首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA-dependent ATPase activity of Rho + and two mutant proteins Rho15 and Rho301 was studied. It was shown that monomeric Rho forms oligomers in the presence of ATP. This ATP-induced structural change of Rho allows protection of the protein from heat inactivation. Poly(C), which highly activates Rho ATPase, was found to potentiate heat inactivation of Rho301, but no Rho + and Rho15, only under optimal conditions of ATP hydrolysis. It was also shown that Rho301 is defective in interaction with RNA. The molecular model postulating that Rho-catalysed ATP hydrolysis with free RNA involves the cyclic process of protein dissociation and reassembly is postulated.  相似文献   

2.
3.
The Rho(D) antigen was recently identified as a 28,000 to 33,000 m.w. polypeptide expressed on the surface of human Rho(D)+ cells. We now show that 70 to 80% of the Rho(D) polypeptides remain firmly associated with the membrane skeleton (detergent-insoluble matrix) obtained after treatment of isolated membranes with Triton X-100. The same treatment solubilized most of the major sialoglycoprotein, glycophorin A. The membrane skeleton-bound Rho(D) polypeptides were not solubilized by procedures that dissociated spectrin, actin, and glyceraldehyde-3-phosphate dehydrogenase from the membrane. Affinity-purified 125I-labeled anti-Rho(D) antibodies bound to intact Rho(D)+ cells, Rho(D)+ membranes, and isolated membrane skeletons from Rho(D)+ cells, but not to Rho(D)- cells. The binding to Rho(D)+ cells was competitively inhibited efficiently by Rho(D)+ membranes and weakly by Rho(D)- membranes. When isolated unsealed Rho(D)+ and Rho(D)- membranes were labeled by lactoperoxidase-catalyzed iodination and solubilized in Triton X-100, Rho(D) polypeptides were immune precipitated only from Rho(D)+ membranes.  相似文献   

4.
The Rho3 protein plays a critical role in the budding yeast Saccharomyces cerevisiae by directing proper cell growth. Rho3 appears to influence cell growth by regulating polarized secretion and the actin cytoskeleton, since rho3 mutants exhibit large rounded cells with an aberrant actin cytoskeleton. To gain insights into how Rho3 influences these events, we have carried out a yeast two-hybrid screen using an S. cerevisiae cDNA library to identify proteins interacting with Rho3. Two proteins, Exo70 and Myo2, were identified in this screen. Interactions with these two proteins are greatly reduced or abolished when mutations are introduced into the Rho3 effector domain. In addition, a type of mutation known to produce dominant negative mutants of Rho proteins abolished the interaction with both of these proteins. In contrast, Rho3 did not interact with protein kinase C (Pkc1), an effector of another Rho family protein, Rho1, nor did Rho1 interact with Exo70 or Myo2. Rho3 did interact with Bni1, another effector of Rho1, but less efficiently than with Rho1. The interaction between Rho3 and Exo70 and between Rho3 and Myo2 was also demonstrated with purified proteins. The interaction between Exo70 and Rho3 in vitro was dependent on the presence of GTP, since Rho3 complexed with guanosine 5'-O-(3-thiotriphosphate) interacted more efficiently with Exo70 than Rho3 complexed with guanosine 5'-O-(3-thiodiphosphate). Overlapping subcellular localization of the Rho3 and Exo70 proteins was demonstrated by indirect immunofluorescence. In addition, patterns of localization of both Exo70 and Rho3 were altered when a dominant active allele of RHO3, RHO3(E129,A131), which causes a morphological abnormality, was expressed. These results provide a direct molecular basis for the action of Rho3 on exocytosis and the actin cytoskeleton.  相似文献   

