首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have studied a possible role of extracellular zinc ion in the activation of p70S6k, which plays an important role in the progression of cells from the G(1) to S phase of the cell cycle. Treatment of Swiss 3T3 cells with zinc sulfate led to the activation and phosphorylation of p70S6k in a dose-dependent manner. The activation of p70S6k by zinc treatment was biphasic, the early phase being at 30 min followed by the late phase at 120 min. The zinc-induced activation of p70S6k was partially inhibited by down-regulation of phorbol 12-myristate 13-acetate-responsive protein kinase C (PKC) by chronic treatment with phorbol 12-myristate 13-acetate, but this was not significant. Moreover, Go6976, a specific calcium-dependent PKC inhibitor, did not significantly inhibit the activation of p70S6k by zinc. These results demonstrate that the zinc-induced activation of p70S6k is not related to PKC. Also, extracellular calcium was not involved in the activation of p70S6k by zinc. Further characterization of the zinc-induced activation of p70S6k using specific inhibitors of the p70S6k signaling pathway, namely rapamycin, wortmannin, and LY294002, showed that zinc acted upstream of mTOR/FRAP/RAFT and phosphatidylinositol 3-kinase (PI3K), because these inhibitors caused the inhibition of zinc-induced p70S6k activity. In addition, Akt, the upstream component of p70S6k, was activated by zinc in a biphasic manner, as was p70S6k. Moreover, dominant interfering alleles of Akt and PDK1 blocked the zinc-induced activation of p70S6k, whereas the lipid kinase activity of PI3K was potently activated by zinc. Taken together, our data suggest that zinc activates p70S6k through the PI3K signaling pathway.  相似文献   

2.
IL-10 is an anti-inflammatory cytokine produced in the joint in rheumatoid arthritis by macrophages and infiltrating blood lymphocytes. Regulation of its expression is poorly understood, but previous findings have suggested that physical interactions with T cells may play a role. This report investigates signalling mechanisms involved in the production of macrophage IL-10 upon interaction with fixed, cytokine-stimulated T cells (Tck). Elutriated monocytes were differentiated to macrophages by macrophage-colony-stimulating factor (M-CSF) and co-cultured with fixed T cells chronically stimulated in a cytokine cocktail of IL-2/IL-6/tumour necrosis factor (TNF)-α in the presence or absence of wortmannin and LY294002, inhibitors of phosphatidylinositol 3-kinase (PI3K), or of rapamycin, an inhibitor of p70 S6-kinase (p70S6K). Spontaneous IL-10 production by rheumatoid arthritis synovial-membrane mononuclear cells (RA-SMCs) and co-cultures of rheumatoid arthritis T cells (RA-Ts) and macrophages was also assessed. RA-T and Tck induction of macrophage IL-10 production was suppressed by cell separation and inhibition of PI3K and p70S6K. PI3K involvement was also shown by phosphorylation of the downstream effector protein kinase B. Spontaneous IL-10 production by RA-SMCs was also inhibited by LY294002 and depletion of the nonadherent (T-cell-enriched) fraction of the cell population. IL-10 production in RA-SMCs and M-CSF-primed macrophages, activated by interaction with Tck, is PI3K- and p70S6K-dependent.  相似文献   

3.
IL-10 is an anti-inflammatory cytokine produced in the joint in rheumatoid arthritis by macrophages and infiltrating blood lymphocytes. Regulation of its expression is poorly understood, but previous findings have suggested that physical interactions with T cells may play a role. This report investigates signalling mechanisms involved in the production of macrophage IL-10 upon interaction with fixed, cytokine-stimulated T cells (Tck). Elutriated monocytes were differentiated to macrophages by macrophage-colony-stimulating factor (M-CSF) and co-cultured with fixed T cells chronically stimulated in a cytokine cocktail of IL-2/IL-6/tumour necrosis factor (TNF)-alpha in the presence or absence of wortmannin and LY294002, inhibitors of phosphatidylinositol 3-kinase (PI3K), or of rapamycin, an inhibitor of p70 S6-kinase (p70S6K). Spontaneous IL-10 production by rheumatoid arthritis synovial-membrane mononuclear cells (RA-SMCs) and co-cultures of rheumatoid arthritis T cells (RA-Ts) and macrophages was also assessed. RA-T and Tck induction of macrophage IL-10 production was suppressed by cell separation and inhibition of PI3K and p70S6K. PI3K involvement was also shown by phosphorylation of the downstream effector protein kinase B. Spontaneous IL-10 production by RA-SMCs was also inhibited by LY294002 and depletion of the nonadherent (T-cell-enriched) fraction of the cell population. IL-10 production in RA-SMCs and M-CSF-primed macrophages, activated by interaction with Tck, is PI3K- and p70S6K-dependent.  相似文献   

