首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
When damaged by hydrogen peroxide, peripheral blood lymphocytes undergo cell death by apoptosis in the absence of internucleosomal DNA cleavage, while, in the same cells, other apoptosis-inducing treatments bring DNA cleavage to completion. However, the formation of internucleosomal DNA fragments is readily obtained if cells are pretreated with a divalent metal chelator, TPEN, at micromolar concentrations. Since the coadministration of equimolar zinc concentrations abrogates the formation of the ladder, a zinc-inhibitable endonucleolytic activity is accounted for the effect. Most notably, subtraction of zinc ions does not increase the percentage of cells undergoing apoptosis, but rather results in a rescue from death.  相似文献   

2.
High molecular weight fractions of green tea, black tea, oolong tea, and pu-erh tea were found to induce apoptosis in human monoblastic leukemia U937 cells by examination of their ability to inhibit cell proliferation and to induce apoptotic body formation and DNA ladder formation. These tea fractions were also shown to induce apoptosis in stomach cancer MKN-45 cells. In addition to known antitumor-promoting activity of tea high molecular weight fractions, their apoptosis-inducing activity may contribute to cancer chemopreventive effects of tea.  相似文献   

3.
Effects of rice bran agglutinin (RBA) on human monoblastic leukemia U937 cells were examined in comparison with those of wheat germ agglutinin (WGA) and Viscum album agglutinin (VAA). These lectins inhibit cell growth, and several lines of evidence indicate that the growth inhibition is caused by the induction of apoptosis. We observed that RBA induces chromatin condensation, externalization of membrane phosphatidylserine, and DNA ladder formation, features of apoptosis. DNA ladder formation was inhibited by a general inhibitor against caspases, which are known to play essential roles in apoptosis. Flow cytometric analysis revealed that RBA and WGA cause G2/M phase cell cycle arrest with increased expression of Waf1/p21, while cell cycle arrest was not observed for VAA. These data indicate that RBA induces apoptosis associated with cell cycle arrest in U937 cells, and suggest that the induction mechanism for RBA is similar to that for WGA, but different from that for VAA.  相似文献   

4.
Rotenone, an inhibitor of NADH dehydrogenase complex, is a naturally occurring insecticide, which is capable of inducing apoptosis. Rotenone-induced apoptosis is considered to contribute to its anticancer effect and the etiology of Parkinson's disease (PD). We demonstrated that rotenone induced internucleosomal DNA fragmentation, DNA ladder formation, in human cultured cells, HL-60 (promyelocytic leukemia) and BJAB cells (B-cell lymphoma). Flow cytometry showed that rotenone induced H2O2 generation, followed by significant changes in the mitochondrial membrane potential (DeltaPsim). Caspase-3 activity increased in HL-60 cells in a time-dependent manner. These apoptotic events were delayed in HP100 cells, an H2O2-resistant clone of HL-60, confirming the involvement of H2O2 in apoptosis. Expression of anti-apoptotic protein, Bcl-2, in BJAB cells drastically inhibited DeltaPsim change and DNA ladder formation but not H2O2 generation, confirming the participation of mitochondrial dysfunction in apoptosis. NAD(P)H oxidase inhibitors prevented H2O2 generation and DNA ladder formation. These results suggest that rotenone induces O2(-)-derived H2O2 generation through inhibition of NADH dehydrogenase complex and/or activation of NAD(P)H oxidase, and H2O2 generation causes the disruption of mitochondrial membrane in rotenone-induced apoptosis.  相似文献   

