首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Under a restricted set of conditions, predator-prey or parasite-host systems may exhibit an escalating arms race over several generations that is not coevolutionary. Preconditions for such a process include high correlation between prey/host quality and defensive capability, and phenotypic plasticity in predator/parasite-counter defenses that responds to quality. We present simulation models based on the parasitoid waspEurytoma gigantea, which lays its egg in the goldenrod gall induced by the flyEurosta solidaginis. For the parasitoid to successfully lay an egg, the gall walls must be thinner than the parasitoid's ovipositor is long. Wall thickness is highly correlated with gall size, so probability of successful attack declines with gall size. However, since the parasitoid eats the gall tissue, individuals developing in small galls have little food and mature with shorter ovipositors than those which develop in large galls. The simulation showed that the population mean parasitoid size is set by mean gall size. Since small galls are more frequently parasitized, there is a selection pressure on the gallmaker to induce larger galls. But, an additional simulation showed that since parasitoid ovipositor length depends on gall size, an evolutionary increase in gall size will also result in a non-evolutionary increase in parasitoid body size and ovipositor length over several generations.  相似文献   

2.
We examined phenotypic selection exerted by natural enemies on the gall-making fly Eurosta solidaginis in an extensive field study of 16 populations, spanning four generations. Gall-makers that induce small galls are vulnerable to the attack of Eurytoma gigantea. This imposes upward directional selection on gall size. Insectivorous birds, predominantly the downy woodpecker, are more likely to attack larvae that induce large galls than small ones, and this imposes downward directional selection. We used path analysis to explore the relative contributions of these natural enemies to the net directional selection on gall size. The path models further examined several ecological factors that influence selection intensity through their effects on parasitoid and bird attack rates. Net directional selection varied more strongly with E. gigantea attack than bird attack. Competitive interactions among birds and the three parasitoid species, including E. gigantea, were evidenced by low winter bird attack rates in fields where a high proportion of galls contained the overwintering parasitoids. Eurytoma gigantea attack was heavier in fields where mean gall size was small and bird attack heavier in fields where mean gall size was large. Neither birds nor E. gigantea showed simple density-dependent attack. Data suggested a form of frequency-dependent attack by birds but not by E. gigantea.  相似文献   

3.
Summary Larvae of the tephritid fly Eurosta solidaginis induce ball-shaped galls on the stem of tall goldenrod, Solidago altissima. Survival probability depends on gall size; in small galls the larva is vulnerable to parasitoid oviposition, whereas larvae in large galls are more frequently eaten by avian predators. Fly populations from 20 natural old fields in central Pennsylvania were monitored in 1983 and 1984 to examine the distribution of the selection intensity imposed by natural enemies, the parasitoids Eurytoma gigantea and E. obtusiventris, the inquiline Mordellistena unicolor, and the predatory birds Dendrocopus pubescens and Parus atricapillus. Mordellistena and E. obtusiventris are able to attack galls of all diameters while E. gigantea and the predatory birds preferentially assaulted small and large diameter galls, respectively. Eurosta in intermediate sized galls had the highest survivorship, hence selection had a stabilizing component. However, parasitoid attack was more frequent than bird attack, and the two did not exactly balance, thus there was also a directional component. The mean directional selection intensity on gall size was 0.21 standard deviations of the mean, indicating that larger gall size was favored. Interactions among the insect members of the Eurosta natural enemy guild are complex and frequent.  相似文献   

