首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The cellular basis for diverse responses to oxygen   总被引:10,自引:0,他引:10  
  相似文献   

3.
Although a great deal of progress has been made over the last several years in understanding the interactions of leishmania with mammalian cells, much work remains. The consensus from many of these studies is that promastigotes utilize multiple receptors to bind to macrophages. Ongoing studies involving the use of both purified and molecularly cloned receptors and ligands should eventually provide a more detailed understanding of the mechanisms by which promastigotes infect macrophages. At this time, the mechanism(s) involved in the interaction of amastigostes with mammalian cells remains somewhat enigmatic. Since amastigotes are responsible for the cell to cell spread of leishmania, gaining a better understanding of amastigote-macrophage interactions represents an important goal of future leishmania research.  相似文献   

4.
Serum, elevated pH, excess Zn++, 9,10 dimethyl-1,2 dibenzanthracene (DMBA) and insulin accelerate the progress of growth-inhibited chick embryo cells into the S-period of DNA synthesis. A comparative study was made of their capacity to elicit other cellular responses within two hours after their application. All the agents studied stimulated the uptake of the glucose analogue 2-deoxy-D-glucose (2-dGlc). Elevated pH elicited a more striking increase than the other agents in the uptake of the amino acid analogue alpha-amino isobutyric acid (AIB). The application of subtoxic concentrations of Zn++ or DMBA did not stimulate the uptake of uridine by cells nor its incorporation into RNA when tested at 2 hours. However, it was found that the stimulation of uridine utilization did occur but was delayed several hours. Similarly, the accelerated onset of DNA synthesis was also delayed for several hours by these agents. Insulin acted like serum in stimulating the utilization of 2-dGlc, AIB and uridine. Serum and DMBA were particularly effective in stimulating the utilization of choline. It was concluded that the utilization of 2-dGlc, uridine and thymidine are affected similarly by all the agents, but that there may be differential effects in the utilization of AIB and choline. The inhibition of RNA synthesis by actinomycin D did not prevent the relative stimulation of 2-dGlc, AIB and choline utilization by serum and pH treatment. The inhibition of protein synthesis by cycloheximide did not prevent the relative stimulation of 2-dGlc and choline utilization by serum and pH treatment. It partially blocked the increased uptake of AIB and had erratic effects on the utilization of uridine. It was concluded that neither RNA nor protein synthesis is required for some, if not all, the early responses to growth stimuli measured here. The inhibited cell appears to be a poised system which carries out a programmed array of reactions characteristic of the cell type following perturbation by a variety of unrelated agents. In vivo specificity is provided by the physiological reagents available (i.e., hormones) and their capacity to interact with different cell types.  相似文献   

5.
High-throughput screening, based on subcellular imaging, has become a powerful tool in lead discovery. Through the generation of high-quality images, not only the specific target signal can be analyzed but also phenotypic changes of the whole cell are recorded. Yet analysis strategies for the exploration of high-content screening results, in a manner that is independent from predefined control phenotypes, are largely missing. The approach presented here is based on a well-established modeling technique, self-organizing maps (SOMs), which uses multiparametric results to group treatments that create similar morphological effects. This report describes a novel visualization of the SOM clustering by using an image of the cells from each node, with the most representative cell highlighted to deploy the phenotype described by each node. The approach has the potential to identify both expected hits and novel cellular phenotypes. Moreover, different chemotypes, which cause the same phenotypic effects, are identified, thus facilitating "scaffold hopping."  相似文献   

6.
Kiss T 《Cell》2002,109(2):145-148
Small nucleolar RNAs represent an abundant, evolutionarily ancient group of noncoding RNAs which possess impressively diverse functions ranging from 2'-O-methylation and pseudouridylation of various classes of RNAs, through nucleolytic processing of rRNAs to the synthesis of telomeric DNA.  相似文献   

7.
The phytohormone cytokinin triggers numerous and diverse responses during the plant life cycle via a two-component phosphorelay signalling system. Each step of the signalling cascade is supported by a gene family comprising several members. While functional redundancy is observed among family members, additional gene-specific functions encoded by cis-regulatory and coding sequence of individual family members have been described and contribute to specificity in signalling output. In addition, the cellular context of the signal-receiving cell affects the response triggered. Recent studies in Arabidopsis have demonstrated how expression of cytokinin signalling components predefines a spatiotemporal map of signalling sensitivity, which causes local signal amplification and attenuation. In summary, the specific interpretation of cytokinin signalling is affected by an orchestrated interplay of signalling genes and cellular context.  相似文献   

8.
FHA: a signal transduction domain with diverse specificity and function   总被引:4,自引:0,他引:4  
The structure of the FHA domain of the Chfr mitotic checkpoint protein described in this issue of Structure represents one of only a few known structures of this newly discovered phosphoprotein binding domain with diverse function and specificity.  相似文献   

9.
10.
The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in noncanonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. Whereas many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin-conjugating enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin-conjugating enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells seem to be an indicator of mild oxidative stress.  相似文献   

