首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The above-ground accumulation of N,N uptake and litter quality resulting from improved or deteriorated availability of water and nutrients in a 25 year old Norway spruce stand in SW Sweden (as part of the Skogaby project) is presented. Treatment include irrigation; artificial drought; ammonium sulphate addition; N-free-fertilisation and irrigation with liquid fertilisers including a complete set of nutrients according to the Ingested principle (fertigation). At start of the experiment the stand contained 86.5 t dry mass and 352 kg N ha−1. The following three years the annual N uptake in untreated trees was 32 kg N ha−1 to be compared with the annual N throughfall of 17 kg ha−1. Simultaneously, the treatment with ammonium sulphate and liquid fertilisation resulted in 48 and 56 kg ha−1 y−1, respectively, in treatment specific N-uptake following an application of 100 kg N ha−1 y−1. Addition of a N-free fertiliser resulted in improved N-uptake by 19 kg N ha−1 y−1 and irrigation by 10 kg N ha−1 y−1, compared to control. A linear relation between total above-ground dry mass production and N-uptake was found for trees growing with similar water availability. Dry mass production increased with increased water availability given the same N-uptake. It is concluded that the studied stand this far is not N saturated', as N fertilisation resulted in both increased N uptake and increased growth. Addition of a N-free-fertiliser resulted in increased uptake of N compared to the control, indicating an increased mineralisation rate or uptake capacity of the root system. The linear relation between N uptake and biomass production shows that at this study site N is a highly limiting factor for growth.  相似文献   

2.
In chicory, we examined how NO3 supply affected NO3 uptake, N partitioning between shoot and root and N accumulation in the tuberized root throughout the vegetative period. Plants were grown at two NO3 concentrations: 0.6 and 3 mM. We used 15N-labelling/chase experiments for the quantification of N fluxes between shoot and root and for determining whether N stored in the tuberized root originates from N remobilized from the shoot or from recently absorbed NO3 . The rate of 15NO3 uptake was decreased by low NO3 availability at all stages of growth. In young plants (10–55 days after sowing; DAS), in both NO3 treatments the leaves were the strongest sink for 15N. In mature (tuberizing) plants, (55–115 DAS), the rate of 15NO3 uptake increased as well as the amount of exogenous N allocated to the root. In N-limited plants, N allocation to the tuberized root relied essentially on recent N absorption, while in N-replete plants, N remobilized from the shoot contributed more to N-reserve accumulation in the root. In senescing plants (115–170 DAS) the rate of 15NO3 uptake decreased mainly in N-replete plants whereas it remained almost unchanged in N-limited plants. In both NO3 treatments the tuberized root was the strongest sink for recently absorbed N. Remobilization of previously absorbed N from shoot to tuberized root increased greatly in N-limited plants, whereas it increased slightly in N-replete plants. As a consequence, accumulation of the N-storage compounds vegetative storage protein (VSP) and arginine was delayed until later in the vegetative period in N-limited plants. Our results show that although the dynamics of N storage was affected by NO3 supply, the final content of total N, VSP and arginine in roots was almost the same in N-limited and N-replete plants. This indicates that chicory is able to build up a store of available N-reserves, even when plants are grown on low N. We also suggest that in tuberized roots there is a maximal capacity for N accumulation, which was reached earlier (soon after 100 DAS) in N-replete plants. This hypothesis is supported by the fact that in N-replete plants despite NO3 availability, N accumulation ceased and significant amounts of N were lost due to N efflux. Received: 14 October 1996 / Accepted: 4 February 1997  相似文献   

3.
In the present study we analysed whether airborne N pollution may constitute one important driver for the encroachment of Molinia caerulea in dry heathland ecosystems. Based on full-factorial field experiments (in 2006 and 2008) and complementary greenhouse experiments (in 2008), we quantified growth responses of Molinia caerulea to N and P fertilisation (50 kg N ha−1 year−1, 20 kg P ha−1 year−1). Aboveground biomass production of Molinia caerulea was limited by P in 2006, but by N in both experiments in 2008. In the greenhouse experiment, N addition caused a sixfold increase of the biomass of vegetative tillers, and in all experiments the biomass and numbers of flowering tillers showed a significant increase due to fertilisation. Our experiments indicated that growth of Molinia caerulea was primarily limited by N, but in dry heaths the kind of nutrient limitation may be mediated by other factors such as water availability during the vegetative period. Shifts in biomass allocation patterns resulting from N fertilisation showed that Molinia caerulea encroachment in dry heaths is not only attributable to increased leaf biomass, but also due to higher investments in reproductive tissue that allow for increased seed production and thus accelerated encroachment of seedlings in places where the dwarf shrub canopy has been opened after disturbance.  相似文献   

