共查询到20条相似文献,搜索用时 15 毫秒
1.
Hengxiu Yu Mo Wang Ding Tang Kejian Wang Fuli Chen Zhiyun Gong Minghong Gu Zhukuan Cheng 《Chromosoma》2010,119(6):625-636
Spo11 is a homolog of a subunit of archaebacterial topoisomerase, which catalyzes DNA double-strand breaks and initiates homologous
chromosome recombination. In the present study, we silenced the SPO11-1 gene in rice (Oryza sativa) using RNAi. Rice plants with loss-of-function of OsSPO11-1 have no apparent growth defects during vegetative development,
but homologous chromosome pairing and recombination are significantly obstructed. Telomeres can be assembled as bouquet during
the zygotene stage of the OsSPO11-1-deficient plants, just as that in wild type. Although the two axial-associated proteins,
REC8 and PAIR2, are loaded onto the chromosomes, the depletion of PAIR2 from the chromosomes is much later than in wild type.
The central element of the synaptonemal complex (SC), ZEP1, does not load onto the chromosomes normally, implying that SC
formation is disturbed severely. The crossover protein, MER3, isn't efficiently assembled onto chromosomes and the lack of
bivalent suggests that crossovers are also affected in the absence of OsSPO11-1. Thus, OsSPO11-1 is essential for both homologous
chromosomes pairing and crossover formation during meiosis in rice. 相似文献
2.
McKee BD 《Biochimica et biophysica acta》2004,1677(1-3):165-180
Pairing of homologous chromosomes is an essential feature of meiosis, acting to promote high levels of recombination and to ensure segregation of homologs. However, homologous pairing also occurs in somatic cells, most regularly in Dipterans such as Drosophila, but also to a lesser extent in other organisms, and it is not known how mitotic and meiotic pairing relate to each other. In this article, I summarize results of recent molecular studies of pairing in both mitosis and meiosis, focusing especially on studies using fluorescent in situ hybridization (FISH) and GFP-tagging of single loci, which have allowed investigators to assay the pairing status of chromosomes directly. These approaches have permitted the demonstration that pairing occurs throughout the cell cycle in mitotic cells in Drosophila, and that the transition from mitotic to meiotic pairing in spermatogenesis is accompanied by a dramatic increase in pairing frequency. Similar approaches in mammals, plants and fungi have established that with few exceptions, chromosomes enter meiosis unpaired and that chromosome movements involving the telomeric, and sometimes centromeric, regions often precede the onset of meiotic pairing. The possible roles of proteins involved in homologous recombination, synapsis and sister chromatid cohesion in homolog pairing are discussed with an emphasis on those for which mutant phenotypes have permitted an assessment of effects on homolog pairing. Finally, I consider the question of the distribution and identity of chromosomal pairing sites, using recent data to evaluate possible relationships between pairing sites and other chromosomal sites, such as centromeres, telomeres, promoters and heterochromatin. I cite evidence that may point to a relationship between matrix attachment sites and homologous pairing sites. 相似文献
3.
Peter B. Moens 《BioEssays : news and reviews in molecular, cellular and developmental biology》1994,16(2):101-106
Ideas about the mechanisms that regulate chromosome pairing, recombination, and segregation during meiosis have gained in molecular detail over the last few years. The purpose of this article is to survey briefly the shifts in paradigms and experiments that have generated new perspectives. It has never been very clear what it is that brings together the homologous chromosomes at meiotic prophase. For a while it appeared that the synaptonemal complex might be the nuclear organelle responsible for synapsis, but the supporting evidence has not been entirely convincing. Whatever the mechanism, it has always been assumed that homologous synapsis creates the opportunity for homologous DNA sequences to initiate recombination. At present, alternative ideas are developing. Attractive is the concept that double strand DNA repair mechanisms, that find and use the undamaged homologue for repair, have evolved into a meiotic mechanism for the recognition and pairing of homologous sequences. Subsequent intimate synapsis of homologous chromosomes in the context of the synaptonemal complex may serve later functions in the regulation of interference and segregation at first anaphase. A number of areas that are being tested at present and some that may be investigated in the future are discussed at the end of the review. 相似文献
4.
Sex chromosome pairing during male meiosis in marsupials 总被引:9,自引:0,他引:9
Peter Sharp 《Chromosoma》1982,86(1):27-47
The pairing of the sex chromosomes at pachytene has been examined in twenty-two species of Australian marsupials, including four with complex sex chromosome systems. The axial elements of the sex chromosomes associate in all but one species. However, no synaptonemal complex has been observed between the axes of the X and Y chromosome in any of the examined species. Both the type of association between the sex chromosome axes, and the structural modifications of these axes are conserved within taxonomic groupings. In three species with complex sex chromosome systems, the t(XA), Y, A trivalents do not have a favoured relative orientation of the axes of the Y and A chromosomes, whereas in a fourth species with a t(XA1), t(A2YA2), A2 system the t(XA1) and A2 axes are in a cis arrangement with each other. 相似文献
5.
