首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The body size of an individual zooplankton is well related to its grazing rate and to the range of particle sizes it can ingest, and since cladocerans and copepods feed differently, they follow different relationships. Based on these general patterns in individual organisms, we tested whether the size structure and taxonomic composition of more complex natural zooplankton communities are related to their in situ grazing rate and to the range of algal sizes they graze. We compared community grazing rates on individual algal taxa in two communities dominated by small cladocerans, three communities dominated by large cladocerans and three copepod-dominated communities. Small algae were usually grazed most intensively, but grazing rates were poorly related to algal size alone. The range in size of grazed algae increased with increasing mean zooplankton body size, but differed systematically with their taxonomic composition. Communities dominated by Ceriodaphnia or Holopedium grazed a narrower size range of algae [maximum greatest axial length dimension (GALD)=16–36 μm)] than communities with large biomasses of Bosmina or Daphnia (maximum GALD=28–78 μm). Copepod-dominated communities followed the same general relationship as cladocerans. Daphnia-dominated communities grazed the broadest range of algal sizes, and their total grazing rates were up to 2.4 times their grazing rates on small (<35 μm) “highly edible” algae, a difference of similar magnitude to those found in successful trophic cascade biomanipulations. Received: 31 March 1998 / Accepted: 19 October 1998  相似文献   

2.
María Trigueros  Juan  Orive  Emma 《Hydrobiologia》2001,444(1-3):119-133
Seasonal changes in the diatom and dinoflagellate assemblages were examined in the neritic zone of the Urdaibai estuary (north Spain) with regard to some major physical and chemical variables during an annual cycle. A total of 81 diatoms and 38 dinoflagellates were identified and quantified during the study period. Both groups displayed a distinctive pattern of seasonal succession. The seasonal distribution of the Shannon index showed a trend of increasing values from the upper estuary to the lower neritic segment. The diatom diversity maxima were observed in February, April and September, and dinoflagellate maxima in April–May, July and October. Diatoms dominated the assemblages, reaching 1×106 cells l–1 from April to September. A shift from large diatoms and dinoflagellates to small bloom-forming taxa was observed during winter–early spring. A spring diatom bloom composed of Rhizosolenia spp. was observed in April, while small chain-forming taxa (chiefly Chaetoceros spp.) dominated from June to September. Cell maxima for both groups in late summer were produced by the diatoms Chaetoceros salsugineum and Skeletonema costatum, and by the dinoflagellates Heterocapsa pygmaea and Peridinium quinquecorne. Silicate availability by river supply and strong tidal-mixing of the water column seem to determine the year-round dominance of diatoms over dinoflagellates.  相似文献   

3.
Madariaga  Iosu 《Hydrobiologia》2002,(1):345-358
Short-term changes in the photosynthetic carbon metabolism and physiological state of phytoplankton were studied over a summer fortnight-long period in the Urdaibai estuary (Bay of Biscay) and related to observed environmental patterns. Day-to-day variability in the hydrographical and biological features of the estuary during the study period was due to changes in meteorological and tidal conditions. Phytoplankton biomass and primary production increased with the improvement of weather, i.e., light conditions, during neap tides. Thus a mixed bloom of cryptophyceans, Euglena sp., and the dinoflagellate Peridinium foliaceum developed in the middle and upper estuary. Photosynthetic responses of phytoplankton were related to the time-scale of changes in light regime. Allocation of photosynthate to major macromolecular classes (LMWM, lipid, polysaccharide, and protein), like phytoplankton biomass and primary production, showed strong spatio-temporal variability. High carbon fixation into low molecular weight metabolites was associated with growth limitation by low light. The relative incorporation of photosynthetic carbon into proteins increased at the beginning of the phytoplankton bloom but overall, it was rather constant. However, carbon allocation into storage products such us lipid or polysaccharide increased when carbon and energy produced under optimal growth conditions exceeded what could be assimilated into protein. These patterns are explained by both spatio-temporal changes in the environmental conditions and species-specific differences. In general, daily variability appeared to be more important than diurnal periodicity in the physiological responses of phytoplankton. Results from this study show that phytoplankton photosynthesis and carbon metabolism are simultaneously affected by biotic and abiotic factors, although short-term light fluctuations may have a major influence on the physiological state of phytoplankton in the Urdaibai estuary.  相似文献   