11.
12.
Wu L  Hickson ID 《Mutation research》2002,509(1-2):35-47
The faithful replication of the genome is essential for the survival of all organisms. It is not surprising therefore that numerous mechanisms have evolved to ensure that duplication of the genome occurs with only minimal risk of mutation induction. One mechanism of genome destabilization is replication fork demise, which can occur when a translocating fork meets a lesion or adduct in the template. Indeed, the collapse of replication forks has been suggested to occur in every replicative cell cycle making this a potentially significant problem for all proliferating cells. The RecQ helicases, which are essential for the maintenance of genome stability, are thought to function during DNA replication. In particular, RecQ helicase mutants display replication defects and have phenotypes consistent with an inability to efficiently reinitiate replication following replication fork demise. Here, we review some current models for how replication fork repair might be effected, and discuss potential roles for RecQ helicases in this process.  相似文献   

13.
Thymocytes from adrenalectomized BALB/c male mice were separated by peanut agglutination (PNA) into cortical, corticosensitive, PNA+ cells and larger, medullary, corticoresistant, PNA- cells; the extent of cross-contamination of PNA+ and PNA- cells, and vice versa, was checked by flow microfluorometry. Glucocorticoid receptor profiles were established with 3H-dexamethasone as probe; no differences in receptor affinity or cellular concentration, or in cytoplasmic and nuclear compartmentalization were seen between PNA+ and PNA- cells. On two-dimensional gel electrophoresis, PNA+ and PNA- thymocytes from oil-injected (control) adrenalectomized mice showed patterns of incorporation of 35S-methionine into protein that differed in at least 12 spots, as revealed by autoradiography. PNA+ and PNA- cells from mice treated with submaximal (6 micrograms/day) or near-maximal thymolytic doses of dexamethasone (20 micrograms/day) were also examined by two-dimensional gel electrophoresis. Both PNA+ and PNA- cells showed substantial, overlapping dexamethasone-induced changes in protein synthetic profiles.  相似文献   

14.
A wide variety of approaches, ranging from Petri nets to systems of partial differential equations, have been used to model very specific aspects of cellular or biochemical functions. Here we describe how an agent-based or dynamic cellular automata (DCA) approach can be used as a very simple, yet very general method to model many different kinds of cellular or biochemical processes. Specifically, using simple pairwise interaction rules coupled with random object moves to simulate Brownian motion, we show how the DCA approach can be used to easily and accurately model diffusion, viscous drag, enzyme rate processes, metabolism (the Kreb's cycle), and complex genetic circuits (the repressilator). We also demonstrate how DCA approaches are able to accurately capture the stochasticity of many biological processes. The success and simplicity of this technique suggests that many other physical properties and significantly more complicated aspects of cellular behavior could be modeled using DCA methods. An easy-to-use, graphically-based computer program, called SimCell, was developed to perform the DCA simulations described here. It is available at http://wishart.biology.ualberta.ca/SimCell/.  相似文献   

15.
16.
17.
18.
Dynamin is a GTPase mechanoenzyme most noted for its role in vesicle scission during endocytosis, and belongs to the dynamin family proteins. The dynamin family consists of classical dynamins and dynamin-like proteins (DLPs). Due to structural and functional similarities DLPs are thought to carry out membrane tubulation and scission in a similar manner to dynamin. Here, we discuss the newly emerging roles for DLPs, which include vacuole fission and fusion, peroxisome maintenance, endocytosis and intracellular trafficking. Specific focus is given to the role of DLPs in the budding yeast Saccharomyces cerevisiae because the diverse function of DLPs has been well characterized in this organism. Recent insights into DLPs may provide a better understanding of mammalian dynamin and its associated diseases.  相似文献   

19.
M M Kay  J J Marchalonis 《Life sciences》1991,48(17):1603-1608
Physiologic removal of old and damaged erythrocytes, platelets, and other terminally differentiated cells is initiated by the appearance of an aging antigen that marks them for death by initiating the binding of IgG autoantibody and subsequent removal by phagocytes. We have developed a synthetic aging antigen peptide that blocks binding of IgG to senescent cells in vitro. We hypothesize that the synthetic antigen can be used to prevent cell destruction in diseases such as autoimmune hemolytic anemias and idiopathic thrombocytopenia purpura, and that the antigen itself can be used to manipulate cellular lifespan in vivo.  相似文献   

20.
Training protocols apply sequential bouts of resistance exercise (RE) to induce the cellular and molecular responses necessary to produce compensatory hypertrophy. This study was designed to 1) define the time course of selected cellular and molecular responses to a single bout of RE and 2) examine the effects of interbout rest intervals on the summation of these responses. Rat muscles were exposed to RE via stimulation of the sciatic nerve in vivo. Stimulated and control muscles were obtained at various time points post-RE and analyzed via Western blot and RT-PCR. A single bout of RE increased intracellular signaling (i.e., phosphorylations) and expression of mRNAs for insulin-like growth factor-I system components and myogenic markers (e.g., cyclin D1, myogenin). A rest interval of 48 h between RE bouts resulted in much greater summation of myogenic responses than 24- or 8-h rest intervals. This experimental approach should be useful for studying the regulatory mechanisms that control the hypertrophy response. These methods could also be used to compare and contrast different exercise parameters (e.g., concentric vs. eccentric, etc.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号