while the molar ratio Cu:L = 1:1 gives a complex with CuLCl2 empirical formula. The crystal structure of L as well as the structures of both complexes were studied by single crystal X-ray diffraction. The crystal structure of CuL2Cl2 compound is formed by trans-[CuL2Cl2] mononuclear molecules. Surprisingly, in contrast to the previous compound having molecular structure, the crystal structure of CuLCl2 consists of mononuclear [CuL2Cl]+ complex cations and dinuclear [Cu2Cl6]2− anions. Thus, formula of CuLCl2 complex can be represented as [CuL2Cl]2[Cu2Cl6]. In both complexes molecules of L adopt bidentate chelating coordination mode through N2 atom of pyrazole and N3 atom of pyrimidine rings forming five-membered CuN3C metallocycles. Owing to C-H···N interactions and π-π-stacking L molecules form 2D network. In the structure of trans-[CuL2Cl2] there exist double lone pair(N(piperidine))-π(pyrimidine) interactions and C-H···Cl contacts resulting in the formation of 1D chains. Layered 2D structure of [CuL2Cl]2[Cu2Cl6] results from C-H···Cl, C-H···π and double lone pair(Cl([CuL2Cl]+ complex cation)-π(pyrimidine) interactions.  相似文献   

12.
To elucidate the stimulation of leaf growth by atmospheric nitrogen dioxide (NO2), we performed a kinematic analysis of the eighth leaves of Arabidopsis thaliana (accession C24) plants grown for 17–35 days after sowing in the presence or absence of 50 ppb NO2 (designated +NO2 plants and –NO2 plants, respectively). We found that the peak and mean values of the relative rates of leaf expansion, cell division and cell expansion were always greater in +NO2 plants than in –NO2 plants. No evidence for prolonged duration was obtained. Thus, NO2 treatment increased the rates of both cell proliferation and enlargement to increase leaf size. Furthermore, a fold-change analysis showed that cell proliferation and enlargement differentially regulated NO2-induced leaf expansion.  相似文献   

13.
Sehtiya  H. L.  Goyal  Sham S. 《Plant and Soil》2000,227(1-2):185-190
The effect of light and exogenously supplied sucrose on NO3 uptake was studied in 9-day-old intact C3 (barley) and C4 (corn) seedlings. The seedlings used were uninduced for nitrate uptake system (i.e. had never seen nitrogen during germination and growth) and were exposed to continuous light for 3 days to avoid any diurnal variation and to load the seedlings fully with photosynthates. The uptake assay was conducted either in light or in darkness. Prior to assay, seedlings were treated with darkness or light for 24 h. Accordingly, four sets of seedlings, i.e. pretreated with light and assayed in light (LL); pretreated and assayed in darkness (DD); pretreated with light and assayed in darkness (LD); and pretreated with darkness and assayed in light (DL) were formed. Barley exhibited 55% higher NO3 uptake than corn during light (LL) and 91% higher during darkness (DD). Shifting barley seedlings from light to dark (LD) or dark to light (DL) for uptake assay, did not affect NO3 uptake, i.e. in LD the uptake was similar to LL and in DL it was similar to DD. However, in corn, the light conditions during the assay determined the uptake regardless of the conditions during the period preceding the assay. One percent sucrose in the medium increased NO3 uptake by 31% in barley and 70% in corn during light (LL). The corresponding increase during darkness (DD) was 38% in both barley and corn. Removal of the corn residual endosperm decreased NO3 uptake by 40% during darkness. Etiolated seedlings (those having never seen light) of both barley and corn were able to take up significant amount of NO3 during darkness. Externally supplied sucrose in the assay medium of etiolated seedlings increased the NO3 uptake to about 4 and 2 fold in barley and corn, respectively. The data presented here provide evidence that: 1. In intact seedlings, light per se is not obligatory for NO3 uptake and that the carbohydrate supply may mimic light. 2. Light affected the NO3 uptake differently in barley and corn. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The effects of Ca(NO3)2 stress on biomass production, oxidative damage, antioxidant enzymes activities and polyamine contents in roots of grafted and non-grafted tomato plants were investigated. Results showed that when exposed to 80 mM Ca(NO3)2 stress, the biomass production reduction in non-grafted plants was more significant than that of grafted plants. Under Ca(NO3)2 stress, superoxide anion radical (O2) producing rate, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents of non-grafted plants roots were significantly higher than those of grafted plants, however, nitrate (NO3 ), ammonium (NH4 +) and proline contents, superoxide dismutase (SOD, EC1.15.1.1), peroxidase (POD, EC1.11.1.7), catalase (CAT, EC1.11.1.6) and arginine decarboxylase (ADC, EC 4.1.1.19) activities of grafted plants roots were significantly higher than those of non-grafted plants. Regardless of stress, free, conjugated and bound polyamine contents in roots of grafted plants were significantly higher than those of non-grafted plants. The possible roles of antioxidant enzymes, prolines and polyamines in adaptive mechanism of tomato roots to Ca(NO3)2 stress were discussed. Gu-Wen Zhang and Zheng-Lu Liu contributed equally to this work.  相似文献   