4.
Robert J. Diaz 《Hydrobiologia》1984,115(1):153-158
Weekly sampling over a two year period from a muddy sand bottom in the polyhaline York River, Virginia, U.S.A., clearly identified the pattern of recruitment and survival of the dominant annelid species. Three intermingled recruitment strategies and two survival patterns were observed, ranging from the classic opportunistic life style of mass recruitment over short time periods followed by mass mortality to prolonged recruitment with lower mortality. Qualitatively the annelid assemblage was very similar from year to year with most of the changes being quantitative. Oligochaetes, Tubificoides spp., were the most stable and characteristic members of the annelid assemblage.Contribution No. 1118 of the Virginia Institute of Marine Science  相似文献   

5.
Zooplankton and ichthyoplankton assemblages were studied fromJanuary 2003 to June 2004 in a temperate shallow estuary (Mondegoestuary, Portugal). Monthly sampling was performed at five stationsat high and low tides, with subsurface tows with 335 and 500µm mesh Bongo nets. Analysis of variance (ANOVA) showeda significant effect (P < 0.05) of the mesh size of the neton the abundance of main zooplankton groups. On average, theabundance of the 500 µm taxocenosis was 67 and 102 timeslower than the 335 µm taxocenosis at high and low tidesrespectively, especially in the south arm. More than 80 specieswere identified in the zooplankton samples. The upper reachesof northern arm are dominated by freshwater crustacean mesozooplanktonlike Acanthocyclops robustus and Diaptomus spp. and the cladoceransDaphnia, Ceriodaphnia and Bosmina, often being codominant. Inthe southern arm, the resident estuarine copepod Acartia tonsawas dominant, eventually being the most abundant taxon. Marinereaches of estuary are usually dominated by the marine calanoidcopepods Acartia clausi and Temora longicornis and the siphonophoresMuggiaea atlantica. Concerning the ichthyoplankton, this wasdominated by the larvae of estuarine resident species, mainlyPomatoschistus sp., and eggs of Engraulis encrasicolus. Theabundance of Pomatoschistus sp. larvae was positively correlatedwith water temperature. Statistical analysis (canonical correspondenceanalysis) used to determine the spatiotemporal structure ofthe zooplankton assemblages and its correlation with environmentalvariables showed that salinity and temperature were the mainfactors influencing the distribution of zooplankton. The resultsobtained also showed that abundance was strongly influencedby the hydrological circulation pattern and direct or indirecthuman impacts that occur in each arm of the estuary. This article was presented at Plankton Symposium III, held atFiguera da Foz, portugal, between 17 and 20 March 2005, underthe auspices of the University of Coimbra and the Universityof Aveiro, and coordinated by Mário Jorge Pereira andUlisses M. Azeiteiro.  相似文献   

6.
Heterotrophic bacterial and phytoplankton biomass, production, specific growth rates and growth efficiencies were studied in July 2001 and January 2002 during both spring and neap tides, along a tidal cycle, at three sites in a subtropical estuary. Major freshwater inputs located in the Northern region led to differences in both phytoplankton and bacterioplankton biomass and activity along the estuary. While in the Northern region phytoplankton is light-limited, with mean phytoplankton production (PP) between 1.1 and 1.9 μg C l−1 h−1 and mean specific growth rates (PSG) between 0.14 and 0.16 d−1, the Southern region registered values as high as 24.7 μg C l−1 h−1 for PP and 2.45 d−1 (mean PP between 3.4 and 7.3 μg C l−1 h−1; mean PSG between 0.28 and 0.57 d−1). On the other hand, maximum bacterial production (BP: 63.8 μg C l−1 h−1) and specific growth rate (BSG: 32.26 d−1) were observed in the Northern region (mean BP between 3.4 and 12.8 μg C l−1 h−1; mean BSG between 1.98 and 6.67 day−1). These bacterial activity rates are among the highest recorded rates in estuarine and coastal waters, indicating that this system can be highly heterotrophic, due to high loads of allochthonous carbon (mainly derived from mangrove forest). Our results also showed that, despite that BP rates usually exceeded PP, in the Southern region BP may be partially supported (∼45%) by PP, since a significant regression was observed between BP and PP (r = 0.455, P < 0.001). Handling editor: P. Viaroli  相似文献   

