首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Systemic movement of plant viruses is a central event in viral infection. To better understand this process, the heavy metal cadmium was used to inhibit systemic spread of turnip vein clearing virus (TVCV), a tobamovirus, in tobacco plants. Study of the mechanism by which cadmium exerts this inhibitory effect may provide insights into the essential steps of the TVCV systemic movement pathway. Our results demonstrated that cadmium treatment did not affect TVCV transport from the inoculated non-vascular tissue into the plant vasculature but blocked viral exit into uninoculated non-vascular tissues. Thus, TVCV virions may enter and exit the host plant vascular system by two different mechanisms. We also showed that cadmium-treated plants still supported systemic spread of an unrelated tobacco etch virus (TEV), suggesting multiple pathways for systemic infection. Finally, cadmium-induced arrest in TVCV systemic infection was shown to occur by a salicylic acid-independent mechanism.  相似文献   

2.
Heavy metals, such as cadmium, have a significant impact on plant physiology. However, their potential effect on plant–pathogen interaction, an important biological process, has not been examined. This study shows that exposure of tobacco plants to non-toxic concentrations of cadmium completely blocked viral disease caused by turnip vein clearing virus. Cadmium-mediated viral protection was due to inhibition of the systemic movement of the virus, i.e. its spread from the inoculated into uninoculated leaves. Exposure of plants to cadmium had no effect on viral replication, assembly and local movement within the inoculated leaf. Analysis of the viral presence in different tissues suggested that cadmium treatment inhibited virus exit from the vascular tissue into uninoculated leaves rather than its entry into the host plant vasculature. Higher, toxic levels of cadmium did not produce this inhibitory effect on viral movement, allowing the systemic spread of the virus and development of the viral disease. These observations suggest that cadmium-induced viral protection requires a relatively healthy, unpoisoned plant in which non-toxic levels of cadmium may trigger the production of cellular factors which interfere with the viral systemic movement.  相似文献   

3.
Systemic movement of a tobamovirus requires host cell pectin methylesterase   总被引:10,自引:0,他引:10  
Systemic movement of plant viruses through the host vasculature, one of the central events of the infection process, is essential for maximal viral accumulation and development of disease symptoms. The host plant proteins involved in this transport, however, remain unknown. Here, we examined whether or not pectin methylesterase (PME), one of the few cellular proteins known to be involved in local, cell-to-cell movement of tobacco mosaic virus (TMV), is also required for the systemic spread of viral infection through the plant vascular system. In a reverse genetics approach, PME levels were reduced in tobacco plants using antisense suppression. The resulting PME antisense plants displayed a significant degree of PME suppression in their vascular tissues but retained the wild-type pattern of phloem loading and unloading of a fluorescent solute. Systemic transport of TMV in these plants, however, was substantially delayed as compared to the wild-type tobacco, suggesting a role for PME in TMV systemic infection. Our analysis of virus distribution in the PME antisense plants suggested that TMV systemic movement may be a polar process in which the virions enter and exit the vascular system by two different mechanisms, and it is the viral exit out of the vascular system that involves PME.  相似文献   

4.
Systemic movement is central to plant viral infection. Exposure of tobacco plants to low levels of cadmium ions blocks the systemic spread of turnip vein-clearing tobamovirus (TVCV). We identified a tobacco glycine-rich protein, cdiGRP, specifically induced by low concentrations of cadmium and expressed in the cell walls of plant vascular tissues. Constitutive cdiGRP expression inhibited systemic transport of TVCV, whereas suppression of cdiGRP production allowed TVCV movement in the presence of cadmium. cdiGRP exerted its inhibitory effect on TVCV transport by enhancing callose deposits in the vasculature. So cdiGRP may function to control plant viral systemic movement.  相似文献   