5.
Rho GTPases, activated by Rho guanine nucleotide exchange factors (GEFs), are conserved molecular switches for signal transductions that regulate diverse cellular processes, including cell polarization and cytokinesis. The fission yeast Schizosaccharomyces pombe has six Rho GTPases (Cdc42 and Rho1–Rho5) and seven Rho GEFs (Scd1, Rgf1–Rgf3, and Gef1–Gef3). The GEFs for Rho2–Rho5 have not been unequivocally assigned. In particular, Gef3, the smallest Rho GEF, was barely studied. Here we show that Gef3 colocalizes with septins at the cell equator. Gef3 physically interacts with septins and anillin Mid2 and depends on them to localize. Gef3 coprecipitates with GDP-bound Rho4 in vitro and accelerates nucleotide exchange of Rho4, suggesting that Gef3 is a GEF for Rho4. Consistently, Gef3 and Rho4 are in the same genetic pathways to regulate septum formation and/or cell separation. In gef3∆ cells, the localizations of two potential Rho4 effectors—glucanases Eng1 and Agn1—are abnormal, and active Rho4 level is reduced, indicating that Gef3 is involved in Rho4 activation in vivo. Moreover, overexpression of active Rho4 or Eng1 rescues the septation defects of mutants containing gef3∆. Together our data support that Gef3 interacts with the septin complex and activates Rho4 GTPase as a Rho GEF for septation in fission yeast.  相似文献   

6.
7.
Using biochemical assays to determine the activation state of Rho-like GTPases, we show that the guanine nucleotide exchange factor Tiam1 functions as a specific activator of Rac but not Cdc42 or Rho in NIH3T3 fibroblasts. Activation of Rac by Tiam1 induces an epithelial-like morphology with functional cadherin-based adhesions and inhibits migration of fibroblasts. This epithelial phenotype is characterized by Rac-mediated effects on Rho activity. Transient PDGF-induced as well as sustained Rac activation by Tiam1 or V12Rac downregulate Rho activity. We found that Cdc42 also downregulates Rho activity. Neither V14Rho or N19Rho affects Rac activity, suggesting unidirectional signaling from Rac towards Rho. Downregulation of Rho activity occurs independently of Rac- induced cytoskeletal changes and cell spreading. Moreover, Rac effector mutants that are defective in mediating cytoskeleton changes or Jun kinase activation both downregulate Rho activity, suggesting that neither of these Rac signaling pathways are involved in the regulation of Rho. Restoration of Rho activity in Tiam1-expressing cells by expression of V14Rho results in reversion of the epithelioid phenotype towards a migratory, fibroblastoid morphology. We conclude that Rac signaling is able to antagonize Rho activity directly at the GTPase level, and that the reciprocal balance between Rac and Rho activity determines cellular morphology and migratory behavior in NIH3T3 fibroblasts.  相似文献   

8.
Hepatic stellate cells (HSCs) play a central role in the development of hepatic fibrosis. Recent evidence has revealed that HSCs also play a role in its resolution, where HSC apoptosis was determined. Moreover, induction of HSC apoptosis caused a reduction of experimental hepatic fibrosis in rats. Thus knowing the mechanism of HSC apoptosis might be important to clarify the pathophysiology and establish the therapeutic strategy for hepatic fibrosis. In HSCs, Rho and Rho kinase are known to regulate contraction, migration, and proliferation with modulation of cell morphology. Controversy exists as to the participation of Rho and Rho kinase on cell survival, and little is known regarding this matter in HSCs. In this study, we directed our focus on the role of the Rho pathway in the regulation of HSC survival. C3, an inhibitor of Rho, increased histone-associated DNA fragmentation and caspase 3 activity with enhanced condensation of nuclear chromatin in rat cultured HSCs. Moreover, Y-27632, an inhibitor of Rho kinase, had the same effects, suggesting that inhibition of the Rho/Rho kinase pathway causes HSC apoptosis. On the other hand, lysophosphatidic acid, which stimulates the Rho/Rho kinase pathway, decreased histone-associated DNA fragmentation in HSCs. Inhibition of the Rho/Rho kinase pathway did not affect p53, Bcl-2, or Bax levels in HSCs. Thus we concluded that the Rho/Rho kinase pathway may play a role in the regulation of HSC survival.  相似文献   