7.
夏、秋季长江口及毗邻海域浮游动物的分布与变化   总被引:3,自引:1,他引:3       下载免费PDF全文
浮游动物在整个海洋生态系统中起着非常重要的调控作用,它通过摄食控制浮游植物的数量和分布,同时又是许多经济鱼类的主要饵料,因而其分布与变化可以直接影响渔业资源状况[1,2].  相似文献   

8.
A. Ruiz  J. Franco  E. Orive 《Aquatic Ecology》1994,28(3-4):309-316
Seston quantity and quality was measured in the Urdaibai Estuary in summer, when river discharge is low and tidal flushing is the main driving force to transport and resuspend particulate matter in the estuary. The highest seston concentrations are found in the upper estuary, where more than 90% of total suspended particulate matter is made up of particles <20 μm. There is a temporal ebb-flood asymmetry and turbulent mixing is stronger at flood tide. During dry calm periods sediment resuspension is observed for a short period of time at floods during spring tides, decreasing drastically before slack waters. In spite of this, particulate organic matter mainly originates from anthropogenic sources (domestic wastewater discharge) and plankton production.  相似文献   

9.
Old Fort Lake, a small (1.6 ha), shallow, and recreational water body in Delhi (India) was studied through monthly surveys in two consecutive years (January, 2000–December, 2001). Precipitation is the major source of water for this closed basin lake. In addition, ground water is used for replenishing the lake regularly. This alkaline, hyposaline hard water lake contains very high ionic concentration, especially of nitrates. Based on overall ionic composition, this lake can be categorized as chloride–sulfate alkaline waters with the anion sequence dominated by SO4 2− > Cl > HCO3 , and the cations by Mg++ > Ca++. The overall seasonal variability in physicochemical profile was largely regulated by the annual cycle of evaporation and precipitation, whereas the ground water largely influences its water quality. The lake exhibited phytoplankton-dominated turbid state due to dominance of the blue green alga, Microcystis aeruginosa. The persistent cyanobacterial blooms and the elevated nutrient levels are indicative of the cultural eutrophication of the lake. This study focuses on the relative importance of eutrophic vis-à-vis hyposaline conditions in determining the structure and seasonal dynamics of zooplankton species assemblages. A total of 52 zooplankton species were recorded and rotifers dominated the community structure qualitatively as well as quantitatively. The genus Brachionus comprised a significant component of zooplankton community with B. plicatilis as the most dominant species. The other common taxa were B. quadridentatus, B. angularis, Lecane grandis, L. thalera, L. punctata, Mesocyclops sp., and Alona rectangula. Multivariate data analysis techniques, Canonical Correspondence Analysis (CCA) along with Monte Carlo Permutation Tests were used to determine the minimum number of environmental factors that could explain statistically significant (P < 0.05) proportions of variation in the species data. The significant variables selected by CCA were NH3–N followed by percent saturation of DO, COD, SS, BOD, NO2–N, rainfall, silicates, and PO4–P. The results indicate that the seasonal succession patterns of the zooplankton species were largely controlled by physicochemical factors related directly or indirectly to the process of eutrophication, whereas hyposaline conditions in the lake determined the characteristic species composition. Guest Editors: J. John & B. Timms Salt Lake Research: Biodiversity and Conservation—Selected papers from the 9th Conference of the International Society for Salt Lake Research  相似文献   

10.
The purpose of this paper is to study the asymptotical behavior of a temperate bacteriophage model in chemostat, which was first proposed by Levin et al. [B.R. Levin, F.M. Stewart, L. Chao, Resource-limited growth, competition and predation: A model and experiment studies with bacteria and bacteriophage, Am. Nat. 125 (1977) 3]. Firstly, a classification for the equilibria of the model and their stability are obtained; secondly, sufficient conditions for uniform persistence are obtained; thirdly, sufficient conditions for the global asymptotic behavior are given, and simulations for the model are presented. The theoretical results show that there are more than eight cases for the classification of the model, and that the decrease (increase) of the nutrient concentration or average lytic time (flow rate) is beneficial to the survival of the sensitive cells. Both the simulated and theoretical results show that there is a possibility of switch phenomena or a periodical outburst of the phages and the lysogens, which is caused by the internal factors rather than by some external environment. Finally, the simulation and regulation of the dynamics of the model with experimental data are presented.  相似文献   