4.
The geographic mosaic theory of coevolution predicts that geographic variation in species interactions will lead to differing selective pressures on interacting species, producing geographic variation in the traits of interacting species (Thompson 2005). We supported this hypothesis in a study of the geographic variation in the interactions among Eurosta solidaginis and its natural enemies. Eurosta solidaginis is a fly (Diptera: Tephritidae) that induces galls on subspecies of tall goldenrod, Solidago altissima altissima and S. a. gilvocanescens. We measured selection on E. solidaginis gall size and shape in the prairie and forest biomes in Minnesota and North Dakota over an 11-year period. Galls were larger and more spherical in the prairie than in the forest. We supported the hypothesis that the divergence in gall morphology in the two biomes is due to different selection regimes exerted by natural enemies of E. solidaginis. Each natural enemy exerted similar selection on gall diameter in both biomes, but differences in the frequency of natural enemy attack created strong differences in overall selection between the prairie and forest. Bird predation increased with gall diameter, creating selection for smaller-diameter galls. A parasitic wasp, Eurytoma gigantea, and Mordellistena convicta, an inquiline beetle, both caused higher E. solidaginis mortality in smaller galls, exerting selection for increased gall diameter. In the forest there was stabilizing selection on gall diameter due to a combination of bird predation on larvae in large galls, and M. convicta- and E. gigantea-induced mortality on larvae in small galls. In the prairie there was directional selection for larger galls due to M. convicta and E. gigantea mortality on larvae in small galls. Mordellistena convicta-induced mortality was consistently higher in the prairie than in the forest, whereas there was no significant difference in E. gigantea-induced mortality between biomes. Bird predation was nonexistent in the prairie so the selection against large galls found in the forest was absent. We supported the hypothesis that natural enemies of E. solidaginis exerted selection for spherical galls in both biomes. In the prairie M. convicta exerts stabilizing selection to maintain spherical galls. In the forest there was directional selection for more spherical galls. Eurytoma gigantea exerted selection on gall shape in the forest in a complex manner that varied among years. We also supported the hypothesis that E. gigantea is coevolving with E. solidaginis. The parasitoid had significantly longer ovipositors in the prairie than in the forest, indicating the possibility that it has evolved in response to selection to reach larvae in the larger-diameter prairie galls.  相似文献   

5.
Abstract 1. Immature stages of the gall midge, Asphondylia borrichiae, are attacked by four species of parasitoids, which vary in size and relative abundance within patches of the gall midge’s primary host plant, sea oxeye daisy (Borrichia frutescens). 2. In the current study, a bagging experiment found that the smallest wasp, Galeopsomyia haemon, was most abundant in galls exposed to natural enemies early in the experiment, when gall diameter is smallest, while the wasp with the longest ovipositor, Torymus umbilicatus, dominated the parasitoid community in galls that were not exposed until the 5th and 6th weeks when gall diameter is maximal. 3. Moreover, the mean number of parasitoids captured using large artificial galls were 70% and 150% higher compared with medium and small galls respectively, while stem height of artificial galls significantly affected parasitoid distribution. Galls that were level with the top of the sea oxeye canopy captured 60% more parasitoids compared with those below the canopy and 50% more than galls higher than the plant canopy. 4. These non‐random patterns were driven primarily by the differential distribution of the largest parasitoid, T. umbilicatus, which was found significantly more often than expected on large galls and the smallest parasitoid of the guild, G. haemon, which tended to be more common on stems level with the top of the plant canopy. 5. Large Asphondylia galls, especially those located near the top of the Borrichia canopy, were more likely to be discovered by searching parasitoids. Results using artificial galls were consistent with rates of parasitism of Asphondylia galls in native patches of sea oxeye daisy. Gall diameter was 19% greater and the rate of parasitism was reduced by almost 50% on short stems; as a result, gall abundance was 24% higher on short stems compared with ones located near the top of the plant canopy. 6. These results suggest that parasitoid community composition within galls is regulated by both interspecific differences in ovipositor length and preferences for specific gall size and/or stem length classes.  相似文献   