9.
Rhodopsin (Rho) is a G protein-coupled receptor that initiates phototransduction in rod photoreceptors. High expression levels of Rho in the disc membranes of rod outer segments and the propensity of Rho to form higher oligomeric structures are evident from atomic force microscopy, transmission electron microscopy, and chemical cross-linking experiments. To explore the structural and functional properties of Rho in n-dodecyl-beta-maltoside, frequently used to purify heterologously expressed Rho and its mutants, we used gel filtration techniques, blue native gel electrophoresis, and functional assays. Here, we show that in micelles containing n-dodecyl-beta-maltoside at concentrations greater than 3 mM, Rho is present as a single monomer per detergent micelle. In contrast, in 12 mM 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate (CHAPS), micelles contain mostly dimeric Rho. The cognate G protein transducin (Gt) appears to have a preference for binding to the Rho dimer, and the complexes fall apart in the presence of guanosine 5'-3-O-(thio)triphosphate. Cross-linked Rho dimers release the chromophore at a slower rate than monomers and are much more resistant to heat denaturation. Both Rho(*) monomers and dimers are capable of activating Gt, and both of them are phosphorylated by Rho kinase. Rho expressed in HEK293 cells is also readily cross-linked by a bifunctional reagent. These studies provide an explanation of how detergent influences the oligomer-dimermonomer equilibrium of Rho and describe the functional characterization of Rho monomers and dimers in detergent.  相似文献   

10.
Rho GTPase is a master regulator controlling cytoskeleton in multiple contexts such as cell migration, adhesion and cytokinesis. Of several Rho GTPases in mammals, the best characterized is the Rho subfamily including ubiquitously expressed RhoA and its homologs RhoB and RhoC. Upon binding GTP, Rho exerts its functions through downstream Rho effectors, such as ROCK, mDia, Citron, PKN, Rhophilin and Rhotekin. Until recently, our knowledge about functions of Rho and Rho effectors came mostly from in vitro studies utilizing cultured cells, and their physiological roles in vivo were largely unknown. However, gene-targeting studies of Rho and its effectors have now unraveled their tissue- and cell-specific roles and provide deeper insight into the physiological function of Rho signaling in vivo. In this article, we briefly describe previous studies of the function of Rho and its effectors in vitro and then review and discuss recent studies on knockout mice of Rho and its effectors.  相似文献   

11.
Rhodopsin (Rho) resides within internal membrane structures called disc membranes that are found in the rod outer segments (ROS) of photoreceptors in the retina. Rho expression is essential for formation of ROS, which are absent in knockout Rho-/- mice. ROS of mice heterozygous for the Rho gene deletion (Rho+/-) may have a lower Rho density than wild type (WT) membranes, or the ROS structure may be reduced in size due to lower Rho expression. Here, we present evidence that the smaller volume of ROS from heterozygous mice is most likely responsible for observed electrophysiological response differences. In Rho+/- mice as compared with age-matched WT mice, the length of ROS was shorter by 30-40%, and the average diameter of ROS was reduced by approximately 20%, as demonstrated by transmission and scanning electron microscopy. Together, the reduction of the volume of ROS was approximately 60% in Rho+/- mice. Rho content in the eyes was reduced by approximately 43% and 11-cis-retinal content in the eye was reduced by approximately 38%, as determined by UV-visible spectroscopy and retinoid analysis, respectively. Transmission electron microscopy of negatively stained disc membranes from Rho+/- mice indicated a typical morphology apart from the reduced size of disc diameter. Power spectra calculated from disc membrane regions on such electron micrographs displayed a diffuse ring at approximately 4.5 nm(-1), indicating paracrystallinity of Rho. Atomic force microscopy of WT and Rho+/- disc membranes revealed, in both cases, Rho organized in paracrystalline and raftlike structures. From these data, we conclude that the differences in physiological responses measured in WT and Rho+/- mice are due to structural changes of the whole ROS and not due to a lower density of Rho.  相似文献   

12.
Nakano K  Arai R  Mabuchi I 《FEBS letters》2005,579(23):5181-5186
The small GTPase Rho1 plays an essential role in controlling the organization of the actin cytoskeleton and synthesis of the cell wall in the fission yeast Schizosaccharomyces pombe. Here we studied the role of Rho5 whose primary structure is very similar to that of Rho1. It was found that elevated expression of Rho5 was able to compensate for the lethality of cells lacking Rho1. Rho5 was localized to the ends of interphase cells and the mid-region of mitotic cells. Overexpression of Rho5 caused depolarization of F-actin patches and abnormal formation of the cell wall, as did Rho1. Although rho5(+) was not essential for maintaining the cell shape, rho1 rho5-double null cells showed more severe defects in cell viability than rho1-null cells. Thus, it is likely that Rho5 has an overlapping function with Rho1 in controlling cell growth and division in S. pombe.  相似文献   