15.
Nitrogen nutrition of rice plants under salinity   总被引:1,自引:0,他引:1  
Two rice (Oryza sativa L.) cultivars, Koshihikari and Pokkali, were grown in solution culture at three concentrations of NaCl or Na2SO4 [0 (S0), 50 (S1), and 100 (S2) mmol dm–3] and three N contents [0.7 (N1), 7 (N2) and 14 (N3) mmol dm–3]. Salinity significantly decreased dry matter of both cultivars. Pokkali had better growth than Koshihikari under both saline and non-saline conditions. Applications of N enhanced development of shoot dry mass under S0 and S1 treatments up to N2. Under S2, N application had no effect on shoot dry mass of both cultivars. Root dry mass of both cultivars decreased with increasing N application at S1 and S2. Shoot and root NO3-N content in both rice cultivars increased with increasing N concentration in the nutrient solutions. The absorption of NO3-N was less in Koshihikari than Pokkali plants, and also was much less in Cl than SO4 2– salinity suggesting the antagonism between Cl and NO3 . In addition a significant negative correlation between concentrations of NO3-N and Cl in the shoots or roots was observed in both cultivars  相似文献   

16.
城市森林在吸收、滞留大气污染物,改善城市生态环境方面具有重要意义。以大庆市6种常见绿化树种为研究对象,采用水洗-滤膜法和熏气试验探究不同树种对总悬浮颗粒物(TSP)、大颗粒物(PM>10)、粗颗粒物(PM3—10)和细颗粒物(PM1—3)的滞留规律以及对大气中SO2、NO2的消减效果。研究结果表明:(1)不同树种的滞尘能力差异显著(P<0.05),对TSP的滞留量从大到小依次为:油松(3.82±0.40)g/m2>红瑞木(1.45±0.12)g/m2>紫丁香(1.22±0.17)g/m2>梣叶槭(1.21±0.13)g/m2>大叶杨(0.93±0.17)g/m2>旱柳(0.54±0.14)g/m2;(2)树种间对不同颗粒物的滞留量具有显著差异(P<0.05),供试树种对不同粒径颗粒物滞留的质量占比表现...  相似文献   

17.
Papke  H.  Papen  H. 《Plant and Soil》1998,199(1):131-139
Flux measurements of nitric oxide (NO) and nitrogen dioxide (NO2) were performed in a coniferous forest (Höglwald) in southern Germany using a fully automated measuring system based on the dynamic chamber method. The forest soil was predominately a source of NO, but mean flux rates of NO ranged from –26.3 (deposition) to 55 g N m-2 h-1 (emission). NO2 was deposited on the forest soil with mean flux rates ranging from –4 to –72 g N m-2 h-1 . Removal of forest floor vegetation did not influence NO or NO2 fluxes. Apparently, forest floor vegetation was neither a source of NO nor a significant sink of NO2. When the organic layer of the forest soil was removed, net NO flux changed from emission to deposition. Thus NO emitted to the atmosphere was produced almost exclusively in the organic layer of the forest soil. Liming caused a significant decrease in the rate of NO emission by 43 to 100%, whereas irrigation with simulated acid rain increased the emission of NO by a factor of 3.1. Irrigation with simulated normal rain decreased the emission of NO by 35 to 100%. No such effects could be detected for the deposition of NO2.  相似文献   

18.
Abstract

Reactive nitrogen species (RNS), namely nitric oxide (NO?) and peroxynitrite (ONOO?) are produced in the inflammatory sites and may contribute to the deleterious effects of inflammation. The aim of the present study was to evaluate the putative scavenging effect of a particular group of non-steroidal anti-inflammatory drugs (NSAIDs), the pyrazolone derivatives dipyrone, aminopyrine, isopropylantipyrine, and antipyrine against RNS, using in vitro non-cellular screening systems. The results obtained showed that dipyrone and aminopyrine were highly potent scavengers of NO? and ONOO? while antipyrine exerted little effect and isopropylantipyrine no effect whatsoever against these two RNS and that, in the presence of bicarbonate, the scavenging potencies of both dipyrone and aminopyrine were slightly decreased. It could thus be inferred that the observed scavenging effects may be of therapeutic benefit for patients under anti-inflammatory treatment with dipyrone and aminopyrine in the case of overproduction of RNS. On the other hand, the possible depletion of physiological NO? concentrations, namely at the gastrointestinal tract as well as the formation of reactive derivatives of aminopyrine and/or dipyrone, resulting from their reaction with RNS, may otherwise be harmful for these patients.  相似文献   

19.
Compounds of the molecular formulae, [LH3](NO3)3 (1), [Fe(LH)2](PF6)4·5H2O (2), [Fe(L)2][Fe(L)(LH)](PF6)5·H2O (3), [Fe(L)2][Fe(L)(LH)](BF4)5·2H2O (4) and [Fe(L)2](Cr2O7)·6H2O (5) have been synthesized using 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine (L). The molecular structures of all the compounds were determined. The Fe(II) complexes are high spin in nature at room temperature and upon cooling a gradual spin-transition is observed. Among 1-5, hydrogen-bonding, π···π, and anion···π interactions as well as water tetramer and pentamer are present in the molecular packing.  相似文献   

20.
Catalase is well known as capable of inducing the decomposition of H2O2. In this study, a kind of immobilized catalase (entrapped in cross-linked chitosan beads) was dispersed in conventional acetate filter as an antioxidant additive. Quantitative estimation of the free radicals in mainstream cigarette smoke (MCS) was performed to address the effect of this modified filter. It was found that the levels of PBN adduct and NO?/NO2? associated with the gas-phase mainstream cigarette smoke (GPCS) were efficiently decreased by ~40% through catalase filtering. Besides, the modified filter was found to lower the MCS-induced adverse biological effects including lipid peroxidation and mutagenicity. This was proved to be substantially attributed to the catalase-dependent breakdown of NO?, which was stimulated by some of peroxides (most probably being H2O2), the dismutation products of tar particulate matters (TPM). These results highlighted a promising approach to reduce the smoking-associated health risks to passive smokers. Moreover, the mechanisms of catalase filtering may be helpful for the development of appropriate immobilized enzyme systems to be applied for reducing health risks associated with gaseous pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号