5.
Early studies of the tobravirus Tobacco rattle virus (TRV) described two types of virus isolate with apparently different disease characteristics. M‐type isolates, which contain both viral genomic RNAs and form virus particles, could be passaged by mechanical inoculation and produced rapid but shortlived systemic symptoms. In contrast, NM‐type isolates, which contain only RNA1 and do not form virus particles, were difficult to passage by mechanical inoculation and were very slow to produce systemic symptoms. From the early observations on such isolates made in the 1960s, it has become accepted that M isolates with encapsidated TRV particles move rapidly through the vascular system whereas NM isolates containing only unencapsidated TRV RNA1 move only slowly via plasmodesmata from cell to cell and take many weeks to reach the upper parts of plants. However, we show that NM isolates of TRV and another tobravirus Pea early‐browning virus (PEBV) move into systemic tissue of TV. benthamiana and N. clevelandii by 6 days post inoculation, suggesting that this rapid movement occurs via the vasculature. The systemic movement of TRV and PEBV mutants lacking functional coat protein that have been modified to express the green fluorescent protein were examined by confocal microscopy. This confirmed that the tobraviruses do not require the CP for long distance movement via the phloem, a property that is shared with only a small group of plant viruses.  相似文献   

6.
Patterns of systemically induced resistance (SIR) in Eastern Cottonwood, Populus deltoides, measured by reduced feeding of the leaf-chewing beetle, Plagiodera versicolora, were shown to be directly related to the distribution of the plant vasculature. Mechanical damage to single leaves resulted in SIR in non-adjacent, orthostichous leaves (vertically aligned on the stem) with direct vascular connections, both up and down the shoot; but no SIR in adjacent, non-orthostichous leaves with less direct vascular connections. The control that the plant vasculature exerts over signal distribution following wounding can therefore be used to predict SIR patterns, explain variation in the distribution of SIR, and relate this ecologically important phenomenon to biochemical processes of systemic gene expression and biochemical resistance mechanisms.  相似文献   

7.
During systemic infections, viruses move long distances through the plant vascular system. The long-distance movement of cauliflower mosaic virus (CaMV) in Arabidopsis has been examined using a whole plant in situ hybridization technique called plant skeleton hybridization. CaMV moves long distance through the phloem largely following the flow of photoassimilates from source to sink leaves. During the course of plant development, sink-source relationships change and the region of the plant that CaMV can invade is progressively reduced. In Arabidopsis, we have found that conditions that influence the rate of plant development dramatically impact the long-distance movement of CaMV, because under normal conditions the rate of plant development is closely matched to the kinetics of virus movement. Ecotypes and mutants of Arabidopsis that flower early show a form of resistance to systemic CaMV infection, which we call "developmental resistance." Developmental resistance results from the fact that the rosette leaves mature early in the life of an early flowering plant and become inaccessible to virus. On the other hand, if the development of early flowering plants is retarded by suboptimal growth conditions, inoculated plants appear more susceptible to the virus and systemic infections become more widespread. We have found that other Arabidopsis ecotypes, such as Enkheim-2 (En-2), show another form of resistance to virus movement that is not based on developmental or growth conditions. The virus resistance in ecotype En-2 is largely conditioned by a dominant trait at a single locus.  相似文献   

8.
The effective size of populations (Ne) determines whether selection or genetic drift is the predominant force shaping their genetic structure and evolution. Despite their high mutation rate and rapid evolution, this parameter is poorly documented experimentally in viruses, particularly plant viruses. All available studies, however, have demonstrated the existence of huge within-host demographic fluctuations, drastically reducing Ne upon systemic invasion of different organs and tissues. Notably, extreme bottlenecks have been detected at the stage of systemic leaf colonization in all plant viral species investigated so far, sustaining the general idea that some unknown obstacle(s) imposes a barrier on the development of all plant viruses. This idea has important implications, as it appoints genetic drift as a constant major force in plant virus evolution. By co-inoculating several genetic variants of Cauliflower mosaic virus into a large number of replicate host plants, and by monitoring their relative frequency within the viral population over the course of the host systemic infection, only minute stochastic variations were detected. This allowed the estimation of the CaMV Ne during colonization of successive leaves at several hundreds of viral genomes, a value about 100-fold higher than that reported for any other plant virus investigated so far, and indicated the very limited role played by genetic drift during plant systemic infection by this virus. These results suggest that the barriers that generate bottlenecks in some plant virus species might well not exist, or can be surmounted by other viruses, implying that severe bottlenecks during host colonization do not necessarily apply to all plant-infecting viruses.  相似文献   

