首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The BCR gene is involved in the formation of the BCR-ABL oncogene responsible for the pathogenesis of Philadelphia chromosome-positive human leukemias. We have previously shown that P210 BCR-ABL binds to the xeroderma pigmentosum group B protein (XPB) through the portion of BCR that is homologous to the catalytic domain of GDP-GTP exchangers such as yeast CDC24 and Dbl. In the baculovirus overexpression system which facilitates binding of coexpressed proteins, we now show that XPB binds to the intact BCR protein efficiently but not to CDC24 or Dbl, suggesting specificity of this interaction. The binding of endogenous BCR and XPB proteins was also detected in Hela cells, and this was inhibited by a blocking peptide. Full-length (1-782) XPB and its truncated form (203-782), which does not contain the nuclear localization signal, were tagged with glutathione S-transferase (GST) and were expressed in Rat1 fibroblasts. GST-XPB(203-782) was localized predominantly in the cytoplasm and bound to BCR but not to p62, one of the other components in TFIIH. GST-XPB(1-782) was largely in the nucleus and bound to p62 and BCR. Although the biological significance of the binding remains to be uncovered, BCR binds to the XPB/p62 complex.  相似文献   

2.
Chronic myeloid leukemia (CML) is a clonal hematologic malignancy characterized by the BCR-ABL protein. BCR-ABL is a constitutively active tyrosine kinase and plays a critical role in the pathogenesis of CML. Imatinib mesylate, a selective tyrosine kinase inhibitor, is effective in CML, but drug resistance and relapse occur. The coiled-coil (CC) domain located in BCR1–72 mediates BCR-ABL tetramerization, which is essential for the activation of tyrosine kinase and transformation potential of BCR-ABL. CC domain is supposed to be a therapeutic target for CML. We purified a TAT-CC protein competively binding with the endogenous CC domain to reduce BCR-ABL kinase activity. We found that TAT-CC co-located and interacted with BCR-ABL in Ba/F3-p210 and K562 cells. It induced apoptosis and inhibited proliferation in these cells. It increased the sensitivity of these cells to imatinib and reduced the phosphorylation of BCR-ABL, CRKL and STAT5. We confirmed that TAT-CC could attenuate the oncogenicity of Ba/F3-p210 cells and diminish the volume of K562 solid tumor in mice. We conclude targeting the CC may provide a complementary therapy to inhibit BCR-ABL oncogenicity.  相似文献   

3.
Ect2 was identified originally as a transforming protein and a member of the Dbl family of Rho guanine nucleotide exchange factors (GEFs). Like all Dbl family proteins, Ect2 contains a tandem Dbl homology (DH) and pleckstrin homology (PH) domain structure. Previous studies demonstrated that N-terminal deletion of sequences upstream of the DH domain created a constitutively activated, transforming variant of Ect2 (designated DeltaN-Ect2 DH/PH/C), indicating that the N terminus served as a negative regulator of DH domain function in vivo. The role of sequences C-terminal to the DH domain has not been established. Therefore, we assessed the consequences of mutation of C-terminal sequences on Ect2-transforming activity. Surprisingly, in contrast to observations with other Dbl family proteins, we found that mutation of the invariant tryptophan residue in the PH domain did not impair DeltaN-Ect2 DH/PH/C transforming activity. Furthermore, although the sequences C-terminal to the PH domain lack any known functional domains or motifs, deletion of these sequences (DeltaN-Ect2 DH/PH) resulted in a dramatic reduction in transforming activity. Whereas DeltaN-Ect2 caused formation of lamellipodia, DeltaN-Ect2 DH/PH enhanced actin stress fiber formation, suggesting that C-terminal sequences influenced Ect2 Rho GTPase specificity. Consistent with this possibility, we determined that DeltaN-Ect2 DH/PH activated RhoA, but not Rac1 or Cdc42, whereas DeltaN-Ect2 DH/PH/C activated all three Rho GTPases in vivo. Taken together, these observations suggest that regions of Ect2 C-terminal to the DH domain alter the profile of Rho GTPases activated in vivo and consequently may contribute to the enhanced transforming activity of DeltaN-Ect2 DH/PH/C.  相似文献   

