共查询到20条相似文献,搜索用时 15 毫秒
1.
Pruitt WM Karnoub AE Rakauskas AC Guipponi M Antonarakis SE Kurakin A Kay BK Sondek J Siderovski DP Der CJ 《Biochimica et biophysica acta》2003,1640(1):61-68
Intersectin-long (ITSN-L) contains the invariant Dbl homology (DH) and pleckstrin homology (PH) domain structure characteristic of the majority of Dbl family proteins. This strict domain topography suggests that the PH domain serves an essential, conserved function in the regulation of the intrinsic guanine nucleotide exchange activity of the DH domain. We evaluated the role of the PH domain in regulating the DH domain function of ITSN-L. Surprisingly, we found that the PH domain was dispensable for guanine nucleotide exchange activity on Cdc42 in vitro, yet the PH domain enhanced the ability of the DH domain to activate Cdc42 signaling in vivo. PH domains can interact with phosphoinositide substrates and products of phosphatidylinositol 3-kinase (PI3K). However, PI3K activation did not modulate ITSN-L DH domain function in vivo. 相似文献
2.
The Dbl family guanine-nucleotide exchange factors (GEFs) for Rho GTPases share the structural array of a Dbl homology (DH) domain in tandem with a Pleckstrin homology (PH) domain. For oncogenic Dbl, the DH domain is responsible for the GEF activity, and the DH-PH module constitutes the minimum structural unit required for cellular transformation. To understand the structure-function relationship of the DH domain, we have investigated the role of specific residues of the DH domain of Dbl in interaction with Rho GTPases and in Dbl-induced transformation. Alanine substitution mutagenesis identified a panel of DH mutants made in the alpha1, alpha6, and alpha9 regions and the PH junction site that suffer complete or partial loss of GEF activity toward Cdc42 and RhoA. Kinetic and binding analysis of these mutants revealed that although most displayed decreased k(cat) values in the GEF reaction, the substrate binding activities of T506A and R634A were significantly reduced. E502A, Q633A, and N673A/D674A, on the other hand, retained the binding capability to the Rho GTPases but lost the GEF catalytic activity. In general, the in vitro GEF activity of the DH mutants correlated with the in vivo Cdc42- and RhoA-activating potential, and the GEF catalytic efficiency mirrored the transforming activity in NIH 3T3 cells. Moreover, the N673A/D674A mutant exhibited a potent dominant-negative effect on serum-induced cell growth and caused retraction of actin structures. These studies identify important sites of the DH domain involved in binding or catalysis of Rho proteins and demonstrate that maintaining a threshold of GEF catalytic activity, in addition to the Rho GTPase binding activity, is essential for efficient transformation by oncogenic Dbl. 相似文献
3.
The first BCR gene intron contains breakpoints in Philadelphia chromosome positive leukemia. 总被引:4,自引:3,他引:4
下载免费PDF全文

The hallmark of chronic myelogenous leukemia (CML) is a translocation between chromosomes 9 and 22 - the Philadelphia (Ph') translocation. The translocation is also found in acute lymphocytic leukemia (ALL) albeit in a lower percentage of patients. The breakpoint on chromosome 22 is located within the BCR gene: in CML, breakpoints are clustered within 5.8 kb of DNA, the major breakpoint cluster region (Mbcr). In ALL, breakpoints have been reported within the Mbcr but also in more 5' regions encompassing the BCR gene. To characterize the latter breakpoints, we have molecularly cloned and mapped the entire gene, which encompasses approximately 130 kb of DNA. Mbcr negative, Ph'-positive ALL breakpoints were not distributed at random within the gene but rather were found exclusively within the 3' half of the first BCR gene intron. In contrast to the Mbcr, which is limited to a region of 5.8 kb, this part of the intron has a size of 35 kb. Translocation breakpoints in this region appear to be specific for ALL, since it was not rearranged in clinically well-defined CML specimens nor in any other tumor DNA samples examined. 相似文献
4.