6.
Simulation models presented here show that gall size of Eurosta solidaginisFitch (Diptera: Tephritidae) is a reliable predictor of its quality as a host to the parasitoid Eurytoma giganteaWalsh (Hymenoptera; Eurytomidae). The nutritional value of a gall to a parasitoid increases with diameter, but so does the likelihood that ovipositing parasitoids will fail to penetrate to the gall's central chamber. Despite the large differences in gall quality with size, this parasitoid seems incapable of distinguishing large, impenetrable galls from smaller, more suitable ones (Weis, A. E., et al., Ecol. Entomol. 10:341–348, 1985). This paper shows that Eurytomais capable of quick rejection of nonhost galls of similar size and shape to suitably sized host galls. Several lines of reasoning are explored to understand the seemingly maladaptive lack of sizediscrimination ability on host galls.  相似文献   

7.
Associational resistance mediated by natural enemies   总被引:1,自引:0,他引:1  
Abstract.  1. Associational resistance theory suggests that the association of herbivore-susceptible plant species with herbivore-resistant plant species can reduce herbivore density on the susceptible plant species. Several casual mechanisms are possible but none has so far invoked natural enemies. Associational resistance mediated by natural enemies was tested for by examining densities of a gall fly, Asphondylia borrichiae (Diptera: Cecidomyiidae), and levels of parasitism on two closely related seaside plants, Borrichia frutescens and Iva frutescens , when alone and when co-occurring.
2. Both Borrichia and Iva grow alone or together on small offshore islands in Florida. Each host plant species has its own associated race of fly, but both races of fly are attacked by the same four species of parasitoids. Borrichia normally has a higher density of galls than Iva , and galls are larger on Borrichia than on Iva .
3. Gall size, gall abundance, parasitism levels, and parasitoid community composition were quantified on both Borrichia and Iva on islands where each species grew alone or together. Some islands were then manipulated by adding Borrichia to islands supporting only Iva , and by adding Iva to islands supporting only Borrichia . Subsequent gall densities and gall parasitism levels on the original native species were then examined.
4. On both natural and experimentally manipulated islands, gall densities on Iva were significantly lowered by the presence of Borrichia . This is because bigger parasitoid species that were common on Borrichia galls, which are bigger, spilled over and attacked the smaller Iva galls. Thus, parasitism rates on Iva were higher on islands where Borrichia co-occurred than on islands where Borrichia were absent. Most parasitoids from Iva were too small to successfully attack the large Borrichia galls and so gall density on Borrichia was unaffected by the presence of Iva .  相似文献   

8.
Abstract.  1. The sex determination mechanism in gall midges is little understood, although it is known that the females of several species primarily or exclusively produce unisexual broods throughout their lifetime.
2. The gall midge Izeniola obesula Dorchin is a multivoltine species, inducing multi-chambered stem galls on the salt-marsh plant Suaeda monoica . Each gall contains 5–70 individuals, all being the progeny of a single female. Sampling of more than 450 galls, from which adult midges were reared, suggested that I .  obesula exhibits strict monogeny, resulting in galls that contain either all female or all male progeny.
3. Characterisation of the growth pattern of young S .  monoica shoots revealed that shoots in apical positions grew more rapidly than shoots in more basal positions. Galls that were induced on such shoots were larger and yielded more adult midges.
4. No difference in the site of gall induction was found between male and female galls, with galls of either sex being mainly induced on more rapidly growing shoots. It is concluded that I .  obesula females cannot control the sex of their progeny, and that both female-producers and male-producers strive to maximise their reproductive success by choosing the faster-growing shoots for gall induction.
5. Female galls were larger and more abundant than male galls at almost all times. The sex ratio among galls fluctuated throughout the year, ranging from 4:1 in spring to 1:1 in winter. The skewed sex ratio among galls possibly results from greater mortality rates among male galls than among female galls, due to either primary or secondary factors. Alternatively, it is possible that the number or fitness of male-producers in the population is reduced relative to female-producers.  相似文献   