4.
The Philadelphia translocation commonly observed in chronic myeloid leukaemia (CML) and a proportion of cases of acute leukaemia results in the creation of a chimeric fusion protein, BCR-ABL. The fusion protein exhibits an elevated tyrosine kinase activity as compared to normal ABL. Using a temperature sensitive mutant of p210 BCR-ABL (ts-p210) we find that the primary effect of BCR-ABL expression in an IL-3 dependent cell line is to prolong survival following growth factor withdrawal; only a small proportion of cells remain viable and rapidly evolve to complete growth factor independence. During passage in the presence of IL-3 at the temperature permissive for kinase activity, ts-p210 expressing cultures become dominated by completely growth factor independent cells within 10-30 days. There is also a significant difference between BCR-ABL and IL-3 mediated signalling with respect to the MAP kinase pathway; in contrast to IL-3 stimulation or v-ABL expression, BCR-ABL does not signal ERK 2 (MAP 2 kinase) activation, underlining the apparent inability of BCR-ABL to deliver an immediate proliferative signal in Ba/F3 cells. Our data suggest that growth factor independence does not simply reflect the convergence of BCR-ABL and IL-3 mediated signalling pathways and its development, at least in Ba/F3 cells, requires prolonged exposure to BCR-ABL kinase activity. We suggest that the myeloid expansion characteristic of CML may result from the prolongation of survival of myeloid progenitor cells under conditions of limiting growth factor rather than their uncontrolled proliferation.  相似文献   

5.
P210 BCR/ABL is a chimeric oncogene implicated in the pathogenesis of chronic myelogenous leukemia. BCR sequences have been shown to be required for activation of the tyrosine kinase and transforming functions of BCR/ABL. In this work, we show that two other structural requirements for full transforming activity of P210 BCR/ABL include a functional tyrosine kinase and the presence of tyrosine 1294, a site of autophosphorylation within the tyrosine kinase domain. Replacement of tyrosine 1294 with phenylalanine (1294F) greatly diminishes the transforming activity of BCR/ABL without affecting the specific activity of the protein tyrosine kinase. Expression of an exogenous myc gene in fibroblasts partially complements the transforming capacity of mutant P210 BCR/ABL (1294F). Surprisingly, tyrosine 1294 is not required for efficient induction of growth factor-independence in hematopoietic cell lines by P210 BCR/ABL. These results suggest that autophosphorylation at tyrosine 1294 may be important for recognition and phosphorylation of cellular substrates in the pathway of transformation, but it is not critical for mediating the events which lead to growth factor independence.  相似文献   

6.
Although it is evident that BCR-ABL can rescue cytokine-deprived hematopoietic progenitor cells from cell cycle arrest and apoptosis, the exact mechanism of action of BCR/ABL and interleukin (IL)-3 to promote proliferation and survival has not been established. Using the pro-B cell line BaF3 and a BaF3 cell line stably overexpressing BCR-ABL (BaF3-p210), we investigated the proliferative signals derived from BCR-ABL and IL-3. The results indicate that both IL-3 and BCR-ABL target the expression of cyclin Ds and down-regulation of p27(Kip1) to mediate pRB-related pocket protein phosphorylation, E2F activation, and thus S phase progression. These findings were further confirmed in a BaF3 cell line (TonB.210) where the BCR-ABL expression is inducible by doxycyclin and by using the drug STI571 to inactivate BCR-ABL activity in BaF3-p210. To establish the functional significance of cyclin D2 and p27(Kip1) expression in response to IL-3 and BCR-ABL expression, we studied the effects of ectopic expression of cyclin D2 and p27(Kip1) on cell proliferation and survival. Our results demonstrate that both cyclin D2 and p27(Kip1) have a role in BaF3 cell proliferation and survival, as ectopic expression of cyclin D2 is sufficient to abolish the cell cycle arrest and apoptosis induced by IL-3 withdrawal or by BCR-ABL inactivation, while overexpression of p27(Kip1) can cause cell cycle arrest and apoptosis in the BaF3 cells. Furthermore, our data also suggest that cyclin D2 functions upstream of p27(Kip1), cyclin E, and cyclin D3, and therefore, plays an essential part in integrating the signals from IL-3 and BCR-ABL with the pRB/E2F pathway.  相似文献   