Telomere-led bouquet formation facilitates homologous chromosome pairing and restricts ectopic interaction in fission yeast meiosis 总被引:5,自引:0,他引:5 下载免费PDF全文
A polarized chromosomal arrangement with clustered telomeres in a meiotic prophase nucleus is often called bouquet and is thought to be important for the pairing of homologous chromosomes. Fluorescence in situ hybridization in fission yeast indicated that chromosomal loci are positioned in an ordered manner as anticipated from the bouquet arrangement. Blocking the formation of the telomere cluster with the kms1 mutation created a disorganized chromosomal arrangement, not only for the regions proximal to the telomere but also for interstitial regions. The kms1 mutation also affected the positioning of a linear minichromosome. Consistent with this cytological observation, the frequency of ectopic homologous recombination between a linear minichromosome and a normal chromosome increased in the kms1 background. Intragenic recombination between allelic loci is reduced in the kms1 mutant, but those between non-allelic loci are unaffected or slightly increased. Thus, telomere-led chromosome organization facilitates homologous pairing and also restricts irregular chromosome pairing during meiosis. 相似文献
6.
Yun Ren Dan Chen Wenjie Li Dan Zhou Tao Luo Guoqiang Yuan Jing Zeng Ye Cao Zhongshan He Ting Zou Qiming Deng Shiquan Wang Aiping Zheng Jun Zhu Yueyang Liang Huainian Liu Lingxia Wang Ping Li Shuangcheng Li 《The Plant journal : for cell and molecular biology》2019,98(2):315-328
Meiosis is essential for eukaryotic sexual reproduction and plant fertility, and crossovers (COs) are essential for meiosis and the formation of new allelic combinations in gametes. In this study, we report the isolation of a meiotic gene, OsSHOC1, and the identification of its partner, OsPTD1. Osshoc1 was sterile both in male and female gametophytes, and it showed a striking reduction in the number of meiotic COs, indicating that OsSHOC1 was required for normal CO formation. Further investigations showed that OsSHOC1 physically interacted with OsPTD1 and that the latter was also required for normal CO formation and plant fertility. Additionally, the expression profiles of both genes were consistent with their functions. Our results suggest that OsSHOC1 and OsPTD1 are essential for rice fertility and CO formation, possibly by stabilizing the recombinant intermediates during meiosis. 相似文献
7.
Three activities hallmark meiotic cell division: homologous chromosome pairing, synapsis, and recombination. Recombination and synapsis are well-studied but homologous pairing still holds many black boxes. In the past several years, many studies in plants have yielded insights into the mechanisms of chromosome pairing interactions. Research in several plant species showed the importance of telomere clustering on the nuclear envelope (telomere bouquet formation) in facilitating alignment of homologous chromosomes. Homologous pairing was also shown to be tied to the early stages of recombination by mutant analyses in Arabidopsis and maize. In contrast, little is known about the mechanisms that guide homolog interaction after their rough alignment by the bouquet and before the close-range recombination-dependent homology search. The relatively large and complex genomes of plants may require additional mechanisms, not needed in small genome eukaryotes, to distinguish between local homology of duplicated genes or transposable elements and global chromosomal homology. Plants provide an excellent large genome model for the study of homologous pairing and dissection of this process. 相似文献
8.
Synaptonemal Complex dimerization regulates chromosome alignment and crossover patterning in meiosis
During sexual reproduction the parental homologous chromosomes find each other (pair) and align along their lengths by integrating local sequence homology with large-scale contiguity, thereby allowing for precise exchange of genetic information. The Synaptonemal Complex (SC) is a conserved zipper-like structure that assembles between the homologous chromosomes, bringing them together and regulating exchanges between them. However, the molecular mechanisms by which the SC carries out these functions remain poorly understood. Here we isolated and characterized two mutations in the dimerization interface in the middle of the SC zipper in C. elegans. The mutations perturb both chromosome alignment and the regulation of genetic exchanges. Underlying the chromosome-scale phenotypes are distinct alterations to the way SC subunits interact with one another. We propose a model whereby the SC brings homologous chromosomes together through two activities: obligate zipping that prevents assembly on unpaired chromosomes; and a tendency to extend pairing interactions along the entire length of the chromosomes. 相似文献
9.