9.
Abstract.  1. The nutrition hypothesis for the adaptive nature of galls states that gall-inducing insects control the nutrient levels in galls to their own benefit. Although the nutrition hypothesis is widely accepted, there have been few empirical tests of this idea.
2. A novel method is presented for testing the nutrition hypothesis that links manipulation of gall nutrient levels by the gall inducer to herbivore performance. The effects of adaptation and nutritional advantage are separated by using a herbivore that is adapted to a host plant susceptible to galling but one which never enters the gall environment.
3.  Hellinsia glenni (Cashatt), a plume moth (Pterophoridae) and one of its host plants provide an excellent system for testing the nutrition hypothesis because H. glenni larvae feed internally on the relatively nutrient-poor stems of a goldenrod, Solidago gigantea , but do not venture into the nutrient-rich galls induced on that plant by a tephritid fly, Eurosta solidaginis . The nutrition hypothesis was tested by transplanting early-instar H. glenni larvae into galls and stems of S. gigantea to determine if the larvae transplanted to galls would perform better compared with those larvae transplanted to stems.
4. The results support the nutrition hypothesis for the adaptive nature of galls. Hellinsia glenni achieved greater final mass in the gall environment compared with the final mass larvae achieved in the stem environment. There was also evidence that the quality of gall tissue is controlled by the gall inducer, which has not been previously demonstrated for mature E. solidaginis galls.  相似文献   

10.
1. The abundance and performance of the Eastern Spruce Gall Adelgid, Adelges abietis , was evaluated on young, open-grown trees of White Spruce, Picea glauca , whose growth rates had been increased through fertilization or decreased through root-pruning.
2. In general, gall densities were highest on control trees and on mid-crown branches. Reduced galling success on fertilized trees was largely due to higher overwintering mortality of first-generation nymphs. Foliar magnesium, total tannin and total phenol contents were positively, and nitrogen and total monoterpene contents negatively, related to gall density and/or galling success.
3. Although short shoots were more abundant, shoot length was parabolically related to gall density. There was a non-significant parabolic trend between shoot size and galling success and volume. The number and average size of A. abietis females emerging from galls were positively related to gall volume, and realized fecundity was positively correlated to female size. Consequently, fitness was approximately twice as high for nymphs colonizing intermediate-sized than small or large shoots.
4. These results do not support the plant vigour or plant stress hypotheses. The results do, however, agree with predictions of the modified plant stress hypothesis for sucking insects. It is speculated that Adelges abietis lacks the necessary resources for successful gall formation on small shoots and is unable to produce a stimulus large enough to induce gall formation on large shoots.  相似文献   

11.
Abstract.  1. The strength or density dependence of pairwise species interactions can depend on the presence or absence of other species, especially potential mutualists.
2. The gall wasp Disholcaspis eldoradensis induces plant galls that secrete a sweet honeydew from their top surfaces while the wasp larvae are active. These galls are actively tended by Argentine ants, which collect the honeydew and drive off parasitoids attempting to attack the gall wasp.
3. When ants were excluded, the total rate of parasitism by seven species of parasitoids increased by 36%, and the rate of gall-wasp emergence decreased by 54%.
4. The total percentage parasitism was affected by gall density when ants were excluded but not when ants were unmanipulated, suggesting a change in parasitoid functional responses due to ant tending.
5. In addition, excluding ants significantly altered the proportions of different parasitoid species that emerged from galls; one parasitoid species increased from 1% to 34%, and another decreased from 46% to 19%.
6. The invasive Argentine ants studied are capable of maintaining the mutualism with the gall wasps that evolved in the presence of different ant species and also act as a selective filter for the local community of generalist parasitoids trying to attack this gall species.  相似文献   