7.
Dbl family members are guanine nucleotide exchange factors specific for Rho guanosine triphosphatases (GTPases) and invariably possess tandem Dbl (DH) and pleckstrin homology (PH) domains. Dbs, a Dbl family member specific for Cdc42 and RhoA, exhibits transforming activity when overexpressed in NIH 3T3 mouse fibroblasts. In this study, the PH domain of Dbs was mutated to impair selectively either guanine nucleotide exchange or phosphoinositide binding in vitro and resulting physiological alterations were assessed. As anticipated, substitution of residues within the PH domain of Dbs integral to the interface with GTPases reduced nucleotide exchange and eliminated the ability of Dbs to transform NIH 3T3 cells. More interestingly, substitutions within the PH domain that prevent interaction with phosphoinositides yet do not alter in vitro activation of GTPases also do not transform NIH 3T3 cell and fail to activate RhoA in vivo despite proper subcellular localization. Therefore, the PH domain of Dbs serves multiple roles in the activation of GTPases and cannot be viewed as a simple membrane-anchoring device. In particular, the data suggest that binding of phosphoinositides to the PH domain within the context of membrane surfaces may direct orientations or conformations of the linked DH and PH domains to regulate GTPases activation.  相似文献   

8.
The Dbl family guanine-nucleotide exchange factors (GEFs) for Rho GTPases share the structural array of a Dbl homology (DH) domain in tandem with a Pleckstrin homology (PH) domain. For oncogenic Dbl, the DH domain is responsible for the GEF activity, and the DH-PH module constitutes the minimum structural unit required for cellular transformation. To understand the structure-function relationship of the DH domain, we have investigated the role of specific residues of the DH domain of Dbl in interaction with Rho GTPases and in Dbl-induced transformation. Alanine substitution mutagenesis identified a panel of DH mutants made in the alpha1, alpha6, and alpha9 regions and the PH junction site that suffer complete or partial loss of GEF activity toward Cdc42 and RhoA. Kinetic and binding analysis of these mutants revealed that although most displayed decreased k(cat) values in the GEF reaction, the substrate binding activities of T506A and R634A were significantly reduced. E502A, Q633A, and N673A/D674A, on the other hand, retained the binding capability to the Rho GTPases but lost the GEF catalytic activity. In general, the in vitro GEF activity of the DH mutants correlated with the in vivo Cdc42- and RhoA-activating potential, and the GEF catalytic efficiency mirrored the transforming activity in NIH 3T3 cells. Moreover, the N673A/D674A mutant exhibited a potent dominant-negative effect on serum-induced cell growth and caused retraction of actin structures. These studies identify important sites of the DH domain involved in binding or catalysis of Rho proteins and demonstrate that maintaining a threshold of GEF catalytic activity, in addition to the Rho GTPase binding activity, is essential for efficient transformation by oncogenic Dbl.  相似文献   

9.
The Dbl homology (DH) domain was first identified in the Dbl oncogene product as the limit region required for mediating guanine nucleotide exchange on the Rho family GTPase Cdc42. Since the initial biochemical characterization of the DH domain, this conserved motif has been identified in a large family of proteins. In each case, a pleckstrin homology (PH) domain immediately follows the DH domain and this tandem DH-PH module is the signature motif of the Dbl family of guanine nucleotide exchange factors (GEFs). Recent structural studies have provided significant insight into the molecular basis of guanine nucleotide exchange by Dbl family GEFs, opening the door for understanding the specificity of the DH/GTPase interaction as well as providing a starting point for understanding how the exchange activity of these proteins is modulated to achieve specific biological outcomes in the cell.  相似文献   