4.
5.
6.
7.
8.
Infection of mouse fibroblasts by wild-type polyomavirus results in increased phosphorylation of ribosomal protein S6 (D.A. Talmage, J. Blenis, and T.L. Benjamin, Mol. Cell. Biol. 8:2309-2315, 1988). Here we identify pp70 S6 kinase (pp70S6K) as a target for signal transduction events leading from polyomavirus middle tumor antigen (mT). Two partially transforming virus mutants altered in different mT signalling pathways have been studied to elucidate the pathway leading to S6 phosphorylation. An upstream role for mT-phosphatidylinositol 3-kinase (PI3K) complexes in pp70S6K activation is implicated by the failure of 315YF, a mutant unable to promote PI3K binding, to elicit a response. This conclusion is supported by studies using wortmannin, a known inhibitor of PI3K. In contrast, stable interaction of mT with Shc, a protein thought to be involved upstream of Ras, is dispensable for pp70S6K activation. 250YS, a mutant mT which retains a binding site for PI3K but lacks one for Shc, stimulates pp70S6K to wild-type levels. Mutants 315YF and 250YS induce partial transformation of rats fibroblasts with distinct phenotypes, as judged from morphological and growth criteria. Neither mutant induces growth in soft agar, indicating that an increase in S6 phosphorylation, while necessary for cell cycle progression in normal mitogenesis, is not sufficient for anchorage-independent cell growth. In the polyomavirus systems, the latter requires integration of signals from mT involving both Shc and PI3K.  相似文献   

9.
Cellular function of p70S6K: a role in regulating cell motility   总被引:5,自引:0,他引:5  
The 70 kDa ribosomal S6 kinase (p70S6K) is activated by numerous mitogens, growth factors and hormones. Activation of p70S6K occurs through phosphorylation at a number of sites and the primary target of the activated kinase is the 40S ribosomal protein S6, a major component of the machinery involved in protein synthesis in mammalian cells. In addition to its involvement in regulating translation, p70S6K activation has been implicated in cell cycle control and neuronal cell differentiation. Recent data obtained in this laboratory suggests that p70S6K may also function in regulating cell motility, a cellular response that is important in tumour metastases, the immune response and tissue repair. The present paper reviews the regulation and cellular function of p70S6K and proposes a novel function of p70S6K in regulating cell motility.  相似文献   

10.
Although the significance of vascular endothelial growth factor (VEGF) and its receptors in angiogenesis is well established, the signal transduction cascades activated by VEGF and their involvement in mediating the mitogenic response of endothelial cells to VEGF are incompletely characterized. Here we demonstrate that VEGF activates mitogen-activated protein (MAP) kinases, including the extracellular signal-regulated protein kinase (ERK) and p38 MAP kinase, phosphatidylinositol 3-kinase (PI 3-kinase), and p70 S6 kinase in human umbilical vein endothelial cells (HUVEC). The activation of these enzymes was assayed by kinase phosphorylation and by kinase activity towards substrates. Studies with PI 3-kinase inhibitors revealed that activation of p70 S6 kinase was mediated by PI 3-kinase. Selective inhibition of ERK, PI 3-kinase, and p70 S6 kinase with the inhibitors PD098059, LY294002, and rapamycin, respectively, inhibited VEGF-stimulated HUVEC proliferation. In marked contrast, the p38 MAP kinase inhibitor SB203580 not only failed to inhibit but actually enhanced HUVEC proliferation; this effect was associated with the phosphorylation of Rb protein. Rb phosphorylation resulted from a decrease in the level of the cdk inhibitor p27KiP1. These results indicate that the activities of ERK, PI 3-kinase, and p70 S6 kinase are essential for VEGF-induced HUVEC proliferation. p38 MAP kinase suppresses endothelial cell proliferation by regulating cell-cycle progression.  相似文献   