Dbl family guanine nucleotide exchange factors (GEFs) are characterized by the presence of a catalytic Dbl homology domain followed invariably by a lipid-binding pleckstrin homology (PH) domain. To date, substrate recognition and specificity of this family of GEFs has been reported to be mediated exclusively via the Dbl homology domain. Here we report the novel and unexpected finding that, in the Dbl family Rac-specific GEF P-Rex2, it is the PH domain that confers substrate specificity and recognition. Moreover, the beta3beta4 loop of the PH domain of P-Rex2 is the determinant for Rac1 recognition, as substitution of the beta3beta4 loop of the PH domain of Dbs (a RhoA- and Cdc42-specific GEF) with that of P-Rex2 confers Rac1-specific binding capability to the PH domain of Dbs. The contact interface between the PH domain of P-Rex2 and Rac1 involves the switch loop and helix 3 of Rac1. Moreover, substitution of helix 3 of Cdc42 with that of Rac1 now enables the PH domain of P-Rex2 to bind this Cdc42 chimera. Despite having the ability to recognize this chimeric Cdc42, P-Rex2 is unable to catalyze nucleotide exchange on Cdc42, suggesting that recognition of substrate and catalysis are two distinct events. Thus substrate recognition can now be added to the growing list of functions that are being attributed to the PH domain of Dbl family GEFs. 相似文献
5.
Rojas RJ Yohe ME Gershburg S Kawano T Kozasa T Sondek J 《The Journal of biological chemistry》2007,282(40):29201-29210
The coordinated cross-talk from heterotrimeric G proteins to Rho GTPases is essential during a variety of physiological processes. Emerging data suggest that members of the Galpha(12/13) and Galpha(q/11) families of heterotrimeric G proteins signal downstream to RhoA via distinct pathways. Although studies have elucidated mechanisms governing Galpha(12/13)-mediated RhoA activation, proteins that functionally couple Galpha(q/11) to RhoA activation have remained elusive. Recently, the Dbl-family guanine nucleotide exchange factor (GEF) p63RhoGEF/GEFT has been described as a novel mediator of Galpha(q/11) signaling to RhoA based on its ability to synergize with Galpha(q/11) resulting in enhanced RhoA signaling in cells. We have used biochemical/biophysical approaches with purified protein components to better understand the mechanism by which activated Galpha(q) directly engages and stimulates p63RhoGEF. Basally, p63RhoGEF is autoinhibited by the Dbl homology (DH)-associated pleckstrin homology (PH) domain; activated Galpha(q) relieves this autoinhibition by interacting with a highly conserved C-terminal extension of the PH domain. This unique extension is conserved in the related Dbl-family members Trio and Kalirin and we show that the C-terminal Rho-specific DH-PH cassette of Trio is similarly activated by Galpha(q). 相似文献
6.
Structural basis for relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation 总被引:12,自引:0,他引:12
Rho-family GTPases transduce signals from receptors leading to changes in cell shape and motility, mitogenesis, and development. Proteins containing the Dbl homology (DH) domain are responsible for activating Rho GTPases by catalyzing the exchange of GDP for GTP. Receptor-initiated stimulation of Dbl protein Vav exchange activity involves tyrosine phosphorylation. We show through structure determination that the mVav1 DH domain is autoinhibited by an N-terminal extension, which lies in the GTPase interaction site. This extension contains the Tyr174 Src-family kinase recognition site, and phosphorylation or truncation of this peptide results in stimulation of GEF activity. NMR spectroscopy data show that the N-terminal peptide is released from the DH domain and becomes unstructured upon phosphorylation. Thus, tyrosine phosphorylation relieves autoinhibition by exposing the GTPase interaction surface of the DH domain, which is obligatory for Vav activation. 相似文献
7.