12.
Abstract.  1. The relationship between gall size and mortality of the willow pinecone gall midge Rabdophaga strobiloides (Diptera: Cecidomyiidae) was examined by determining the fate of all galls in a 30-ha area in central Alberta, Canada over 4 years. It was found that gall size has a large effect on the type and intensity of mortality experienced by the gall midge, and consequently this factor has the potential to influence the dynamics of the host–parasitoid interaction through the creation of phenotypic refuges.
2. Total midge mortality ranged from 51% to 78% over the course of the study and was dominated by parasitism by Torymus cecidomyiae (Hymenoptera: Torymidae) and Gastrancistrus sp. (Hymenoptera: Pteromalidae) as well as predation by birds. Gall size had a strong, non-linear effect on the attack rates of each of these natural enemies.
3. Birds attacked the smallest size classes. Torymus cecidomyiae preferentially attacked medium diameter galls and thus avoided predation by birds in smaller galls. Gastrancistrus sp. preferentially attacked the largest galls and consequently suffered lower rates of predation by both T. cecidomyiae and birds.
4. This study emphasises the importance of understanding the interactions among mortality factors in order to describe adequately the susceptibility of R. strobiloides to parasitism and predation, and ultimately its population dynamics.  相似文献   

13.
Abstract.  1. The relative importance of direct and indirect interactions in controlling organism abundance is still an unresolved question. This study investigated the role of the direct and indirect interactions involving ants, aphids, parasitoids, and the host plant Baccharis dracunculifolia (Asteraceae) on a galling herbivore Baccharopelma dracunculifoliae (Homoptera: Psyllidae).
2. The effects of these interactions on the galling herbivore's performance were evaluated by an exclusion experiment during two consecutive generations of the galling insect.
3. Ants had a direct negative effect on the performance of the galling herbivore by reducing the number of nymphs per gall. In contrast, ants had no indirect effects on gall mortality through the associated parasitoids.
4. Aphids negatively affected gall development, suggesting that galls and aphids might be partitioning photoassimilates and nutrients moving throughout host-plant tissues.
5. In addition, galls that developed during the rainy season were heavier, indicating that variation in the host plant, due to weather changes, can affect the development of B. dracunculifoliae galls. However, variation in the development of B. dracunculifoliae galls due to presence of aphids or the weather changes did not affect parasitoid attack.
6. These results suggest that direct interactions between ants and galls influenced galling insect abundance, whereas numerical indirect effects involving galling insects, ants, aphids, and host plants were less conspicuous.  相似文献   

14.
Abstract. 1. The gall wasp Biorhiza pallida (Hymenoptera: Cynipidae) reproduces by cyclical parthenogenesis. The adults of the sexual generation develop within galls (oak apples) that contain many larval cells.
2. Folliot [(1964) Annales Des Sciences Naturelles: Zoologie, 12, 407–564] found asexual generation females to be of three reproductive types. Androphores produce only sons, gynophores produce only daughters, and gynandrophores produce both sons and daughters. In nature, most oak apples give rise to either only males or only females but a proportion produces both sexes. These mixed‐sex galls could result either from eggs laid by one or more gynandrophores or from eggs laid by androphores and gynophores developing within a single gall (multiple founding).
3. Here the frequency of mixed‐ and single‐sex galls was quantified, and morphological and genetic analyses were carried out on the adults emerging from 10 galls to determine the frequency of multiple founding in B. pallida .
4. Seventy-five per cent of 627 galls yielded only one sex. The majority of the remaining 25% had a highly skewed sex ratio. Low genetic variation in B. pallida limited the application of allozyme-based genetic techniques, however seven of the 10 galls analysed in detail, including mixed-sex galls, appeared to have been multiply founded. Contributions by the different foundresses in multiply founded galls were highly skewed.
5. The significance of multiple founding is discussed in the light of possible adaptive scenarios (reduction of parasitoid-induced mortality, avoidance of local stochastic extinction and inbreeding) and possible competition for oviposition sites.  相似文献   