11.
A compilation of available data in between 1967 and 2002 on spring zooplankton abundance was made for the brackish and the freshwater zone of the Schelde estuary. The general picture is a significant increase of 1–2 orders of magnitude in abundance for Rotifera, Copepoda and Branchiopoda (mainly Cladocera) in the freshwater zone, while zooplankton abundance in the brackishwater zone remained more constant. Possible natural and management related causes for this increase in zooplankton abundance are briefly discussed.  相似文献   

12.
Almeida  M.A.  Cunha  M.A.  Alcântara  F. 《Hydrobiologia》2002,(1):251-262
We intended to evaluate the relative contribution of primary production versus allochthonous carbon in the production of bacterial biomass in a mesotrophic estuary. Different spatial and temporal ranges were observed in the values of bacterioplankton biomass (31–273 g C l–1) and production (0.1–16.0 g C l–1 h–1, 1.5–36.8 mg C m–2 h–1) as well as in phytoplankton abundance (50–1700 g C l–1) and primary production (0.1–512.9 g C l–1 h–1, 1.5–512.9 mg C m–2 h–1). Bacterial specific growth rate (0.10–1.68 d–1) during the year did not fluctuate as much as phytoplankton specific growth rate (0.02–0.74 d–1). Along the salinity gradient and towards the inner estuary, bacterio- and phytoplankton biomass and production increased steadily both in the warm and cold seasons. The maximum geographical increase observed in these variables was 12 times more for the bacterial community and 8 times more for the phytoplankton community. The warm to cold season ratios of the biological variables varied geographically and according to these variables. The increase at the warm season achieved its maximum in the biomass production, particularly in the marine zone and at high tide (20 and 112 times higher in bacterial and phytoplankton production, respectively). The seasonal variation in specific growth rate was most noticeable in phytoplankton, with seasonal ratios of 3–26. The bacterial community of the marine zone responded positively – generating seasonal ratios of 1–13 in bacterial specific growth rate – to the strong warm season increment in phytoplankton growth rate in this zone. In the brackish water zone where even during the warm season allochthonous carbon accounted for 41% (on average) of the bacterial carbon demand, the seasonal ratio of bacterial specific growth rate varied from about 1 to 2. During the warm season, an average of 21% of the primary production was potentially sufficient to support the whole bacterial production. During the cold months, however, the total primary production would be either required or even insufficient to support bacterial production. The estuary turned then into a mostly heterotrophic system. However, the calculated annual production of biomass by bacterio- and phytoplankton in the whole ecosystem showed that auto- and heterotrophic production was balanced in this estuary.  相似文献   

13.
The life history pattern, behavior, and distribution of the mysid crustacean,Heteromysis formosa, was studied in a temperate salt marsh. This mysid occurred in epibenthic sled collections every month, but was most abundant from June through November. Marsh creeks with irregular bottoms supported the largest populations, although some individuals occurred in other estuarine habitats and shallow ocean areas.Heteromysis formosa remains hidden on the bottom during the day and swims over open bottom at night. Many young fishes feed onH. formosa, especially at night. Seasonal changes in mysid abundance were related to the life history pattern. Reproduction was continuous from April through October. Overwintering populations of immature mysids were small. FemaleH. formosa were capable of reproducing more than one time. The number of young per brood ranged from 7 to 32 and was related to total adult body length.  相似文献   