4.
The N:P ratio of leaf litter may determine if decomposability is N-limited (litter with low N:P ratio) or P-limited (litter with high N:P ratio). To test this hypothesis and to determine the threshold between N and P limitation, we studied relationships between litter N and P concentrations, litter mass loss and effects of fertilisation on litter mass loss in laboratory experiments. Leaf litter of 11 graminoid species was collected in Swiss and Dutch wetlands, yielding 84 litter samples with a broad range of N and P concentrations (3.2–15.1 mg N g−1, 0.04–1.93 mg P g−1) and with N:P mass ratios ranging from 5 to 100. On nutrient-free sand, dry mass loss after five or ten weeks (5.5–53% of initial mass) correlated positively with the N and P concentrations of the litter. Within species, mass loss correlated mainly with N for litter with low N:P ratio, and with P for litter with high N:P ratio, in agreement with our hypothesis. Among species, however, these relationships did not exist, and decomposition rather correlated with the specific leaf area. When the litter was incubated on fertilised sand, 35 out of 50 litter samples decomposed faster than on nutrient-free sand. Decomposition was generally accelerated by P fertilisation (i.e. P-limited) when the N:P ratio of the litter was above 25 and the P concentration below 0.22 mg g−1, supporting our hypothesis. N-limited decomposition was not significantly related to the litter N:P ratio but occurred rarely for litter with N:P ratio greater than 25, and only for litter with N concentration below 11.3 mg g−1. We conclude that the N:P ratio of leaf litter indicates whether its decomposability is more likely to be N- or P-limited. The critical N:P ratio (threshold between N and P limitation) appeared to be 25 for graminoid leaf litter.  相似文献   

5.
The response of the aquatic plant Sparganium emersum to different sediment nutrient levels was studied in three mesocosm experiments. The aim was to assess plant growth parameters and nutrient accumulation in the plant tissue under conditions relevant for habitats with sediments affected by anthropogenic nutrient enrichment. The experimental treatments were produced by fertilisation of the rooting medium (washed river sand) with differing doses of either NPK mineral fertiliser or digested sludge from solid pig slurry waste. Growth inhibition by high nutrient levels was not observed in any treatment (highest nutrient concentrations in the sediment with mineral fertiliser: N 250 mg kg−1, P 50 mg kg−1; organic fertiliser: N 6300 mg kg−1, P 1800 mg kg−1), which confirms the tolerance of S. emersum to high nutrient loads. The sediment nutrient concentration was best reflected in shoot dry mass. Nutrient contents in plant tissues were similar for most nutrient concentrations in the rooting media; only N increased significantly with N levels in the sediment in belowground parts. Nutrient standing stocks in plants, however, generally corresponded to the nutrient supply, and reached highest values (max. N 3.7 g m−2, P 1.2 g m−2) in the richest treatments with organic fertiliser. The capability of S. emersum to use nutrients from high sediment concentrations and in organically polluted environments recommends this species for use in water quality management including tertiary wastewater treatment.  相似文献   

6.
The influence of nitrogen (N) deficiency on the cell growth and intracellular lipid production of the alga Botryococcus braunii UTEX 572 was investigated. Biomass concentration and lipid content of B. braunii cultivated in modified Chu-13 medium containing 0.04, 0.37, and 3.66 mM nitrate were 0.23–0.38 g L−1 and 36–63% of dry cell weight, respectively. The specific growth rate of B. braunii reached a constant of 0.185 day−1 during cultivation with an initial nitrate feed of 3.66 mM. The maximum lipid content of B. braunii was 63% with 0.04 mM nitrate. However, the maximum lipid productivity of 0.019 g L−1 day−1 was achieved with 0.37 mM nitrate. The level of oleic acid, an important component of biodiesel, was higher at 86% of the total fatty acids under N-limited conditions (0.04 mM nitrate) compared to 69% under N-sufficient conditions (3.66 mM nitrate). Furthermore, expression of the stearoyl-ACP desaturase gene (sad) encoding a stearoyl-ACP desaturase involved in the synthesis of oleic acid was 2.6-fold higher under N-limited conditions than under N-sufficient conditions.  相似文献   