11.
PI3K activation is commonly observed in many human cancer cells. Survivin expression is elevated in cancer cells, and induced by some growth factors through PI3K activation. However, it is not clear whether PI3K activation is sufficient to induce survivin expression. To investigate the role of PI3K pathway in the regulation of survivin, we expressed an active form of PI3K, v-P3k in chicken embryonic fibroblast cells (CEF), and found that overexpression of PI3K-induced survivin mRNA expression. Forced expression of wild-type but not mutant tumor suppressor PTEN in CEF decreased survivin mRNA levels. PI3K regulates survivin expression through Akt activation. To further investigate downstream target of PI3K and Akt in regulating the expression of survivin mRNA, we found that PI3K and Akt-induced p70S6K1 activation and that overexpression of p70S6K1 alone was sufficient to induce survivin expression. The treatment of CEF cells by rapamycin decreased the survivin mRNA expression. This result demonstrated that p70S6K1 is an important target downstream of PI3K and Akt in regulating suvivin mRNA expression. The knockdown of survivin mRNA expression by its specific siRNA induced apoptosis of cancer cells when the cells were treated with LY294002 or taxol. Taken together, these results demonstrated that PI3K/Akt/p70S6K1 pathway is essential for regulating survivin mRNA expression.  相似文献   

12.
To investigate the role of insulin receptor substrate-1 (IRS-1) and its downstream signaling in insulin-induced thermogenic differentiation of brown adipocytes, we have reconstituted IRS-1-deficient fetal brown adipocytes (IRS-1(-/-)) with wild-type IRS-1 (IRS-1(wt)). The lack of IRS-1 resulted in the inability of insulin to induce IRS-1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity and Akt phosphorylation in IRS-1(-/-) brown adipocytes. In addition, these cells showed an impairment in activating alpha-Akt, beta-Akt, and gamma-Akt isoforms upon insulin stimulation. Reconstitution of IRS-1(-/-) brown adipocytes with IRS-1(wt) restored the IRS-1/PI 3-kinase/Akt signaling pathway. Treatment of wild-type brown adipocytes with insulin for 24 h up-regulated uncoupling protein-1 (UCP-1) expression and transactivated the UCP-1 promoter; this effect was abolished in the absence of IRS-1 or in the presence of an Akt inhibitor and further recovered after IRS-1(wt) reconstitution. Neither UCP-2 nor UCP-3 was up-regulated by insulin in wild-type and IRS-1-deficient brown adipocytes. Insulin stimulated the expression of CCAAT/enhancer-binding protein alpha (C/EBPalpha) and its DNA binding activity in wild-type brown adipocytes but not in IRS-1(-/-) cells. However, insulin stimulation of both C/EBPalpha expression and binding activity was restored after IRS-1(wt) reconstitution of deficient cells. Retrovirus-mediated expression of C/EBPalpha and peroxisome proliferator-activated receptor gamma in IRS-1(-/-) brown adipocytes up-regulated UCP-1 protein content and transactivated UCP-1 promoter regardless of insulin stimulation. Both C/EBPalpha and peroxisome proliferator-activated receptor gamma reconstituted FAS mRNA expression, but only C/EBPalpha restored insulin sensitivity in the absence of IRS-1. Finally, reconstitution of IRS-1(-/-) brown adipocytes with the IRS-1 mutants IRS-1(Phe-895), which lacks IRS-1/growth factor receptor binding protein 2 binding but not IRS-1/p85-PI 3-kinase binding, or with IRS-1(Tyr-608/Tyr-628/Tyr-658), which only binds p85-PI 3-kinase, induced UCP-1 expression and transactivated the UCP-1 promoter. These data provide strong evidence for an essential role of IRS-1 through the PI 3-kinase/Akt signaling pathway inducing UCP-1 gene expression by insulin.  相似文献   