9.
Eukaryotes employ RNA silencing as an innate defense system against invading viruses. Dicer proteins play the most crucial role in initiating this antiviral pathway as they recognize and process incoming viral nucleic acids into small interfering RNAs. Generally, 2 successive infection stages constitute viral infection in plants. First, the virus multiplies in initially infected cells or organs after viral transmission and then the virus subsequently spreads systemically through the vasculature to distal plant tissues or organs. Thus, antiviral silencing in plants must cope with both local and systemic invasion of viruses. In a recent study using 2 sets of different experiments, we clearly demonstrated the differential requirement for Dicer-like 4 (DCL4) and DCL2 proteins in the inhibition of intracellular and systemic infection by potato virus X in Arabidopsis thaliana. Taken together with the results of other studies, here we further discuss the functional specificity of DCL proteins in the antiviral silencing pathway.  相似文献   

10.
One of the functions of RNA silencing in plants is antiviral defense. A hallmark of RNA silencing is spreading of the silenced state through the plant. Little is known about the nature of the systemic silencing signal and the proteins required for its production, transport, and reception in plant tissues. Here, we show that the RNA-dependent RNA polymerase RDR6 in Nicotiana benthamiana is involved in defense against potato virus X at the level of systemic spreading and in exclusion of the virus from the apical growing point. It has no effect on primary replication and cell-to-cell movement of the virus and does not contribute significantly to the formation of virus-derived small interfering (si) RNA in a fully established potato virus X infection. In grafting experiments, the RDR6 homolog was required for the ability of a cell to respond to, but not to produce or translocate, the systemic silencing signal. Taking these findings together, we suggest a model of virus defense in which RDR6 uses incoming silencing signal to generate double-stranded RNA precursors of secondary siRNA. According to this idea, the secondary siRNAs mediate RNA silencing as an immediate response that slows down the systemic spreading of the virus into the growing point and newly emerging leaves.  相似文献   

11.
The present study investigates adrenergic regulation of the systemic and pulmonary circulations of the anaesthetised South American rattlesnake, Crotalus durissus. Haemodynamic measurements were made following bolus injections of adrenaline and adrenergic antagonists administered through a systemic arterial catheter. Adrenaline caused a marked systemic vasoconstriction that was abolished by phentolamine, indicating this response was mediated through alpha-adrenergic receptors. Injection of phentolamine gave rise to a pronounced vasodilatation (systemic conductance (G(sys)) more than doubled), while injection of propranolol caused a systemic vasoconstriction, pointing to a potent alpha-adrenergic, and a weaker beta-adrenergic tone in the systemic vasculature of Crotalus. Overall, the pulmonary vasculature was far less responsive to adrenergic stimulation than the systemic circulation. Adrenaline caused a small but non-significant pulmonary vasodilatation and there was tendency of reducing this dilatation after either phentolamine or propranolol. Injection of phentolamine increased pulmonary conductance (G(pul)), while injection of propranolol produced a small pulmonary constriction, indicating that alpha-adrenergic and beta-adrenergic receptors contribute to a basal regulation of the pulmonary vasculature. Our results suggest adrenergic regulation of the systemic vasculature, rather than the pulmonary, may be an important factor in the development of intracardiac shunts.  相似文献   