13.
Rho proteins are small GTPases of the Ras superfamily that regulate a wide variety of biological processes, ranging from gene expression to cell migration. Mechanistically, the major Rho GTPases function as molecular switches cycling between an inactive GDP-bound and an active GTP-bound conformation, although several Rho proteins spontaneously exchange nucleotides or are simply devoid of GTPase activity. For over a decade, RhoGEFs and RhoGAPs have been established as the mainstream regulators of Rho proteins, respectively flipping the switch on or off. However, regulation by GEFs and GAPs leaves several fundamental questions on the operation of the Rho switch unanswered, indicating that the regulation of Rho proteins does not rely exclusively on RhoGEFs and RhoGAPs. Recent evidence indeed suggests that Rho GTPases are finely tuned by multiple alternative regulatory mechanisms, including post-translational modifications and protein degradation, as well as crosstalk mechanisms between Rho proteins. Here we review these alternative mechanisms and discuss how they alter Rho protein function and signaling. We also envision how the classic binary Rho switch may indeed function more like a switchboard with multiple switches and dials that can all contribute to the regulation of Rho protein function.  相似文献   

14.
15.
Several bacterial toxins target Rho GTPases, which constitute molecular switches in several signaling processes and master regulators of the actin cytoskeleton. The biological activities of Rho GTPases are blocked by C3-like transferases, which ADP-ribosylate Rho at Asn41, but not Rac or Cdc42. Large clostridial cytotoxins (e. g., Clostridium difficile toxin A and B) glucosylate Rho GTPases at Thr37 (Rho) or Thr35 (Rac/Cdc42), thereby inhibiting Rho functions by preventing effector coupling. The 'injected' toxins ExoS, YopE and SptP from Pseudomonas aeruginosa, Yersinia and Salmonella ssp., respectively, which are transferred into the eukaryotic target cells by the type-III secretion system, inhibit Rho functions by acting as Rho GAP proteins. Rho GTPases are activated by the cytotoxic necrotizing factors CNF1 and CNF2 from Escherichia coli and by the dermonecrotizing toxin DNT from B. bronchiseptica. These toxins deamidate/transglutaminate Gln63 of Rho to block the intrinsic and GAP-stimulated GTP hydrolysis, thereby constitutively activating the GTPases. Rho GTPases are also activated by SopE, a type-III system injected protein from Salmonella ssp., that acts as a GEF protein.  相似文献   

16.
Given the numerous mechanisms that regulate the activity of Rho GTPases and the multiple effectors for Rho proteins, how is specificity achieved when transducing signals via Rho GTPase-regulated molecular networks? The finding that the scaffold protein hCNK1 links Rho guanine-nucleotide-exchange factors and Rho to JNK (c-Jun N-terminal kinase), while limiting stress-fiber formation and serum-response-factor activation, suggests that scaffold proteins govern the selection of signal outputs, thus helping to solve the Rho GTPase-signaling puzzle.  相似文献   

17.
The small GTPases Rho, Rac, and Cdc42 are monoglucosylated at effector domain amino acid threonine 37/35 by Clostridium difficile toxins A and B. Glucosylation renders the Rho proteins inactive by inhibiting effector coupling. To understand the functional consequences, effects of glucosylation on subcellular distribution and cycling of Rho GTPases between cytosol and membranes were analyzed. In intact cells and in cell lysates, glucosylation leads to a translocation of the majority of RhoA GTPase to the membranes whereas a minor fraction is monomeric in the cytosol without being complexed with the guanine nucleotide dissociation inhibitor (GDI-1). Rho complexed with GDI-1 is not substrate for glucosylation, and modified Rho does not bind to GDI-1. However, a membranous factor inducing release of Rho from the GDI complex makes cytosolic Rho available as a substrate for glucosylation. The binding of glucosylated RhoA to the plasma membranes is saturable, competable with unmodified Rho-GTPgammaS guanosine 5'-O-(3-thiotriphosphate), and takes place at a membrane protein with a molecular mass of about 70 kDa. Membrane-bound glucosylated Rho is not extractable by GDI-1 as unmodified Rho is, leading to accumulation of modified Rho at membranous binding sites. Thus, in addition to effector coupling inhibition, glucosylation also inhibits Rho cycling between cytosol and membranes, a prerequisite for Rho activation.  相似文献   