15.
Bo Stille 《Oecologia》1984,63(3):364-369
Summary The univoltine cynipid gall wasp Diplolepis rosae reproduces by an obligate homozygosity promoting system known as gamete duplication. The wasp is confined to roses (Rosa spp) on which it induces large, complex and multichambered galls. In southern Sweden, D. rosae was found to parasitize Rosa canina, R. dumalis, R. rubiginosa, R. villosa, R. sherardi and R. rubrifolia, but not R. majalis and R. rugosa. The distribution of galls shows that there are differences in the relation between wasp and hosplant with respect both to species and individual plants. There is a positive correlation between wasp size and gall (clutch) size. Parasitoid pressure was found to be high, causing D. rosae an estimated average larval loss of approximately 75%, mainly due to the attack of the ichneumonid wasp Orthopelma mediator. The very common cynipid inquiline Periclistus brandtii does not seem to have any negative effects. Overall parasitism and probability of no hatched offspring per gall decrease with increasing gall (clutch) size. The probability of loosing all of a given number of offspring decreases with the number of galls produced. It is suggested that D. rosae, in order to escape parasitoids, needs high ability to establish new colonies. Hence the production of many comparatively small galls, which increases the chance of leaving any offspring, rather than the production of few large galls, maximizing the number of offspring, should be favoured by selection.  相似文献   

16.
Mutualisms such as the fig–fig wasp mutualism are generally exploited by parasites. We demonstrate that amongst nonpollinating fig wasps (NPFWs) parasitic on Ficus citrifolia, a species of Idarnes galls flowers and another species feeds on galls induced by other wasps killing their larvae. The galling wasp inserts its ovipositor through the fig wall into the fig cavity. The ovipositor then follows a sinuous path and is introduced through the stigma and style of the flower. The egg is deposited between the integument and nucellus, in the exact location where the pollinating mutualistic wasp would have laid its egg. Gall induction is a complex process. In contrast, the path followed by the ovipositor of the other species is straightforward: attacking a larva within a developed gall poses different constraints. Shifts in feeding regime have occurred repeatedly in NPFWs. Monitoring traits associated with such repeated evolutionary shifts may help understand underlying functional constraints. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 114–122.  相似文献   

17.
Four types of prosoplasmatic galls induced by Daphnephila midges are found on leaves of Machilus zuihoensis, a species endemic to Taiwan: urn- and small urn-shaped, obovate, and hairy oblong galls. In addition to containing nutritive tissues, these galls are lined with fungal hyphae. The objective of this study was to describe and compare the structural organization of the various gall morphologies and to examine the ultrastructure of the nutritive and fungal cells lining the gall chambers. The morphology and ultrastructure of mature-stage galls were examined by light, scanning electron, and transmission electron microscopy. Diverse epidermal cell shapes and wax textures were observed in the leaves and galls of M. zuihoensis. In small urn-shaped, obovate, and hairy oblong galls vascular bundles extend from the gall base to near the centre of the gall top. In contrast, vascular bundles in urn-shaped galls are distributed in the gall wall and extend to close to the outer gall top. Trichomes were present only abaxially on leaves and on hairy oblong gall surfaces. Starch granules, tannins, and mucilage were distributed differently among the four gall types. Further, fungal mycelia spread in the interior gall wall and partially passed through the intercellular spaces of nutritive cells and reached the sclerenchyma. Histological analyses revealed that the surface structure of galls differs from that of the leaf and that the epidermal organization differs among the four gall types. Different types of leaf galls on the same plant have different patterns of tissue stratification and contain different ergastic substances. The results of this study will contribute to the understanding of tritrophic relationships and the complex interactions among parasitic gall-inducing insects, mutualistic fungi, and host plants.  相似文献   