12.
IFNs have pleiotropic antitumor mechanisms of action. The purpose of this study was to further investigate the effects of IFN-beta on the vasculature of human xenografts in immunodeficient mice. We found that continuous, systemic IFN-beta delivery, established with liver-targeted adeno-associated virus vectors, led to sustained morphologic and functional changes of the tumor vasculature that were consistent with vessel maturation. These changes included increased smooth muscle cell coverage of tumor vessels, improved intratumoral blood flow, and decreased vessel permeability, tumor interstitial pressure, and intratumoral hypoxia. Although these changes in the tumor vasculature resulted in more efficient tumor perfusion, further tumor growth was restricted, as the mature vasculature seemed to be unable to expand to support further tumor growth. In addition, maturation of the intratumoral vasculature resulted in increased intratumoral penetration of systemically administered chemotherapy. Finally, molecular analysis revealed increased expression by treated tumors of angiopoietin-1, a cytokine known to promote vessel stabilization. Induction of angiopoietin-1 expression in response to IFN-beta was broadly observed in different tumor lines but not in those with defects in IFN signaling. In addition, IFN-beta-mediated vascular changes were prevented when angiopoietin signaling was blocked with a decoy receptor. Thus, we have identified an alternative approach for achieving sustained vascular remodeling-continuous delivery of IFN-beta. In addition to restricting tumor growth by inhibiting further angiogenesis, maturation of the tumor vasculature also improved the efficiency of delivery of adjuvant therapy. These results have significant implications for the planning of combination anticancer therapy.  相似文献   

13.
14.
Salicylate watered onto soil in which White Burley tobacco plants were grown represents a reversible stress characterized by stomatal closure, slight slackening of plant growth and low chlorophyll loss. Salicylate affected viral pathogenesis in opposite ways. It had no effect against local and systemic infections by potato virus X (PVX), potato virus Y0 (PVY0) or tobacco mosaic virus (TMV), whereas it completely prevented systemic infection by alfalfa mosaic virus (AIMV) or tobacco, rattle virus (TRV) in a high proportion of treated plants. When infection moved from leaves inoculated with AIMV or TRV, the tendency to limit systemic spread was shown by the restriction of systemic infection to very limited areas erratically distributed in some uninoculated leaves. The salicylate-induced restriction of AIMV or TRV infectivity to inoculated leaves did not appear due to inhibition of virus multiplication because the inoculation of potentially resistant leaves of salicylate-reated plants resulted in virus antigen accumulation comparable to that of untreated controls. Salicylate may therefore inhibit some long distance virus transport function. Salicylate appears able to evoke true hypersensitivity only against systemic viruses able to induce local necrotic lesions, probably by activating some genetic information for resistance that is normally not expressed.  相似文献   

15.
Previously, we reported that CCMV(B3a), a hybrid of bromovirus Cowpea chlorotic mottle virus (CCMV) with the 3a cell-to-cell movement protein (MP) gene replaced by that of cowpea-nonadapted bromovirus Brome mosaic virus (BMV), can form small infection foci in inoculated cowpea leaves, but that expansion of the foci stops between 1 and 2 days postinoculation. To determine whether the lack of systemic movement of CCMV(B3a) is due to restriction of local spread at specific leaf tissue interfaces, we conducted more detailed analyses of infection in inoculated leaves. Tissue-printing and leaf press-blotting analyses revealed that CCMV(B3a) was confined to the inoculated cowpea leaves and exhibited constrained movement into leaf veins. Immunocytochemical analyses to examine the infected cell types in inoculated leaves indicated that CCMV(B3a) was able to reach the bundle sheath cells through the mesophyll cells and successfully infected the phloem cells of 50% of the examined veins. Thus, these data demonstrate that the lack of long-distance movement of CCMV(B3a) is not due to an inability to reach the vasculature, but results from failure of the virus to move through the vascular system of cowpea plants. Further, a previously identified 3a coding change (A776C), which is required for CCMV(B3a) systemic infection of cowpea plants, suppressed formation of reddish spots, mediated faster spread of infection, and enabled the virus to move into the veins of inoculated cowpea leaves. From these data, and the fact that CCMV(B3a) directs systemic infection in Nicotiana benthamiana, a permissive systemic host for both BMV and CCMV, we conclude that the bromovirus 3a MP engages in multiple activities that contribute substantially to host-specific long-distance movement through the phloem.  相似文献   