13.
Published studies reveal that Osteogenic Protein-1 (OP-1) and insulin-like growth factor-I (IGF-I) synergistically stimulate alkaline phosphatase (AP) activity and bone nodule formation in fetal rat calvaria (FRC) cells. In the present study, we examined whether there are interactions between the signal transduction pathways activated by these two growth factors. OP-1 did not significantly affect the levels of IRS-1, IRS-2, the p85alpha subunit of phosphatidylinositol 3-kinase (PI 3-kinase) or the extracellular signal-regulated kinase (ERK)-2, but stimulated ERK-1 protein by twofold. OP-1 also induced phosphorylation of ERK-1 and -2, but not of Akt/protein kinase B (PKB), a protein kinase that is downstream of PI 3-kinase. By comparison, IGF-I increased the levels of the phosphorylated forms of ERK-1 and -2, and Akt/PKB. Inhibition of ERK activation by PD98059 did not significantly alter the stimulation of AP activity by OP-1 or OP-1 in combination with IGF-I. In contrast, inhibition of PI 3-kinase activity by LY294002 blocked the induction of AP activity by OP-1 and OP-1 plus IGF-I. Treatment of cells with rapamycin, an inhibitor of the mammalian target of mTOR, resulted in a 47% and a 53% decrease in the AP activity induced by OP-1 alone and by OP-1 plus IGF-I, respectively. These studies suggest that PI 3-kinase and mTOR contribute to the induction of AP activity by OP-1 and the synergistic effect of OP-1 and IGF-I on AP activity in FRC cells.  相似文献   

14.
The serine/threonine kinase p70 S6 kinase (p70S6K) phosphorylates the 40 S ribosomal protein S6, modulating the translation of an mRNA subset that encodes ribosomal proteins and translation elongation factors. p70S6K is activated in response to mitogenic stimuli and is required for progression through the G(1) phase of the cell cycle and for cell growth. Activation of p70S6K is regulated by phosphorylation of seven different residues distributed throughout the protein, a subset of which depends on the activity of p85/p110 phosphatidylinositol 3-kinase (PI3K); in fact, the phosphorylation status of Thr(229) and Thr(389) is intimately linked to PI3K activity. In the full-length enzyme, however, these sites are also acutely sensitive to the action of FKBP 12-rapamycin-associated protein (FRAP). The mechanism by which PI3K and FRAP cooperate to induce p70S6K activation remains unclear. Here we show that the p85 regulatory subunit of PI3K also controls p70S6K activation by mediating formation of a ternary complex with p70S6K and FRAP. The p85 C-terminal SH2 domain is responsible for p85 coupling to p70S6K and FRAP, because deletion of the C-terminal SH2 domain inhibits complex formation and impairs p70S6K activation by PI3K. Formation of this complex is not required for activation of a FRAP-independent form of p70S6K, however, underscoring the role of p85 in regulating FRAP-dependent p70S6K activation. These studies thus show that, in addition to the contribution of PI3K activity, the p85 regulatory subunit plays a critical role in p70S6K activation.  相似文献   