10.
11.
The Dbl family guanine nucleotide exchange factors (GEFs) contain a region of sequence similarity consisting of a catalytic Dbl homology (DH) domain in tandem with a pleckstrin homology (PH) domain. PH domains are involved in the regulated targeting of signaling molecules to plasma membranes by protein-protein and/or protein-lipid interactions. Here we show that Dbl PH domain binding to phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-triphosphate results in the inhibition of Dbl GEF activity on Rho family GTPase Cdc42. Phosphatidylinositol 4,5-bisphosphate binding to the PH domain significantly inhibits the Cdc42 interactive activity of the DH domain suggesting that the DH domain is subjected to the PH domain modulation under the influence of phosphoinositides (PIPs). We generated Dbl mutants unable to interact with PIPs. These mutants retained GEF activity on Cdc42 in the presence of PIPs and showed a markedly enhanced activating potential for both Cdc42 and RhoA in vivo while displaying decreased cellular transforming activity. Immunofluorescence analysis of NIH3T3 transfectants revealed that whereas the PH domain localizes to actin stress fibers and plasma membrane, the PH mutants are no longer detectable on the plasma membrane. These results suggest that modulation of PIPs in both the GEF catalytic activity and the targeting to plasma membrane determines the outcome of the biologic activity of Dbl.  相似文献   

12.
Vav family proteins are members of the Dbl family of guanine nucleotide exchange factors and activators of Rho family small GTPases. In addition to the Dbl homology (DH) domain important for guanine nucleotide exchange factor catalytic function, all Dbl family proteins contain an adjacent pleckstrin homology (PH) domain that serves to regulate DH domain activity. Although the role of the PH domain in Vav function has been evaluated extensively, its precise role and whether it serves a distinct role in different Vav proteins remain unresolved. Additionally, the precise role of an adjacent cysteine-rich domain (CRD) in regulating DH domain function is also unclear. In this study, we evaluated the contribution of these putative protein-protein or protein-lipid interaction domains to Vav signaling and transforming activity. In contrast to previous observations, we found that the PH domain is critical for Vav transforming activity. Similarly, the CRD was also essential and served a function distinct from that of the PH domain. Although mutation of either domain reduced Vav membrane association, addition of plasma membrane targeting sequences to either the CRD or PH domain mutant proteins did not restore Vav transforming activity. This result contrasts with other Dbl family proteins, where a membrane targeting sequence alone was sufficient to restore the loss of function caused by mutation of the PH domain. Furthermore, green fluorescent protein fusion proteins containing the PH domain or CRD, or both, failed to target to the plasma membrane, suggesting that these two domains also serve regulatory functions independent of promoting membrane localization. Finally, we found that phosphatidylinositol 3-kinase activation may promote Vav membrane association via phosphatidylinositol 3,4,5-triphosphate binding to the PH domain.  相似文献   

13.
Dbl family guanine nucleotide exchange factors (GEFs) for Rho family small GTPases invariably contain a pleckstrin homology (PH) domain that immediately follows their Dbl homology (DH) domain. Although the DH domain is responsible for GEF activity, the role of the PH domain is less clear. We previously reported that PH domains from several Dbl family members bind phosphoinositides with very low affinity (K(d) values in the 10 microM range). This suggests that, unlike several other PH domains, those from Dbl proteins will not function as independent membrane-targeting modules. To determine the functional relevance of low affinity phosphoinositide binding, we mutated the corresponding PH domain from Tiam-1 to abolish its weak, specific binding to phosphatidylinositol 3-phosphate. We first confirmed in vitro that phosphoinositide binding by the isolated DH/PH domain was impaired by the mutations but that intrinsic GEF activity was unaffected. We then introduced the PH domain mutations into full-length Tiam-1 and found that its ability to activate Rac1 or serum response factor in vivo was abolished. Immunofluorescence studies showed that membrane targeting of Tiam-1 was essentially unaffected by mutations in the C-terminal PH domain. Our studies therefore indicate that low affinity phosphatidylinositol 3-phosphate binding by the C-terminal PH domain may be critical for in vivo regulation and activity of Tiam-1 but that the PH domain exerts its regulatory effects without altering membrane targeting. We suggest instead that ligand binding to the PH domain induces conformational and/or orientational changes at the membrane surface that are required for maximum exchange activity of its adjacent DH domain.  相似文献   