7.
Growth and physiological responses of Pinus radiata D. Don seedlings to a combination of N supply regimes (low N = 1.78 mol m−3, high N = 7.14 mol m−3) and ammonium:nitrate ratios (80:20, 50:50 and 20:80; molar basis) were assessed in a hydroponic experiment run over the course of 105 days. Highly significant (P < 0.001) increases in seedling diameter, height, leaf area and dry mass occurred at lower ammonium:nitrate ratios and were two to fourfold greater than the non-significant (for diameter) to marginally significant (P < 0.05 for other dimensions) increases in these dimensions that occurred with greater N supply. Increases in N supply resulted in a highly significant (P < 0.001) reduction in biomass partitioning to roots and highly significant (P < 0.001) increases in allocation to foliage. The ammonium:nitrate ratio was not found to significantly change biomass partitioning to either foliage, stems or roots. Ammonium and nitrate uptake was significantly influenced by N supply and N form and conformed to ammonium and nitrate concentrations in nutrient solution. Uptake rates of ammonium were twice those of nitrate at comparable concentrations suggesting that P. radiata is in the lower end of the ratio of uptake of ammonium to nitrate reported for conifers (range from 2 to 20 mol mol−1). Despite this, plants growing in high ammonium:nitrate ratios were smaller, exhibited luxurious N consumption and lower N use efficiency. Differences in productivity among treatments were partially explained by greater rates of light-saturated photosynthesis associated with nitrate nutrition.  相似文献   

8.
Meager information is available on the specific effects of root volume (V) and N concentration in the water (CN) on uptake rates of water and N by apple trees, as related to fruit yield and tree growth. To investigate this relationship, Golden Delicious/Hashabi trees were grown for 5 years in containers of 200, 50 and 101. Trees in the 200–1 containers were irrigated with a nutrient solution containing 10.7±1.3, 7.1±1.5 or 2.5±1.0 mM NO3. Trees in the remaining two container-volume treatments were uniformly supplied with a solution of 7.1±1.5 mM NO3. Elevated CN had no effect on the rate of water uptake, but increased the rate of N absorption by the trees from 2.4 to 4.8 g N tree−1 day−1 during July. The stimulated N uptake rate stemmed from enhanced fluxes of N uptake by the roots. CN had a negligible effect on root weight and root permeability to NO3 and water. The elevated N uptake rate did not result in greater fruit yield and growth, or greater N content in tree organs, indicating considerable release of N from living and decaying roots to the growth medium. Reducing the container volume decreased yield, total dry matter production and N and water uptake rates, but increased root permeability to NO3 and water, and total soluble solids in fruits. The all-season average CN in the irrigation solution above which N concentration in the transpiration stream was lower than the inflowing CN was 4.2 mM NO3.  相似文献   