《遗传学报》2021,48(6):485-496
Meiotic recombination is essential for reciprocal exchange of genetic information between homologous chromosomes and their subsequent proper segregation in sexually reproducing organisms. MLH1 and MLH3 belong to meiosis-specific members of the Mut L-homolog family, which are required for normal level of crossovers(COs) in some eukaryotes. However, their functions in plants need to be further elucidated.Here, we report the identification of Os MLH1 and reveal its functions during meiosis in rice. Using CRISPRCas9 approach, two independent mutants, Osmlh1-1 and Osmlh1-2, are generated and exhibited significantly reduced male fertility. In Osmlh1-1, the clearance of PAIR2 is delayed and partial ZEP1 proteins are not loaded into the chromosomes, which might be due to the deficient in resolution of interlocks at late zygotene. Thus, Os MLH1 is required for the assembly of synapsis complex. In Osmlh1-1, CO number is dropped by ~53% and the distribution of residual COs is consistent with predicted Poisson distribution,indicating that Os MLH1 is essential for the formation of interference-sensitive COs(class I COs). Os MLH1 interacts with Os MLH3 through their C-terminal domains. Mutation in Os MLH3 also affects the pollen fertility. Thus, our experiments reveal that the conserved heterodimer Mut Lg(Os MLH1-Os MLH3) is essential for the formation of class I COs in rice. 相似文献
10.
The initiation and progression of homologous chromosome pairing at meiosis were investigated in female mice. The proximal
end of the X chromosome was identified in fetal oocytes using fluorescence in situ hybridisation with the repeat copy probe
70-38. The X centromeres appeared to be randomly positioned in the nuclei from pre-meiotic interphase to leptotene. The observations
indicated no pre-synaptic association for the proximal end of the X chromosome. There was a significant increase in the number
of paired X centromeres from mid-zygotene to late zygotene. The proximal end of the X chromosome is therefore a generally
late pairing region with no significant association seen before mid-zygotene. The centromeric heterochromatin of all chromosomes
could be seen to associate into varying numbers of clusters during pre-leptotene through to pachytene. These clusters do not
seem to be directly involved in bringing homologues together, as X centromeres did not consistently localise to the same cluster.
Received: 1 August 1996; in revised form: 1 June 1997 / Accepted: 1 June 1997 相似文献
11.
Meiosis is a specialized cell division that occurs in sexually reproducing organisms, generating haploid gametes containing half the chromosome number through two rounds of cell division. Homologous chromosomes pair and prepare for their proper segregation in subsequent divisions. How homologous chromosomes recognize each other and achieve pairing is an important question. Early studies showed that in most organisms, homologous pairing relies on homologous recombination. However, pairing mechanisms differ across species. Evidence indicates that chromosomes are dynamic and move during early meiotic stages, facilitating pairing. Recent studies in various model organisms suggest conserved mechanisms and key regulators of homologous chromosome pairing. This review summarizes these findings and compare similarities and differences in homologous chromosome pairing mechanisms across species. 相似文献
12.
BACKGROUND: Meiotic pairing is essential for the proper orientation of chromosomes at the metaphase plate and their subsequent disjunction during anaphase I. In male Drosophila melanogaster, meiosis occurs in the absence of recombination or a recognizable synaptonemal complex (SC). Due to limitations in available cytological techniques, the early stages of homologous chromosome pairing in male Drosophila have not been observed, and the mechanisms involved are poorly understood.RESULTS: Chromosome tagging with GFP-Lac repressor protein allowed us to track, for the first time, the behavior of meiotic chromosomes at high resolution, live, at all stages of male Drosophila meiosis. Homologous chromosomes pair throughout the euchromatic regions in spermatogonia and during the early phases of spermatocyte development. Extensive separation of homologs and sister chromatids along the chromosome arms occurs in mid-G2, several hours before the first meiotic division, and before the G2/M transition. Centromeres, on the other hand, show complex association patterns, with specific homolog pairing taking place in mid-G2. These changes in chromosome pairing parallel changes in large-scale chromosome organization.CONCLUSIONS: Our results suggest that widespread interactions along the euchromatin are required for the initiation, but not the maintenance, of meiotic pairing of autosomes in male Drosophila. We propose that heterochromatic associations, or chromatid entanglement, may be responsible for the maintenance of homolog association during late G2. Our data also suggest that the formation of chromosome territories in the spermatocyte nucleus may play an active role in ensuring the specificity of meiotic pairing in late prophase by disrupting interactions between nonhomologous chromosomes. 相似文献
13.