14.
Dbl proteins are guanine nucleotide exchange factors for Rho GTPases, containing adjacent Dbl homology (DH) and pleckstrin homology (PH) domains. This domain architecture is virtually invariant and typically required for full exchange potential. Several structures of DH/PH fragments bound to GTPases implicate the PH domain in nucleotide exchange. To more fully understand the functional linkage between DH and PH domains, we have determined the crystal structure of the DH/PH fragment of Dbs without bound GTPase. This structure is generally similar to previously determined structures of Dbs bound to GTPases albeit with greater apparent mobility between the DH and PH domains. These comparisons suggest that the DH and PH domains of Dbs are spatially primed for binding GTPases and small alterations in intradomain conformations that may be elicited by subtle biological responses, such as altered phosphoinositide levels, are sufficient to enhance exchange by facilitating interactions between the PH domain and GTPases.  相似文献   

15.
The BCR/ABL oncogene causes chronic myelogenous leukemia (CML), a myeloproliferative disorder characterized by clonal expansion of hematopoietic progenitor cells and granulocyte lineage cells. The SH2-containing inositol-5-phosphatase SHIP is a 145-kDa protein which has been shown to regulate hematopoiesis in mice. Targeted disruption of the murine SHIP gene results in a myeloproliferative syndrome characterized by a dramatic increase in numbers of granulocyte-macrophage progenitor cells in the marrow and spleen. Also, hematopoietic progenitor cells from SHIP(-/-) mice are hyperresponsive to certain hematopoietic growth factors, a phenotype very similar to the effects of BCR/ABL in murine cells. In a series of BCR/ABL-transformed hematopoietic cell lines, Philadelphia chromosome (Ph)-positive cell lines, and primary cells from patients with CML, the expression of SHIP was found to be absent or substantially reduced compared to untransformed cell lines or leukemia cells lacking BCR/ABL. Ba/F3 cells in which expression of BCR/ABL was under the control of a tetracycline-inducible promoter showed rapid loss of p145 SHIP, coincident with induction of BCR/ABL expression. Also, an ABL-specific tyrosine kinase inhibitor, CGP57148B (STI571), rapidly caused reexpression of SHIP, indicating that BCR/ABL directly, but reversibly, regulates the expression of SHIP protein. The estimated half-life of SHIP protein was reduced from 18 h to less than 3 h. However, SHIP mRNA also decreased in response to BCR/ABL, suggesting that SHIP protein levels could be affected by more than one mechanism. Reexpression of SHIP in BCR/ABL-transformed Ba/F3 cells altered the biological behavior of cells in culture. The reduction of SHIP due to BCR/ABL is likely to directly contribute to the pathogenesis of CML.  相似文献   

16.
17.
The activated tyrosine kinase oncoprotein BCR-ABL is responsible for pathogenesis of Philadelphia chromosome-positive human leukemias. Because BCR carries a GAP (GTPase-activating protein) activity toward cytoskeleton-related small GTP-binding proteins, we utilized a neuronal PC12 cell system to test morphogenic potentials of BCR-ABL or BCR. We report here unique morphological phenotypes of PC12 cells expressing either BCR-ABL or a BCR mutant which lacks the SH2-binding domain (BCR Δ162-413). Although MAP kinase was not activated in PC12 cells expressing BCR-ABL, they showed incomplete neurite extensions even in the absence of the nerve growth factor (NGF). Overproduction of BCR Δ162-413 in PC12 cells, on the other hand, induced cell rounding in the absence of NGF. Interestingly, those cells could hardly make terminal differentiation in the presence of NGF and continued to grow without changing their round shape, although NGF receptor as well as MAP kinase appeared to be activated. Interestingly, the botulinum C3 toxin induced neurite-like structures in PC12 cells overexpressing BCR Δ162-413 without NGF.  相似文献   