18.
The Rho family of GTPases is present in all eukaryotic cells from yeast to mammals; they are regulators in signaling pathways that control actin organization and morphogenetic processes. In yeast, Rho GTPases are implicated in cell polarity processes and cell wall biosynthesis. It is known that Rho1 and Rho2 are key proteins in the construction of the cell wall, an essential structure that in Schizosaccharomyces pombe is composed of beta-glucan, alpha-glucan, and mannoproteins. Rho1 regulates the synthesis of 1,3-beta-D-glucan by activation of the 1,3-beta-D-glucan synthase, and Rho2 regulates the synthesis of alpha-glucan by the 1,3-alpha-D-glucan synthase Mok1. Here we describe the characterization of another Rho GTPase in fission yeast, Rho4. rho4Delta cells are viable but display cell separation defects at high temperature. In agreement with this observation, Rho4 localizes to the septum. Overexpression of rho4(+) causes lysis and morphological defects. Several lines of evidence indicate that both rho4(+) deletion or rho4(+) overexpression result in a defective cell wall, suggesting an additional role for Rho4 in cell wall integrity. Rho4Delta cells also accumulate secretory vesicles around the septum and are defective in actin polarization. We propose that Rho4 could be involved in the regulation of the septum degradation during cytokinesis.  相似文献   

19.
Fibroblast cells play a central role in the proliferation phase of wound healing processes, contributing to force development. The intracellular signaling pathways regulating this non-muscle contraction are only partially understood. To study the relations between Rho A and contractile responses, constitutively active Rho A (CA-Rho A) fibroblast cells were reconstituted into fibers and the effects of calf serum (CS) on isometric force were studied. CS-induced force in CA-Rho A fibroblast fibers was twice as large as that in wild type (NIH 3T3) fibroblast fibers. During this response, the translocation of Rho A from the cytosol to the membrane was detected by Rho A activity assays and Western blot analysis. Pre-treatment with a Rho specific inhibitor (C3-exoenzyme) suppressed translocation as well as contraction. These results indicate that Rho A activation is essential for fibroblast contraction. The Rho kinase inhibitor (Y27632) inhibited both NIH 3T3 and CA-Rho A fibroblast fiber contractions. Activation of Rho A is thus directly coupled with Rho kinase activity. We conclude that the translocation of Rho A from the cytosol to the membrane and the Rho kinase pathway can regulate wound healing processes mediated by fibroblast contraction.  相似文献   

20.
Rho localization in cells and tissues   总被引:9,自引:0,他引:9  
Rho family small GTPases regulate cytoskeletal organization. Although their spatiotemporal activities appear to be important for cellular morphogenesis, there has been little characterization of the localization of Rho family GTPases in cells and tissues. Here we show precise localization of Rho subfamily proteins in mammalian cultured cells and tissues through evaluation of anti-Rho antibodies and fixation protocols. Although Rho is not a structural protein but functions as a switching molecule, it often localizes at several distinct domains or structures of cells. In cultured epithelial cells, Rho was highly accumulated at lateral membranes. However, in fibroblastic cells, Rho appeared to be distributed evenly in the cytoplasm. Rho concentration at the cleavage furrow at cytokinesis was generally observed. In A431 cells, Rho translocation from the cytoplasm to elongating microvilli at the apical membrane within 30 s after EGF stimulation was clearly demonstrated. Also, Myc- or GFP-tagged RhoA did not always reflect the localization of endogenous Rho, indicating a drawback of protein-tagging methods for localization research. In mouse tissues, Rho localization differed depending on cell type, probably reflecting the functional differences of each cell type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号