14.
Both habitat heterogeneity and disturbance can profoundly influence ecological systems at many levels of biological and ecological organization. However, the joint influences of heterogeneity and disturbance on temporal variability in communities have received little attention despite the intense homogenizing influence of human activity. I performed a field manipulation of substrate heterogeneity in a small New England stream, and measured changes in benthic macroinvertebrate communities for 100 days—a period that included both a severe drought and a flood. Generally, community variability decreased with increasing substrate heterogeneity. However, within sampling intervals, this relationship tended to fluctuate through time, apparently tracking changes in hydrology. At the beginning of the experiment, community temporal variability clearly decreased along a gradient of increasing substrate heterogeneity—a result consistent with an observational study performed the previous year. During the subsequent weeks, droughts and flooding created exceptionally high variability in both hydrology and benthic macroinvertebrate community structure resulting in the disappearance of this relationship. However, during the last weeks of the experiment when hydrologic conditions were relatively more stable, the negatively sloped relationship between community temporal variability and habitat heterogeneity reemerged and mimicked relationships observed both early in the experiment and in the previous year’s study. High habitat heterogeneity may promote temporal stability through several mechanisms including stabilization of resources and increased refugia from minor disturbances or predation. However, the results of this experiment suggest that severe disturbance events can create large-scale environmental variability that effectively swamps the influence of habitat heterogeneity, illustrating that a thorough understanding of community temporal variability in natural systems will necessarily consider sources of environmental variability at multiple spatial and temporal scales. Handling editor: L. M. Bini  相似文献   

15.
Seasonal dynamics and interspecific competition in Oneida Lake Daphnia   总被引:4,自引:0,他引:4  
Carla E. Cáceres 《Oecologia》1998,115(1-2):233-244
I investigated the population dynamics and competitive interactions of two species of the suspension-feeding crustacean Daphnia in Oneida Lake, N.Y. Both species have persisted in the lake for decades, but their water-column densities are negatively correlated. The larger Daphnia pulicaria dominates in some years, the smaller D. galeata mendotae in others, and in some years one species replaces the other seasonally. Although this pattern results in part from annual variation in vertebrate predation pressure, predation alone cannot explain the irregular daphnid dynamics. In 1992–1995, I examined the water-column abundances, birth and death rates of both species. D. pulicaria dominated in two years, D. galeata mendotae was replaced by D. pulicaria in one year and in 1994, both species persisted in low numbers. To test the effect of temporal changes on the strength of intra- and interspecific competition on both juvenile and adult daphnids, I manipulated a series of field enclosures in 1994 and 1995. The outcome of competition varied within and between years, and its effects were most evident at the highest densities and lowest resource levels. For adults of both species, the effects of interspecific competition were detected more often than those of intraspecific competition. Lipid reserves (a metric of fitness) among juveniles were generally low, with those of D. galeata mendotae often being less than those of D. pulicaria. Contrary to the results of other studies examining competition in daphnids, spatial segregation and predictable within-year reversals in competitive dominance most likely do not play a large role in fostering coexistence of the Oneida Lake daphnids. Instead, coexistence of these competitors is promoted by interannual variation and long-lived diapausing eggs. Received: 20 July 1997 / Accepted: 21 November 1997  相似文献   

16.
The composition and dynamics of phytoplankton populations were examined in Old Woman Creek estuary, Lake Erie (USA). The centric bacillariophytes,Cyclotella atomus Hust.,Cyclotella meneghiniana Kütz., andAulacoseira alpigena (Grun.) Krammer, and the cryptophytes,Cryptomonas erosa Ehren. andRhodomonas minuta var. nannoplanctonica Skuja, dominated the phytoplankton most of the year. Chlorophytes, euglenophytes, and cyanophytes were observed less frequently. Estuarine and Lake Erie phytoplankton were considered distinct populations; lake taxa were largely confined to the estuary mouth and present only in low biomass. Maxima and minima of estuarine phytoplankton coincided with meteorological and hydrological forcing in the form of rainfall and subsequent storm-water inflows, respectively. Distinct population dynamics between the upper and lower estuary following storm events were attributed to the presence/absence of refugia serving as a source for repopulation by opportunistic taxa, fluctuating light conditions in the water column resulting from influx of particulate matter and resuspension of bottom sediments, and nutrient inputs associated with surface runoff and sub-surface interflow. Additionally, agricultural herbicides introduced by storm-water inflows potentially may affect and/or control the growth and physiological responses of individual taxa.  相似文献   