Meiotic chromosome segregation requires homologue pairing, synapsis, and crossover recombination, which occur during meiotic prophase. Telomere-led chromosome motion has been observed or inferred to occur during this stage in diverse species, but its mechanism and function remain enigmatic. In Caenorhabditis elegans, special chromosome regions known as pairing centers (PCs), rather than telomeres, associate with the nuclear envelope (NE) and the microtubule cytoskeleton. In this paper, we investigate chromosome dynamics in living animals through high-resolution four-dimensional fluorescence imaging and quantitative motion analysis. We find that chromosome movement is constrained before meiosis. Upon prophase onset, constraints are relaxed, and PCs initiate saltatory, processive, dynein-dependent motions along the NE. These dramatic motions are dispensable for homologous pairing and continue until synapsis is completed. These observations are consistent with the idea that motions facilitate pairing by enhancing the search rate but that their primary function is to trigger synapsis. This quantitative analysis of chromosome dynamics in a living animal extends our understanding of the mechanisms governing faithful genome inheritance. 相似文献
14.
In budding yeast, absence of the Hop2 protein leads to extensive synaptonemal complex (SC) formation between nonhomologous chromosomes, suggesting a crucial role for Hop2 in the proper alignment of homologous chromosomes during meiotic prophase. Genetic analysis indicates that Hop2 acts in the same pathway as the Rad51 and Dmc1 proteins, two homologs of E. coli RecA. Thus, the hop2 mutant phenotype demonstrates the importance of the recombination machinery in promoting accurate chromosome pairing. We propose that the Dmc1/Rad51 recombinases require Hop2 to distinguish homologous from nonhomologous sequences during the homology search process. Thus, when Hop2 is absent, interactions between nonhomologous sequences become inappropriately stabilized and can initiate SC formation. Overexpression of RAD51 largely suppresses the meiotic defects of the dmc1 and hop2 mutants. We conclude that Rad51 is capable of carrying out a homology search independently, whereas Dmc1 requires additional factors such as Hop2. 相似文献
15.
Chromosome pairing at meiosis is an essential feature in cell biology, which determines trait inheritance and species evolution. Complex polyploids may display diverse pairing affinities and offer favorable situations for studying meiosis. The genus Saccharum encompasses diverse forms of polyploids with predominantly bivalent pairing. We have focused on a modern cultivar of sugarcane, R570, and taken advantage of a particular single copy probe (BNL 12.06) revealing 11 alleles by restriction fragment length polymorphism (RFLP). As for other cultivars, R570 is highly polyploid (2n=ca. 115) and indirectly derived from interspecific hybridization between Saccharum officinarum (2n=80, x=10) and S. spontaneum (2n=40-128, x=8). Here we determined the doses of the various BNL12.06 RFLP alleles among 282 progeny of R570 and estimated the mutual pairing frequencies among the corresponding homo- or homoeologous chromosomes using a maximum likelihood method. The result is an atypical picture, with pairing frequencies ranging from 0 to 40% and differential affinities leading to the identification of several chromosome subsets. This example illustrates the unsystematic meiotic behavior in a complex polyploid. It highlights a continuous range of pairing affinities between chromosomes and pinpoints a strong role of individual chromosome features, partly related to their ancestral origin, in the determination of these affinities. 相似文献
16.
17.
18.
19.
C. K. Wong 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1989,77(1):149-151
Summary Rice nodal segments from three flowering haploids were excised and treated for different lengths of time with 0.3% or 0.4% colchicine (dissolved in 2% DMSO) in an attempt to induce fertile seeds. A combination of higher colchicine concentration and longer hours of treatment reduced the survival rate of treated segments, but more fertile plants were transformed. Pooled data showed that of the 842 segments used, 42.2% survived the treatment and sprouted, but only 31.9% were successfully established and grown to maturity. Among the 269 mature plants, 29,4% produced fertile seeds (panicles) with an average of 146.2 seeds per diploidized plant. 相似文献
20.
The formation of haploid gametes in organisms with sexual reproduction requires regular bivalent chromosome pairing in meiosis. In many species, homologous chromosomes occupy separate territories at the onset of meiosis. To be paired at metaphase I, they need to be brought into a close proximity for interactions that include homology recognition and the establishment of some form of bonds. How homologues find each other is one of the least understood meiotic events. Plant species with large or medium sized genomes, such as wheat or maize, are excellent materials for the cytological analysis of chromosome dynamics at early meiosis, but genes that control meiosis have been identified mainly in small genome species such as Arabidopsis thaliana. This review is focused on the contribution studies on plants are providing to the knowledge of the initial steps of the meiotic process. 相似文献