5.
Dolichyl monophosphate (Dol-P) is involved in the attachment of carbohydrate chains to proteins in the formation of N-linked glycoprotein. We found that this compound induces apoptosis in human leukemia U937 cells. During this apoptotic execution, the increase of plasma membrane fluidity (5-20 min), reduction in mitochondrial transmembrane potential (delta psi m) and translocation of apoptosis-inducing factor (1-3 hr), caspase-3-like protease activation (2-4 hr), chromatin condensation and DNA ladder formation (3-4 hr) were observed successively. In this study, we examined mitochondrial morphological changes by electron microscopy and delta psi m by JC-1 from immediately after treatment of Dol-P. After 5 min of treatment, we observed clearly that mitochondrial cristae began to be disrupted ultrastructurally and almost all the cristae were disintegrated after 1 hr of treatment. The delta psi m of Dol-P treated cells was reduced to 34% as compared with that of control cells immediately after treatment and was quartered within 1 hr. The reduction in delta psi m was not inhibited by cyclosporin A, N-acetyl-L-cysteine and vitamin E. These results indicate that mitochondrial disruption is one of the first triggering events of Dol-P-induced apoptosis.  相似文献   

6.
A new member of the TNF family, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), has been shown to induce apoptosis. However, the mechanism for TRAIL-induced apoptosis remains to be clarified. SDS-PAGE and Western blot analysis showed that cleavage of Bid was induced by a 1-h incubation of BJAB cells with TRAIL and was blocked by a caspase-8 inhibitor. Flow cytometry demonstrated that loss of mitochondrial membrane potential in BJAB cells began about 1.5 h after the treatment with TRAIL and was apparent at 2 h in comparison with the control. DNA ladder formation, which is characteristic for apoptosis, in the cells treated with TRAIL was detected at 2 h and observed most effectively at 3 h. The time course study suggests that TRAIL causes cleavage of Bid via activation of caspase-8, subsequently the loss of mitochondrial membrane potential, resulting in apoptosis in BJAB cells.  相似文献   

7.
Polyphenolic compounds derived from tea catechins were examined for apoptosis-inducing activity in human histiolytic lymphoma U937 cells. (-)-Epigallocatechin gallate, theasinensin D, compound OH-5, theaflavin, and theaflavin digallate induced apoptosis as evidenced by DNA ladder formation, its inhibition by a caspase inhibitor, and chromatin condensation. Theasinensin D was the most potent inducer and the data suggest the importance of the number and three dimensional localization of their phenolic groups in this activity. These apoptosis-inducible compounds may be useful as a cancer chemopreventive and chemotherapeutic agent.  相似文献   

8.
Quercetin has been reported to have carcinogenic effects. However, both quercetin and luteolin have anti-cancer activity. To clarify the mechanism underlying the carcinogenic effects of quercetin, we compared DNA damage occurring during apoptosis induced by quercetin with that occuring during apoptosis induced by luteolin. Both quercetin and luteolin similarly induced DNA cleavage with subsequent DNA ladder formation, characteristics of apoptosis, in HL-60 cells. In HP 100 cells, an H2O2-resistant clone of HL-60 cells, the extent of DNA cleavage and DNA ladder formation induced by quercetin was less than that in HL-60 cells, whereas differences between the two cell types were minimal after treatment with luteolin. In addition, quercetin increased the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in HL-60 cells but not in HP 100 cells. Luteolin did not increase 8-oxodG formation, but inhibited topoisomerase II (topo II) activity of nuclear extract more strongly than quercetin and cleaved DNA by forming a luteolin-topo II-DNA ternary complex. These results suggest that quercetin induces H2O2-mediated DNA damage, resulting in apoptosis or mutations, whereas luteolin induces apoptosis via topo II-mediated DNA cleavage. The H2O2-mediated DNA damage may be related to the carcinogenic effects of quercetin.  相似文献   