15.
Phosphatidylinositol 3-kinase (PI3K)-dependent activation of atypical protein kinase C (aPKC) is required for insulin-stimulated glucose transport. Although insulin receptor substrate-1 (IRS-1) and IRS-2, among other factors, activate PI3K, there is little information on the relative roles of IRS-1and IRS-2 during aPKC activation by insulin action in specific cell types. Presently, we have used immortalized brown adipocytes in which either IRS-1 or IRS-2 has been knocked out by recombinant methods to examine IRS-1 and IRS-2 requirements for activation of aPKC. We have also used these adipocytes to see if IRS-1 and IRS-2 are required for activation of Cbl, which is required for insulin-stimulated glucose transport and has been found to function upstream of both PI3K/aPKC and Crk during thiazolidinedione action in 3T3/L1 adipocytes [Miura et al. (2003) Biochemistry 42, 14335]. In brown adipocytes in which either IRS-1 or IRS-2 was knocked out, insulin-induced increases in aPKC activity and glucose transport were markedly diminished. These effects of insulin on aPKC and glucose transport were fully restored by retroviral-mediated expression of IRS-1 or IRS-2 in their respective knockout cells. Knockout of IRS-1 or IRS-2 also inhibited insulin-induced increases in Cbl binding to the p85 subunit of PI3K, which, along with IRS-1/2, may be required for activation of PI3K, aPKC, and glucose transport during insulin action in 3T3/L1 adipocytes. These findings provide evidence that directly links both IRS-1 and IRS-2 to aPKC activation in immortalized brown adipocytes, and further suggest that IRS-1 and IRS-2 are required for the activation of Cbl/PI3K during insulin action in these cells.  相似文献   

16.
This study was designed to identify the molecular mechanisms of phosphatidylinositol 3-kinase (PI3K)-induced actin filament remodeling and cell migration. Expression of active forms of PI3K, v-P3k or Myr-P3k, was sufficient to induce actin filament remodeling to lead to an increase in cell migration, as well as the activation of Akt in chicken embryo fibroblast (CEF) cells. Either the inhibition of PI3K activity using a PI3K-specific inhibitor, LY-294002, or the disruption of Akt activity restored the integrity of actin filaments in CEF cells and inhibited PI3K-induced cell migration. We also found that expression of an activated form of Akt (Myr-Akt) was sufficient to remodel actin filaments to lead to an increase in cell migration, which was unable to be inhibited by the presence of LY-294002. Furthermore, we found that p70S6K1 kinase was a downstream molecule that can mediate the effects of both PI3K and Akt on actin filaments and cell migration. Overexpression of an active form of p70S6K1 was sufficient to induce actin filament remodeling and cell migration in CEF cells, which requires Rac activity. These results demonstrate that activation of PI3K activity alone is sufficient to remodel actin filaments to increase cell migration through the activation of Akt and p70S6K1 in CEF cells. phosphatidylinositol 3-kinase; Rac; actin filaments  相似文献   

17.
The regulation of endothelial function by insulin is consistently abnormal in insulin-resistant states and diabetes. Protein kinase C (PKC) activation has been reported to inhibit insulin signaling selectively in endothelial cells via the insulin receptor substrate/PI3K/Akt pathway to reduce the activation of endothelial nitric-oxide synthase (eNOS). In this study, it was observed that PKC activation differentially inhibited insulin receptor substrate 1/2 (IRS1/2) signaling of insulin's activation of PI3K/eNOS by decreasing only tyrosine phosphorylation of IRS2. In addition, PKC activation, by general activator and specifically by angiotensin II, increased the phosphorylation of p85/PI3K, which decreases its association with IRS1 and activation. Thr-86 of p85/PI3K was identified to be phosphorylated by PKC activation and confirmed to affect IRS1-mediated activation of Akt/eNOS by insulin and VEGF using a deletion mutant of the Thr-86 region of p85/PI3K. Thus, PKC and angiotensin-induced phosphorylation of Thr-86 of p85/PI3K may partially inhibit the activation of PI3K/eNOS by multiple cytokines and contribute to endothelial dysfunction in metabolic disorders.  相似文献   

18.
Sympathetic activation ofbrown fat thermogenesis stimulates adrenergic and purinergic receptors.We examined the effects of extracellular ATP and -adrenergicagonists on voltage-activated K currents (IKv) in voltage-clamped ratbrown adipocytes. ATP or the -adrenergic agonist isoproterenolincreased the development of IKv inactivation during depolarizingvoltage steps in perforated patch-clamped cells. The effects oninactivation developed slowly in the presence of agonist and continuedto increase for long times following agonist washout. 8-bromo-cAMP orforskolin had similar effects on IKv inactivation. Development of IKvinactivation during depolarizations was consistently enhanced by ATP or-adrenergic stimulation in perforated-patch voltage-clamped cellsbut was not altered by these agents in whole cell recordings,suggesting that cytosolic factors are necessary for inactivationmodulation. In either recording configuration, ATP or isoproterenolshifted the activation voltage dependence of IKv to more negativepotentials, indicating the activation effect is mediated by a differentpathway. Since both P2 purinergic and -adrenergic signaling pathwaysgenerate fatty acids, we tested whether fatty acids could reproducethese modulations of IKv. Linoleic or arachidonic acid applied in whole cell recordings had effects similar to those of ATP or isoproterenol inperforated-patch experiments. These results are consistent with thepossibility that -adrenergic and P2 receptor stimulation modulateIKv through generation of fatty acids.