16.
The hypersensitive interaction between Tobacco mosaic virus (TMV) and tobacco results in accumulation of salicylic acid (SA), defense gene expression, and development of systemic acquired resistance (SAR) in uninfected leaves. The plant hormones SA and ethylene have been implicated in SAR. From a study with ethylene-insensitive (Tetr) tobacco, we concluded that ethylene perception is required to generate the systemic signal molecules in TMV-infected leaves that trigger SA accumulation, defense gene expression, and SAR development in uninfected leaves. Ethylene perception was not required for the responses of the plant to the systemic signal that leads to SAR development.  相似文献   

17.
The P6 protein of Cauliflower mosaic virus (CaMV) W260 elicits a hypersensitive response (HR) on inoculated leaves of Nicotiana edwardsonii. This defense response, common to many plant pathogens, has two key characteristics, cell death within the initially infected tissues and restriction of the pathogen to this area. We present evidence that a plant gene designated CCD1, originally identified in N. bigelovii, can selectively block the cell death pathway during HR, whereas the resistance pathway against W260 remains intact. Suppression of cell death was evident not only macroscopically but also microscopically. The suppression of HR-mediated cell death was specific to CaMV, as Tobacco mosaic virus was able to elicit HR in the plants that contained CCD1. CCD1 also blocks the development of a systemic cell death symptom induced specifically by the P6 protein of W260 in N. clevelandii. Introgression of CCD1 from N. bigelovii into N. clevelandii blocked the development of systemic cell death in response to W260 infection but could not prevent systemic cell death induced by Tomato bushy stunt virus. Thus, CCD1 blocks both local and systemic cell death induced by P6 of W260 but does not act as a general suppressor of cell death induced by other plant viruses. Furthermore, experiments with CCD1 provide further evidence that cell death could be uncoupled from resistance in the HR of Nicotiana edwardsonii to CaMV W260.  相似文献   

18.
Plant virus transport: motions of functional equivalence   总被引:1,自引:0,他引:1  
Plant virus cell-to-cell movement and subsequent systemic transport are governed by a series of mechanisms involving various virus and plant factors. Specialized virus encoded movement proteins (MPs) control the cell-to-cell transport of viral nucleoprotein complexes through plasmodesmata. MPs of different viruses have diverse properties and each interacts with specific host factors that also have a range of functions. Most viruses are then transported via the phloem as either nucleoprotein complexes or virions, with contributions from host and virus proteins. Some virus proteins contribute to the establishment and maintenance of systemic infection by inhibiting RNA silencing-mediated degradation of viral RNA. In spite of all the different movement strategies and the viral and host components, there are possible functional commonalities in virus-host interactions that govern viral spread through plants.  相似文献   

19.
植物病毒在细胞间转运的机理探讨   总被引:1,自引:0,他引:1  
植物病毒在寄主体内的移动包括细胞间转运和系统性转运两个部分。在这两个过程中,如何有效地利用和修饰胞间连丝,是病毒成功侵染的关键。病毒通过编码运动蛋白与寄主因子互作靶定于细胞质膜,然后通过一系列复杂机制修饰胞间连丝从而顺利完成细胞间转运。综述了植物病毒在细胞间转运过程中与寄主发生的一系列互作,着重阐述了病毒与胞间连丝之间互作的机制,旨在为相关研究工作提供参考。  相似文献   

20.
Viral suppression of systemic silencing   总被引:14,自引:0,他引:14  
RNA silencing in plants is a form of antiviral defense that was originally discovered from the anomalous effects of transgenes. The process is associated with a systemic signal, presumed to be RNA, and is suppressed by plant virus-encoded proteins. One of these proteins, the 2b protein of cucumber mosaic virus, prevents systemic spread of the signal molecule but, curiously, is located in the nucleus of infected cells. The antiviral role of silencing might also apply in animals because a suppressor of silencing encoded by an insect virus was identified recently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号