9.
TAS-103, a new anticancer drug, induces DNA cleavage by inhibiting the activities of topoisomerases I and II. We investigated the mechanism of TAS-103-induced apoptosis in human cell lines. Pulsed field gel electrophoresis revealed that in the leukemia cell line HL-60 and the H(2)O(2)-resistant subclone, HP100, TAS-103 induced DNA cleavage to form 1-2-Mb fragments at 1 h to a similar extent, indicating that the DNA cleavage was induced independently of H(2)O(2). TAS-103-induced DNA ladder formation in HP100 cells was delayed compared with that seen at 4 h in HL-60 cells, suggesting the involvement of H(2)O(2)-mediated pathways in apoptosis. Flow cytometry revealed that H(2)O(2) formation preceded increases in mitochondrial membrane potential (DeltaPsim) and caspase-3 activation. Inhibitors of poly(ADP-ribose) polymerase (PARP) prevented both TAS-103-induced H(2)O(2) generation and DNA ladder formation. The levels of NAD(+), a PARP substrate, were significantly decreased in HL-60 cells after a 3-h incubation with TAS-103. The decreases in NAD(+) levels preceded both increases in DeltaPsim and DNA ladder formation. Inhibitors of NAD(P)H oxidase prevented TAS-103-induced apoptosis, suggesting that NAD(P)H oxidase is the primary enzyme mediating H(2)O(2) formation. Expression of the antiapoptotic protein, Bcl-2, in BJAB cells drastically inhibited TAS-103-induced apoptosis, confirming that H(2)O(2) generation occurs upstream of mitochondrial permeability transition. Therefore, these findings indicate that DNA cleavage by TAS-103 induces PARP hyperactivation and subsequent NAD(+) depletion, followed by the activation of NAD(P)H oxidase. This enzyme mediates O(2)(-)-derived H(2)O(2) generation, followed by the increase in DeltaPsim and subsequent caspase-3 activation, leading to apoptosis.  相似文献   

10.
Gao Z  Kang X  Hu J  Ju Y  Xu C 《Cytotechnology》2012,64(4):421-428
Glycyrrhetinic acid (GA) is the active compound in Glycyrrhizae radix, a famous traditional Chinese medicine. Recently the anticancer activity of GA became the focus of scientific interest and many GA derivatives were developed as anti-tumor lead compounds. We previously reported that AEGA, a GA derivative, has proliferation inhibition and apoptosis-inducing activity in various human tumor cells. The present study was undertaken to further investigate the molecular mechanisms involved in AEGA-induced apoptosis in human leukemia K562 cells. AEGA can inhibit the growth of K562 cells in dose- and time-dependent manners determined by the MTT assay. Induction of apoptosis was evidenced by morphological changes and biochemical markers such as cell shrinkage, chromatin condensation and DNA ladder formation. Further mechanistic analysis revealed that AEGA induced apoptosis through the collapse of mitochondrial membrane potential, the accumulation of the cytosolic cytochrome c and the activation of caspase-9 and caspase-3. The apoptosis induction by AEGA was associated with the alteration in the ratio of Bcl-2/Bax protein expression. These results suggest that AEGA may induce apoptosis through a mitochondria-mediated pathway, and might have the therapeutic value against hematological malignancies.  相似文献   

11.
Quercetin has been reported to have carcinogenic effects. However, both quercetin and luteolin have anti-cancer activity. To clarify the mechanism underlying the carcinogenic effects of quercetin, we compared DNA damage occurring during apoptosis induced by quercetin with that occuring during apoptosis induced by luteolin. Both quercetin and luteolin similarly induced DNA cleavage with subsequent DNA ladder formation, characteristics of apoptosis, in HL-60 cells. In HP 100 cells, an H2O2-resistant clone of HL-60 cells, the extent of DNA cleavage and DNA ladder formation induced by quercetin was less than that in HL-60 cells, whereas differences between the two cell types were minimal after treatment with luteolin. In addition, quercetin increased the formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in HL-60 cells but not in HP 100 cells. Luteolin did not increase 8-oxodG formation, but inhibited topoisomerase II (topo II) activity of nuclear extract more strongly than quercetin and cleaved DNA by forming a luteolin-topo II-DNA ternary complex. These results suggest that quercetin induces H2O2-mediated DNA damage, resulting in apoptosis or mutations, whereas luteolin induces apoptosis via topo II-mediated DNA cleavage. The H2O2-mediated DNA damage may be related to the carcinogenic effects of quercetin.  相似文献   