17.
The Mondego estuary (Portugal) has suffered severe ecological stress over the last two decades, as manifested in the replacement of seagrasses by opportunistic macroalgae, degradation of water quality and increased turbidity. A restoration plan was implemented in 1998, which aimed to reverse the eutrophication effects, and especially to restore the original natural seagrass (Zostera noltii) community. This article explores the long-term changes in Ampithoe valida and Melita palmata (Amphipoda) populations in response to eutrophication (with consequent seagrass loss and macroalgal proliferation) and to the subsequent restoration plan (with progressive seagrass recovery and macroalgal biomass decline). Until the early 1990s, high densities of A. valida and M. palmata were recorded in the Mondego estuary, especially during the occurrence of the macroalgal bloom and during all the periods in which green macroalgae were available. After the implementation of the restoration plan, species abundance, biomass and production levels decreased considerably due to the progressive decline of green macroalgae. This implied the virtual disappearance of the amphipod population, mainly A. valida. Distinct behaviours displayed by the two species could be related to different food strategies and habitat preferences. Ampithoe valida showed feeding preferences for ephemeral softer, filamentous or bladed algae (e.g. Ulva sp.) due to its high caloric content, using the Z. noltii bed only as a habitat for protection against predators or shelter from wave action. On the other hand, M. palmata did not suffer a strong decline in its population density, biomass and production, which may indicate that this species is probably not a primary consumer of green macroalgae and may readily shift to alternative ecological niches. Handling editor: P. Viaroli  相似文献   

18.
The Seine estuary (France) is currently one of the world’s most contaminated estuaries, due in particular to its high cadmium and lead content. Proper understanding of contaminant transfer, transformation and retention mechanisms throughout the estuary and up to the adjacent marine zone require a range of studies involving data collections, experiments, and modeling tool. A multivariable transport model (SiAM-3D) was used to simulate dissolved and particulate transport and it is applied to several calculation grids; a speciation model (MOCO) was used to select key species and obtain a schematic system representation. The coupled model for Cd and Pb was compared with field measurements. The complementary character of various tools (model applied to annual time scale, in situ measurements and experiments) allowed to explore and quantify various hypotheses on the high dissolved cadmium concentrations observed during low river flow. The target is to achieve a compromise between acceptable computing times and adequate result accuracy. Although particle and contaminant behaviour is globally well-reproduced by the coarse grid, calculation errors relating to bayward fluxes and stocks deposited inside the estuary were highlighted after comparison with the fine grid.  相似文献   

19.
Predator–prey interactions can play a significant role in shaping the structure of both terrestrial and marine communities. Sponges are major contributors to benthic community structure on temperate reefs and although several studies have investigated how abiotic processes control sponge distributions on these reefs, the role of predation is less clear. We investigated the relationship between sponge predators and the distribution of sponges on temperate reefs in the South Atlantic Bight (SAB), off Georgia, USA. We documented sponge species richness and abundance, spongivorous fish density, and examined the ability of 19 sponge species to chemically and structurally deter predation by fishes. We also conducted reciprocal transplant experiments to determine if predation by fishes contributes to the observed zonation of sponge species on these reefs. Our surveys revealed two distinct sponge assemblages: one characterized by amorphous and encrusting sponge morphotypes colonizing the vertical, rocky outcroppings (scarp sponge community), while the other consisted of pedunculate, digitate, and arborescent growth forms occurring on the sediment-laden reef top (plateau sponge community). Spongivorous fishes were more abundant on the scarp than the plateau and scarp sponges were found to be more effective than plateau sponges at chemically deterring generalist fishes. In contrast, plateau sponges were more reliant on structural defenses: a result consistent with the higher spicule content of their skeletons. Transplant experiments confirmed that predators prevent some plateau sponges from colonizing the scarp even though they possess structural defenses. Thus, predation appears to play a role in shaping sponge community structure on SAB reefs by restricting those species lacking adequate chemical defenses to habitats where there is a paucity of spongivores.  相似文献   

20.
Predation risk and the structure of freshwater zooplankton communities   总被引:2,自引:0,他引:2  
Summary Many predators inflict substantial mortality on their prey. The prey respond to these selective pressures with changes in their spatial and temporal overlap with the predator (density risk responses), or with changes in their vulnerability to the predator (prey vulnerability responses). Here we develop a simple predation model that permits quantification of the basic response types of the prey in nature. We then test the hypothesis that prey response will be proportional to the intensity of the predation mortality relative to all other sources of mortality and decreased natality acting on the prey. A significant regression relationship is obtained for the prey vulnerability response but not for any of the density risk responses. The individual response values and regression statistics are used to interpret the relative importance of the different response types and to assess the predator's influence on prey community structure.Supported by Lehigh University Environmental Studies Center  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号