Autoinhibited proteins serve key roles in many signal transduction pathways, and therefore proper regulation of these proteins is critical for normal cellular function. Proto-oncogene Vav1 is an autoinhibited guanine nucleotide exchange factor (GEF) for Rho family GTPases. The core autoinhibitory module of Vav1 consists of the catalytic Dbl homology (DH) domain bound through its active site to an alpha helix centered about Tyr174 in the Acidic (Ac) region of the protein. Phosphorylation of Tyr174 and two other tyrosines in the Ac region, Tyr142 and Tyr160, relieves autoinhibition and activates the catalytic DH domain. In this study, we use biochemical and structural analyses of the Vav1 Ac and DH domains to examine the kinetic and thermodynamic properties of Vav1 activation by the Src family kinase, Lck, and the role of the Lck SH2 domain in this process. We find that in the Ac-DH fragment of Vav1, Tyr174, but not Tyr142 or Tyr160, is protected from phosphorylation by interactions with the DH domain. Binding of the Lck SH2 domain to phosphorylated Tyr142 increases kcat/KM for Tyr174 by 4-fold, likely because the kinase domain can act on the substrate effectively in an intramolecular fashion. These studies of the autoinhibited Ac-DH module provide the foundation for a quantitative structural and thermodynamic understanding of the regulation of full length Vav1. Moreover, kinetic pathways involving initial interactions with exposed sites or "access points", as observed here for Vav1, may be generally important in the regulation of many autoinhibited proteins. 相似文献
8.
Lee SB Várnai P Balla A Jalink K Rhee SG Balla T 《The Journal of biological chemistry》2004,279(23):24362-24371
The inositol lipid and phosphate binding properties and the cellular localization of phospholipase Cdelta(4) (PLCdelta(4)) and its isolated pleckstrin homology (PH) domain were analyzed in comparison with the similar features of the PLCdelta(1) protein. The isolated PH domains of both proteins showed plasma membrane localization when expressed in the form of a green fluorescent protein fusion construct in various cells, although a significantly lower proportion of the PLCdelta(4) PH domain was membrane-bound than in the case of PLCdelta(1)PH-GFP. Both PH domains selectively recognized phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)), but a lower binding of PLCdelta(4)PH to lipid vesicles containing PI(4,5)P(2) was observed. Also, higher concentrations of inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) were required to displace the PLCdelta(4)PH from the lipid vesicles, and a lower Ins(1,4,5)P(3) affinity of PLCdelta(4)PH was found in direct Ins(1,4,5)P(3) binding assays. In sharp contrast to the localization of its PH domain, the full-length PLCdelta(4) protein localized primarily to intracellular membranes mostly to the endoplasmic reticulum (ER). This ER localization was in striking contrast to the well documented PH domain-dependent plasma membrane localization of PLCdelta(1). A truncated PLCdelta(4) protein lacking the entire PH domain still showed the same ER localization as the full-length protein, indicating that the PH domain is not a critical determinant of the localization of this protein. Most important, the full-length PLCdelta(4) enzyme still showed binding to PI(4,5)P(2)-containing micelles, but Ins(1,4,5)P(3) was significantly less potent in displacing the enzyme from the lipid than with the PLCdelta(1) protein. These data suggest that although structurally related, PLCdelta(1) and PLCdelta(4) are probably differentially regulated in distinct cellular compartments by PI(4,5)P(2) and that the PH domain of PLCdelta(4) does not act as a localization signal. 相似文献
9.
The RNA interacting domain but not the protein interacting domain is highly conserved in ribosomal protein P0 总被引:9,自引:0,他引:9
Rodríguez-Gabriel MA Remacha M Ballesta JP 《The Journal of biological chemistry》2000,275(3):2130-2136
Protein P0 interacts with proteins P1alpha, P1beta, P2alpha, and P2beta, and forms the Saccharomyces cerevisiae ribosomal stalk. The capacity of RPP0 genes from Aspergillus fumigatus, Dictyostelium discoideum, Rattus norvegicus, Homo sapiens, and Leishmania infantum to complement the absence of the homologous gene has been tested. In S. cerevisiae W303dGP0, a strain containing standard amounts of the four P1/P2 protein types, all heterologous genes were functional except the one from L. infantum, some of them inducing an osmosensitive phenotype at 37 degrees C. The polymerizing activity and the elongation factor-dependent functions but not the peptide bond formation capacity is affected in the heterologous P0 containing ribosomes. The heterologous P0 proteins bind to the yeast ribosomes but the composition of the ribosomal stalk is altered. Only proteins P1alpha and P2beta are found in ribosomes carrying the A. fumigatus, R. norvegicus, and H. sapiens proteins. When the heterologous genes are expressed in a conditional null-P0 mutant whose ribosomes are totally deprived of P1/P2 proteins, none of the heterologous P0 proteins complemented the conditional phenotype. In contrast, chimeric P0 proteins made of different amino-terminal fragments from mammalian origin and the complementary carboxyl-terminal fragments from yeast allow W303dGP0 and D67dGP0 growth at restrictive conditions. These results indicate that while the P0 protein RNA-binding domain is functionally conserved in eukaryotes, the regions involved in protein-protein interactions with either the other stalk proteins or the elongation factors have notably evolved. 相似文献
10.
BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner. 总被引:40,自引:0,他引:40
BCR-ABL is a chimeric oncogene implicated in the pathogenesis of Philadelphia chromosome-positive human leukemias. BCR first exon sequences specifically activate the tyrosine kinase and transforming potential of BCR-ABL. We have tested the hypothesis that activation of BCR-ABL may involve direct interaction between BCR sequences and the tyrosine kinase regulatory domains of ABL. Full-length c-BCR as well as BCR sequences retained in BCR-ABL bind specifically to the SH2 domain of ABL. The binding domain has been localized within the first exon of BCR and consists of at least two SH2-binding sites. This domain is essential for BCR-ABL-mediated transformation. Phosphoserine/phosphothreonine but not phosphotyrosine residues on BCR are required for interaction with the ABL SH2 domain. These findings extend the range of potential SH2-protein interactions in growth control pathways and suggest a function for SH2 domains in the activation of the BCR-ABL oncogene as well as a role for BCR in cellular signaling pathways. 相似文献
11.
Koehnle T 《American journal of physiology. Regulatory, integrative and comparative physiology》2005,288(3):R777; author reply R777-R777; author reply R778
12.
Barathur R. Rajendra Ming-liang Lee Michael J. Nissenblatt Gary Gartenberg Demetra V. Rose Leonard J. Sciorra 《Human genetics》1981,56(3):287-291
Summary The Philadelphia chromosome, assessed with banding techniques, was detected in 98.3% of bone marrow cells of a 46-year-old black female presenting with essential thrombocytosis. The patient has been followed for the past two years with no signs of chronic myelocytic leukemia. Her platelet counts remain elevated, and she shows no other hematologic changes. Comparisons with the 21q- marker associated with thrombocytosis are made. The role of the Ph' chromosome in myeloid malignant changes and the implications of the present findings in thrombocytosis are discussed. 相似文献
13.
14.
Domains are the structural, functional, and evolutionary components of proteins. Most folding studies to date have concentrated on the folding of single domains, but more than 70% of human proteins contain more than one domain, and interdomain interactions can affect both the stability and the folding kinetics. Whether the folding pathway is altered by interdomain interactions is not yet known. Here we investigated the effect of a folded neighbouring domain on the folding pathway of spectrin R16 (the 16th α-helical repeat from chicken brain α-spectrin) by using the two-domain construct R1516. The R16 folds faster and unfolds more slowly in the presence of its folded neighbour R15 (the 15th α-helical repeat from chicken brain α-spectrin). An extensive Φ-value analysis of the R16 domain in R1516 was completed to compare the transition state of the R16 domain alone with that of the R16 domain in a multidomain construct. The results indicate that the folding pathways are the same. This result validates the current approach of breaking up larger proteins into domains for the study of protein folding pathways. 相似文献
15.