12.
Barley aleurone cells undergo programmed cell death (PCD) when exposed to gibberellic acid (GA), but incubation in abscisic acid (ABA) prevent PCD. We tested the hypothesis that PCD in aleurone cells occurs by apoptosis, and show that the hallmark of apoptosis, namely DNA cleavage into 180 bp fragments, plasma membrane blebbing, and the formation of apoptotic bodies do not occur when aleurone cells die. We show that endogenous barley aleurone nucleases and nucleases present in enzymes used for protoplast preparation degrade aleurone DNA and that DNA degradation by these nucleases is rapid and can result in the formation of 180 bp DNA ladders. Methods are described that prevent DNA degradation during isolation from aleurone layers or protoplasts. Barley aleurone cells contain three nucleases whose activities are regulated by GA and ABA. CA induction and ABA repression of nuclease activities correlate with PCD in aleurone cells. Cells incubated in ABA remain alive and do not degrade their DNA, but living aleurone cells treated with GA accumulate nucleases and hydrolyze their nuclear DNA. We propose that barley nucleases play a role in DNA cleavage during aleurone PCD.  相似文献   

13.
We recently reported that a broad-spectrum caspase inhibitor zVAD-fmk failed, while p38 inhibitor SB203580 succeeded, to prevent chromatin condensation and nuclear fragmentation induced by hypoxia in tube-forming HUVECs. In this study, we investigated the reasons for zVAD-fmk's inability to inhibit these morphological changes at the molecular level. The inhibitor effectively inhibited DNA ladder formation and activation of caspase-3 and -6, but it surprisingly failed to inhibit caspase-7 activation. On the other hand, SB203580 successfully inhibited all of these molecular events. When zLEHD-fmk, which specifically inhibits initiator caspase-9 upstream of caspase-3, was used, it inhibited caspase-3 activation but failed to inhibit caspase-6 and -7 activation. It also failed to inhibit hypoxia-induced chromatin condensation, nuclear fragmentation and DNA ladder formation. Taken together, our results indicate that, during hypoxia, caspase-7 is responsible for chromatin condensation and nuclear fragmentation while caspase-6 is responsible for DNA ladder formation.  相似文献   

14.
Roles of cathepsins in reperfusion-induced apoptosis in cultured astrocytes   总被引:2,自引:0,他引:2  
Astrocytic apoptosis may play a role in the central nervous system injury. We previously showed that reperfusion of cultured astrocytes with normal medium after exposure to hydrogen peroxide (H(2)O(2))-containing medium causes apoptosis. This study examines the involvement of the lysosomal enzymes cathepsins B and D in the astrocytic apoptosis. Reperfusion after exposure to H(2)O(2) caused a marked increase in caspase-3 and cathepsin D activities and a marked decrease in cathepsin B activity. Pepstatin A, an inhibitor of cathepsin D, and acetyl-L-aspartyl-L-methionyl-L-glutaminyl-L-aspart-1-aldehyde (Ac-DMQD-CHO), a specific inhibitor of caspase-3, blocked the H(2)O(2)-induced decrease in cell viability and DNA ladder formation in cultured rat astrocytes. The (L-3-trans-(propylcarbamoyl)oxirane-2-carbonyl)-L-isoleucyl-L-proline methyl ester (CA074 Me), a specific inhibitor of cathepsin B, did not affect the H(2)O(2)-induced cell injury. On the other hand, CA074 Me decreased cell viability with DNA ladder formation when cultured in the presence of Ac-DMQD-CHO. This caspase-independent apoptosis was attenuated by the addition of the cathepsin D inhibitor pepstatin A. Caspase-3 like activity was markedly inhibited by Ac-DMQD-CHO and partially by pepstatin A. Pepstatin A and CA074 Me inhibited cathepsin B and cathepsin D activities, respectively, in the presence and absence of Ac-DMQD-CHO. These results suggest that cathepsins B and D are involved in astrocytic apoptosis: cathepsin D acts as a death-inducing factor upstream of caspase-3 and the caspase-independent apoptosis is regulated antagonistically by cathepsins B and D.  相似文献   