  相似文献   

19.
Intracellular signaling mediated by phosphatidylinositol 3-kinase (PI3K) is important for a number of cellular processes and is stimulated by a variety of hormones, including insulin and leptin. A histochemical method for assessment of PI3K signaling would be an important advance in identifying specific cells in histologically complex organs that are regulated by growth factors and peptide hormones. However, current methods for detecting PI3K activity require either homogenization of the tissue or cells or the ability to transfect probes that bind to phosphatidylinositol 3,4,5 trisphosphate (PIP3), the reaction product of PI3K catalysis. Here we report the validation of an immunocytochemical method to detect changes in PI3K activity, using a recently developed monoclonal antibody to PIP3, in paraformaldehyde-fixed bovine aortic endothelial cells (BAECs) in culture and in hepatocytes of intact rat liver. Treatment with either insulin or leptin increased BAEC PIP3 immunoreactivity, and these effects were blocked by pretreatment with PI3K inhibitors. Furthermore, infusion of insulin into the hepatic portal vein of fasted rats caused an increase of PIP3 immunostaining in hepatocytes that was associated with increased serine phosphorylation of the downstream signaling molecule protein kinase B/Akt (PKB/Akt). We conclude that immunocytochemical PIP3 staining can detect changes in PI3K activation induced by insulin and leptin in cell culture and intact liver.  相似文献   

20.
Insulin stimulates muscle glucose disposal via both glycolysis and glycogen synthesis. Insulin activates glycogen synthase (GS) in skeletal muscle by phosphorylating PKB (or Akt), which in turn phosphorylates and inactivates glycogen synthase kinase 3 (GSK-3), with subsequent activation of GS. A rapamycin-sensitive pathway, most likely acting via ribosomal 70-kDa protein S6 kinase (p70(S6K)), has also been implicated in the regulation of GSK-3 and GS by insulin. Amino acids potently stimulate p70(S6K), and recent studies on cultured muscle cells suggest that amino acids also inactivate GSK-3 and/or activate GS via activating p70(S6K). To assess the physiological relevance of these findings to normal human physiology, we compared the effects of amino acids and insulin on whole body glucose disposal, p70(S6K), and GSK-3 phosphorylation, and on the activity of GS in vivo in skeletal muscle of 24 healthy human volunteers. After an overnight fast, subjects received intravenously either a mixed amino acid solution (1.26 micromol.kg(-1).min(-1) x 6 h, n = 9), a physiological dose of insulin (1 mU.kg(-1).min(-1) euglycemic hyperinsulinemic clamp x 2 h, n = 6), or a pharmacological dose of insulin (20 mU.kg(-1).min(-1) euglycemic hyperinsulinemic clamp x 2 h, n = 9). Whole body glucose disposal rates were assessed by calculating the steady-state glucose infusion rates, and vastus lateralis muscle was biopsied before and at the end of the infusion. Both amino acid infusion and physiological hyperinsulinemia enhanced p70(S6K) phosphorylation without affecting GSK-3 phosphorylation, but only physiological hyperinsulinemia also increased whole body glucose disposal and GS activity. In contrast, a pharmacological dose of insulin significantly increased whole body glucose disposal, p70(S6K), GSK-3 phosphorylation, and GS activity. We conclude that amino acids at physiological concentrations mediate p70(S6K) but, unlike insulin, do not regulate GSK-3 and GS phosphorylation/activity in human skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号