18.
Intersectin-long (ITSN-L) contains the invariant Dbl homology (DH) and pleckstrin homology (PH) domain structure characteristic of the majority of Dbl family proteins. This strict domain topography suggests that the PH domain serves an essential, conserved function in the regulation of the intrinsic guanine nucleotide exchange activity of the DH domain. We evaluated the role of the PH domain in regulating the DH domain function of ITSN-L. Surprisingly, we found that the PH domain was dispensable for guanine nucleotide exchange activity on Cdc42 in vitro, yet the PH domain enhanced the ability of the DH domain to activate Cdc42 signaling in vivo. PH domains can interact with phosphoinositide substrates and products of phosphatidylinositol 3-kinase (PI3K). However, PI3K activation did not modulate ITSN-L DH domain function in vivo.  相似文献   

19.
目的:通过构建带EGFP标签的SGEF基因DH结构域缺失的真核表达载体pEGFP-C1-SGEF-△DH并使其在293T细胞表达,观察DH结构域缺失后SGEF在293T细胞中的定位。方法:利用重叠PCR技术在pcDNA3.1-SGEF质粒上扩增缺失DH结构域的SGEF基因,然后将PCR产物亚克隆到真核表达载体pEGFP-C1上,对阳性克隆进行双酶切和测序鉴定,利用脂质体转染方法转染293T细胞,并用Western印迹和细胞免疫荧光技术对重组质粒pEGFP-C1-SGEF-△DH在293T细胞中的表达及其蛋白定位进行分析。结果:双酶切和测序鉴定表明,pEGFP-C1-SGEF-△DH真核表达质粒构建成功,转染实验发现该质粒能够在293T细胞中表达,表达产物主要定位在细胞核内。结论:构建了带EGFP标签的人SGEF基因DH结构域缺失的真核表达载体,该载体能够在哺乳动物细胞293T中表达,表达产物定位于细胞核,为进一步研究SGEF基因DH结构域的细胞生物学功能提供了一个重要的工具。  相似文献   

20.
Normally, Rho GTPases are activated by the removal of bound GDP and the concomitant loading of GTP catalyzed by members of the Dbl family of guanine nucleotide exchange factors (GEFs). This family of GEFs invariantly contain a Dbl homology (DH) domain adjacent to a pleckstrin homology (PH) domain, and while the DH domain usually is sufficient to catalyze nucleotide exchange, possible roles for the conserved PH domain remain ambiguous. Here we demonstrate that the conserved PH domains of three distinct Dbl family proteins, intersectin, Dbs, and Tiam1, selectively bind lipid vesicles only when phosphoinositides are present. While the PH domains of intersectin and Dbs promiscuously bind several multiphosphorylated phosphoinositides, Tiam1 selectively interacts with phosphatidylinositol 3-phosphate (K(D) approximately 5-10 microm). In addition, and in contrast to recent reports, catalysis of nucleotide exchange on nonprenylated Rac1 provided by various extended portions of Tiam1 is not influenced by (a) soluble phosphoinositide head groups, (b) dibutyl versions of phosphoinositides, or (c) lipid vesicles containing phosphoinositides. Likewise, GEF activity afforded by DH/PH fragments of intersectin and Dbs are also not altered by phosphoinositide interactions. These results strongly suggest that unless all relevant components are localized to a lipid membrane surface, Dbl family GEFs generally are not intrinsically modulated by binding phosphoinositides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号