15.
目的 观察5-烯丙基-7-二氟亚甲基白杨素(ADFMChR)诱导人卵巢癌(CoCl)细胞凋亡的作用。方法 以体外培养的人卵巢癌CoCl为研究对象。采用软琼脂克隆测定ADFMChR对细胞集落的影响;流式细胞术(FCM)检测ADFMChR诱导细胞凋亡率;凝胶电泳观察ADFMChR诱导基因DNA梯形条带。Westernblot分析ADFMChR对CoCl细胞PPARγ,NF-κB,Bcl-2,Bax蛋白表达的影响。结果软琼脂克隆显示ADFMChR呈剂量依赖性抑制细胞集落形成;FCM分析发现ADFMChR呈剂量依赖性诱导细胞凋亡;ADFMChR(30μmol/L)孵育CoCl细胞48h后,DNA琼脂糖凝胶电泳呈现典型梯形条带。Westernblot分析结果表明ADFMChR以剂量依赖方式上调CoCl细胞PPARγ和Bax蛋白表达,下调NF-κB和Bcl-2蛋白表达。结论 ADFMChR诱导人卵巢癌CoCl细胞凋亡与其活化PPARγ,抑制NF-κB表达和提高Bax/Bcl-2比值有关。  相似文献   

16.
Dolichyl monophosphate (Dol-P) has been found to induce apoptosis in human leukemia U937 cells. During this apoptotic execution, the increase of plasma membrane fluidity (5–20 min), caspase-3-like protease activation (2–4 h), chromatin condensation and DNA ladder formation (3–4 h) were observed successively. Here, we report that reduction in mitochondrial transmembrane potential and translocation of apoptosis-inducing factor (AIF) are early events (1–3 h) in the apoptotic process induced by Dol-P in U937 cells. The AIF was concentrated around nuclei and partly translocated to the nuclei, which was confirmed by immunocytochemistry using specific anti-AIF antibody. Both caspase-8 and caspase-3 inhibitors blocked only DNA fragmentation but not mitochondrial processes, AIF migration and chromatin condensation. These results indicate that mitochondrial changes are an early step in the apoptosis induced by Dol-P and AIF is one of the important factors which induce chromatin condensation in nuclei.  相似文献   

17.
We investigate the roles of methoxyl (OCH(3)) and hydroxyl (OH) substitutions at C8 of flavonoids on their apoptosis-inducing activities. Wogonin (Wog) and nor-wogonin (N-Wog) are structurally related flavonoids, and respectively contain an OH and OCH(3) at C8. In leukemia HL-60 cells, N-Wog exhibited more-potent cytotoxicity than Wog according to the MTT and LDH release assays, and the IC(50) values of Wog and N-Wog in HL-60 cells were 67.5 +/- 2.1 and 21.7 +/- 1.5 microM, respectively. Apoptotic characteristics including DNA ladders, apoptotic bodies, and hypodiploid cells accompanied by the induction of caspase 3 protein processing appeared in Wog- and N-Wog-treated HL-60 cells. Interestingly, an increase in intracellular peroxide production was detected in N-Wog- but not Wog-treated HL-60 cells by the DCHF-DA assay, and the reduction of intracellular peroxide by catalase (CAT) induced by N-Wog significantly reduced the N-Wog- but not the Wog-induced cytotoxic effect according to the MTT assay in accordance with the blocking of DNA ladder formation and caspase 3 and PARP protein processing elicited by N-Wog. We further analyzed the effect of six structurally related compounds, including 5-OH, 7-OH, 5,7-diOH, 5,7-diOCH(3), 7,8-diOCH(3), and 7-OCH(3)-8-OH flavones, on apoptosis induction in HL-60 cells. Results suggested that OH at C5 and C7 is essential for both the apoptosis-inducing activity of flavonoids, and OH at C8 may contribute to apoptosis induction ability. Evidence to support a distinct structure-activity relationship in apoptosis induction of flavonoids is provided for the first time in this study.  相似文献   