18.
Abstract 1 We conducted two experiments to investigate why a basket willow Salix viminalis L. genotype, known to be highly resistant to the leaf-roller gall midge Dasineura marginemtorquens (Bremi), should support very high gall densities in a field plantation at Tälle, south Sweden.
2 The first experiment was a field test of the hypothesis of fine-scale host adaptation in the gall midge/willow system. Support for the hypothesis would be established if midges originating from resistant willows and those originating from nearby susceptible willows differed in their abilities to initiate galls and complete development on resistant plants.
3 The objective of the second experiment was to explore whether there was a genetic basis to the trait for virulence in the midge population and to investigate any potential trade-offs this trait may entail.
4 Our results indicate that there was a fine-scaled microgeographic genetic structure to the midge population at Tälle. Midges originating from resistant plants had a heritable trait that enabled them to establish galls on resistant plants.
5 Midges able to initiate galls on the resistant genotype had longer developmental time on the susceptible genotype. This suggests that there is a physiological cost associated with being adapted to the resistant willow genotype.
6 We suggest that driving forces behind the observed host adaptation are selection imposed on the midge population by very strong willow resistance and restricted gene flow in the midge populations due to the special life history features of D. marginemtorquens .  相似文献   

19.
The efficacy of pruning methods for managing blueberry stem galls caused by the chalcid wasp, Hemadas nubilipennis (Ashmead), was studied in five commercial lowbush blueberry (Vaccinium angustifolium Aiton) fields in Nova Scotia, Canada, between October 1999 and May 2000. Blueberry fields were mowed in the fall, and burning treatments were subsequently applied either in the fall or the spring. Three treatments were compared: mowing only, mowing plus fall burning, and mowing plus spring burning. Galls collected from the mow plus spring-burn treatment had the least wasp emergence of the three treatments, while the total number of galls was not affected by treatment. Wasp mortality, not gall destruction, is why wasp emergence is reduced in burn treatments. More galls were located and, for the burn treatments, higher wasp emergence was seen from galls found within the leaf litter than those above it. Five co-inhabitants emerged from blueberry stem galls in this study. Three, Eurytoma solenozopheriae (Ashmead), Sycophila vacciniicola (Balduf), and Orymus vacciniicola (Ashmead) are commonly found associates. The other two, Eupelmus vesicularis (Ritzius) and Pteromalus spp., are new records for Nova Scotia. O. vacciniicola is likely an inquiline because it is the largest wasp emerging from galls, and there was a positive relationship between its emergence and that of H. nubilipennis. Larger gall size improved H. nubilipennis emergence from mow and spring-burn galls. After a field has been mowed in the fall, we recommend a spring burn to reduce gall populations and the threat of product contamination.  相似文献   

20.
Life-history traits in insect inclusions associated with bamboo galls   总被引:1,自引:0,他引:1  
We examined the life-history traits of insect inclusions in bamboo galls induced by the gall maker, Aiolomorphus rhopaloides Walker (Hymenoptera: Eurytomidae) in a bamboo stand. Eight hymenopteran and one dipteran species were detected using soft X-ray photography of the galls and insect emergence from the galls. Aiolomorphus rhopaloides was the gall maker and Diomorus aiolomorphi Kamijo (Torymidae) was its inquiline.Homoporusjaponicus Ashmead (Pteromalidae) and Eupelmus sp. (Eupelmidae) are likely to be primary parasitoids of the larva ofA. rhopaloides. Eurytoma sp. (Eurytomidae),Sycophila sp. (Eurytomidae) and Norbanus sp. (Pteromalidae) are thought to be facultative hyperparasitoids. Cecidomyiidae sp. is thought to be the inquiline ofA. rhopaloides galls.Leptacis sp. (Platygastridae) probably parasitizes the larvae of Cecidomyiidae sp. Larvae of A. rhopaloides appeared in galls in July with the percentage of larvae decreasing in September, before overwintering as pupae. The growth ofD. aiolomorphi larvae within galls may be faster than that ofA. rhopaloides. The percentage of parasitoids in galls was low in July, but increased until winter. Aiolomorphus rhopaloides and D. aiolomorphi emerged from mid-April to early May, and from late April to early June, respectively. From overwintering galls, six other hymenopteran species emerged between late May and late June; one dipteran Cecidomyiidae sp. emerged between mid-April and early May.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号