The 130-kDa protein was isolated as a novel inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) binding protein from rat brain and was molecularly cloned to be found similar to phospholipase C-delta 1 (Kanematsu, T., Takeya, H., Watanabe, Y., Ozaki, S., Yoshida, M., Koga, T., Iwanaga, S. and Hirata, M., 1992. Putative inositol 1,4,5-trisphosphate binding proteins in rat brain cytosol, J. Biol. Chem. 267, 6518-6525; Kanematsu, T., Misumi, Y., Watanabe, Y., Ozaki, S., Koga, T., Iwanaga, S., Ikehara, Y. and Hirata, M., 1996. A new inositol 1,4,5-trisphosphate binding protein similar to phospholipase C-delta 1, Biochem. J. 313, 319-325). The 130-kDa protein and its deleted protein expressed in COS-1 cells were seen in both the membrane and the cytosol fractions. Truncation of 232 residues from the N-terminus, the protein molecule lacking the pleckstrin homology (PH) domain was also localized in the membrane fraction as much as seen with a full-length protein and other deleted proteins, thereby indicating that the PH domain is not primarily involved in the membrane localization. The addition of Mg2+ to homogenates of COS-1 cells caused the translocation of expressed proteins from the cytosol to the membrane fraction, yet further addition of AlF4- which induced the activation of GTP binding proteins did not cause a further translocation. The protein translocated to the membrane by the addition of Mg2+ was hardly extracted with Triton X-100. The inclusion of Ins(1,4,5)P3 or phosphatidylinositol 4,5-bisphosphate in cell homogenates caused the very small reduction in the amounts of membrane-associated proteins expressed by some constructs. These results indicate that (i) the PH domain is not primarily involved in the membrane localization of the 130-kDa protein, (ii) the activation of GTP binding protein does not appear to cause the translocation of the 130-kDa protein, and (iii) intrinsic phosphatidylinositol 4,5-bisphosphate present in the membrane appears to be involved in the membrane association of the 130-kDa protein to a very small extent, probably through the binding site in the PH domain. 相似文献
16.
17.
Marzia Ognibene Cristina Vanni Fabiola Blengio Daniela Segalerba Patrizia Mancini Patrizia De Marco Maria R. Torrisi Maria C. Bosco Luigi Varesio Alessandra Eva 《Gene》2014
The Rho guanine nucleotide exchange factor protoDbl is involved in different biochemical pathways affecting cell proliferation and migration. The N-terminal sequence of protoDbl contains negative regulatory elements that restrict the catalytic activity of the DH-PH module. Here, we report the identification of a new mouse protoDbl splice variant lacking exon 3. We found that the splice variant mRNA is expressed in the spleen and bone marrow lymphocytes, adrenal gland, gonads and brain. The protoDbl variant protein was detectable in the brain. The newly identified variant displays the disruption of the SEC14 domain, positioned on exons 2 and 3 in the protoDbl N-terminal region. We show here that an altered SEC14 sequence leads to enhanced Dbl translocation to the plasma membrane and to augmented transforming and exchange activity. 相似文献
18.
Temperature-induced unfolding of the leucine zipper, an alpha-helical, double-stranded, coiled-coil, was studied by circular dichroism spectroscopy, spectrofluorimetry and heat capacity scanning calorimetry. It is shown that this process does not represent a simple two-state transition, as previously believed, but consists of several stages. The first transition starts at the very beginning of heating from 0 degrees C and proceeds with significant heat absorption and decrease of ellipticity. This transition does not depend on the concentration of protein and is sensitive to modification of the N terminus; it is therefore associated with unfolding or fraying of this part of the leucine zipper. The second transition takes place at a considerably higher temperature; it is more pronounced than the first one and does not depend on the concentration of protein, i.e. it is unimolecular. This transition is sensitive to modification of both termini of the leucine zipper and affects the optical properties of a tryptophan residue placed in the central part of the zipper. It therefore involves the whole dimer but does not result in its dissociation, presumably being associated with some repacking of the coiled-coil. This second transition is followed at higher temperatures by the concentration-dependent cooperative unfolding/dissociation of the two strands. The enthalpy and entropy of the temperature-induced structural changes of the leucine zipper that take place before its cooperative unfolding/dissociation comprises almost 40% of the total enthalpy and entropy of unfolding of the completely folded coiled-coil, the state in which it appears to be below 0 degrees C. Comparison of the total enthalpy of leucine zipper unfolding with that of a single-stranded alpha-helix shows that their temperature-dependence correlates with the extent of intramolecular non-polar contacts and allows an assessment of the enthalpy of hydrogen bonding in alpha-helices, which appears to be about 3.3kJmol(-1) at 20 degrees C. 相似文献
19.
20.