18.
Zinc (Zn), an endogenous regulator of apoptosis, and has abilities both to induce apoptosis and inhibit the induction of apoptosis via the modulation of caspase activity. Due to the multifunctions of Zn, the intracellular Zn level is strictly regulated by a complex system in physiological and pathological conditions. The commitment of Zn to the regulation of apoptosis is not fully understood. In the present study, we investigated the role of intracellular Zn level in the induction of apoptosis in human leukemia cells (HL-60 cells) using a Zn ionophore [pyrithione (Py)]. Treatment of HL-60 cells with Zn for 6 h in the presence of Py (1 micro m) exhibited cytotoxicity in a Zn dose-dependent manner (25-200 micro m). Necrotic cells, assayed by trypan blue permeability, increased in number in a Zn dose-dependent fashion (50-100 micro m), but the appearance of apoptotic cells, assayed by formation of a DNA ladder and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end-labeling method, peaked at 25 micro m, suggesting the dependence of intracellular Zn level on the execution of apoptosis. In fact, treatment with Py resulted in increases in intracellular Zn levels, and N,N,N',N'-tetrakis (2-pyridylmethyl)ethylenediamine, a cell-permeable Zn chelator, inhibited DNA ladder formation induced by Py/Zn treatment (1 micro m Py and 25 micro m Zn). Py/Zn treatment activated the caspases, as assessed by the proteolysis of poly(ADP-ribose) polymerase (PARP), which is a substrate of caspase, and activated p38 mitogen-activated protein kinase (p38MAPK), which is a transducer of apoptotic stimuli to the apparatus of the apoptosis execution. Z-Asp-CH2-DCB, a broad-spectrum inhibitor of caspase, attenuated proteolysis of PARP and DNA ladder formation by Py/Zn, indicating that apoptosis induced by Py/Zn is mediated by caspase activation. The p38MAPK-specific inhibitor SB203580 also inhibited induction of apoptosis by Py/Zn. Although SB203580 suppressed the proteolysis of PARP, Z-Asp-CH2-DCB did not inhibit the phosphorylation of p38MAPK, raising the possibility that apoptosis triggered by Py/Zn might be mediated by the p38MAPK/caspase pathway.  相似文献   

19.
Apoptotic DNA cleavage generally proceeds in two stages, first producing large 50–300kb fragments, and later oligonucleosomal pieces which create the characteristic DNA ladder. We show that zinc treatment of hyperthermia-induced apoptotic cultures is sufficient to prevent ladder formation, but not apoptosis (all features of which were inhibited by actinomycin D and cycloheximide). DNA damage measured in single cells using the comet (single cell gel) assay is detectable in zinc treated cultures using both alkaline and non-denaturing conditions. Both assays predict the same fraction of cells undergoing apoptosis, and damage is detectable earlier than shown by DNA ladder appearance. We conclude that the comet assay is detecting damage consistent with the initial 50–300kb fragments. Additionally, various cell lines when heattreated follow different temporal pathways or display differential apoptotic phenotypes. Also, we were unable to demonstrate an apoptotic window for cells refractory to hyperthermia by increasing the heat load.  相似文献   

20.
To determine whether protein phosphorylation and dephosphorylation can affect apoptosis in osteoblastic cells, we examined the effects of okadaic acid (OA) and calyculin A (CA) on cultured human osteoblastic cells Saos-2 and MG63, and mouse osteoblastic MC3T3-E1 cells. After reaching confluence, these cells were exposed to varying concentrations of OA or CA. OA and CA induced cell death in all three cell lines in a dose- and time-dependent manner. Marked nuclear condensation and fragmentation of chromatin were also observed in these cells by using the Hoechst 33342 stain. DNA ladder formation, a hallmark of apoptosis, was detected in Saos-2 and MG63 cells, but not in MC3T3-E1 cells by treatment of OA or CA. In the Saos-2 cells, OA- and CA-induced DNA ladder formation was dose-dependent with maximal effect at concentrations of 10 and 2 nM,respectively, and was time-dependent from 14 to 48 h. DNA ladder formation in response to OA and CA was revealed by using conventional ethidium bromide staining of electrophoresed DNA without using autoradiography. Beyond the maximal effects at the respective concentrations, however, cell death did not indicate DNA laddering, suggesting that phosphatase activity may be required for ladder formation. Our results indicate that apoptosis in the cultured osteoblastic cells is induced by moderate inhibition of PP-1 or PP-2A based on the known selectivity of okadaic acid and of calyculin A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号