9.
Ecosystem-level experiments on the effects of atmospheric CO2 enrichment and N deposition on forest trees are urgently needed. Here we present data for nine model ecosystems of spruce (Picea abies) on natural nutrient-poor montane forest soil (0.7 m2 of ground and 350 kg weight). Each system was composed of six 7-year-old (at harvest) trees each representing a different genotype, and a herbaceous understory layer (three species). The model ecosystems were exposed to three different CO2 concentrations (280, 420, 560 μl l−1) and three different rates of wet N deposition (0, 30, 90 kg ha−1 year−1) in a simulated annual course of Swiss montane climate for 3 years. The total ecosystem biomass was not affected by CO2 concentration, but increased with increasing N deposition. However, biomass allocation to roots increased with increasing CO2 leading to significantly lower leaf mass ratios (LMRs) and leaf area ratios (LARs) in trees grown at elevated CO2. In contrast to CO2 enrichment, N deposition increased biomass allocation to the aboveground plant parts, and thus LMR and LAR were higher with increasing N deposition. We observed no CO2 ×  N interactions on growth, biomass production, or allocation, and there were also no genotype × treatment interactions. The final leaf area index (LAI) of the spruce canopies was 19% smaller at 420 and 27% smaller at 560 than that measured at 280 μl CO2 l−1, but was not significantly altered by increasing N deposition. Lower LAIs at elevated CO2 largely resulted from shorter branches (less needles per individual tree) and partially from increased needle litterfall. Independently of N deposition, total aboveground N content in the spruce communities declined with increasing CO2 (−18% at 420 and −31% at 560 compared to 280 μl CO2 l−1). N deposition had the opposite effect on total above ground N content (+18% at 30 and +52% at 90 compared to 0 kg N ha−1 year−1). Our results suggest that under competitive conditions on natural forest soil, atmospheric CO2 enrichment may not lead to higher ecosystem biomass production, but N deposition is likely to do so. The reduction in LAI under elevated CO2 suggests allometric down-regulation of photosynthetic carbon uptake at the canopy level. The strong decline in the tree nitrogen mass per unit ground area in response to elevated CO2 may indicate CO2-induced reductions of soil N availability. Received: 11 May 1997 / Accepted: 4 August 1997  相似文献   

10.
Although N storage determines early spring growth in trees, the usefulness of autumn N supply remains unclear as N uptake decreases in autumn, but could be restored earlier in spring to compensate for low N cycling. We intended here to evaluate the effects of autumn N supply on N uptake, storage and cycling, and spring growth. Four levels of N fertilisation were applied to 1-year-old peach trees, between the end of shoot growth and leaf fall. In spring, N supply was 15N labelled. Organ dry weights and concentrations of 14N, 15N, starch and soluble sugars were evaluated after the first growth flush. Bud development had previously been described in the same trees by Jordan et al. (Trees-Struct Func 23:235–245, 2009). Fertilisation promoted autumn N uptake, spring N uptake and growth up to a threshold level, since no differences were evidenced between the three highest N treatments. The variability in tree 14N contents was related to the number of phytomers per tree in autumn, i.e. to tree size. In spring, the depletion of the perennial structures was independent of treatment, indicating a complete mobilisation of the N stores. Spring growth was related to the amounts of cycling N, and spring N uptake was in turn proportioned to shoot and fruit growth. The lower N uptake of the N limited trees was not due to a C shortage since these trees displayed the highest starch concentrations. We conclude that a moderate autumn fertilisation improved spring growth and fruit production (Jordan et al. in Trees-Struct Func 23:235–245, 2009) and that a deficit of N storage could not be compensated for by an increase in spring N uptake.  相似文献   

11.
For Tunisian olive tree orchards, nitrogen deficiency is an important nutritional problem, in addition to the availability of water. Establishment of relationships between nutrients such as nitrogen and ecophysiological parameters is a promising method to manage fertilisation at orchard level. Therefore, a nitrogen stress experiment with one-year-old olive trees (Olea europaea L. ‘Koroneiki’ and ‘Meski’) was conducted with trees respectively subjected to four nitrogen supply regimes (23.96 meq l−1, 9.58 meq l−1, 4.79 meq l−1 and 0 meq l−1 NO3 −1).  相似文献   

12.
The aim of this study was to quantify the effects of fertiliser N on C stocks in trees (stems, stumps, branches, needles, and coarse roots) and soils (organic layer +0–10 cm mineral soil) by analysing data from 15 long-term (14–30 years) experiments in Picea abies and Pinus sylvestris stands in Sweden and Finland. Low application rates (30–50 kg N ha−1 year−1) were always more efficient per unit of N than high application rates (50–200 kg N ha−1 year−1). Addition of a cumulative amount of N of 600–1800 kg N ha−1 resulted in a mean increase in tree and soil C stock of 25 and 11 kg (C sequestered) kg−1 (N added) (“N-use efficiency”), respectively. The corresponding estimates for NPK addition were 38 and 11 kg (C) kg−1 (N). N-use efficiency for C sequestration in trees strongly depended on soil N status and increased from close to zero at C/N 25 in the humus layer up to 40 kg (C) kg−1 (N) at C/N 35 and decreased again to about 20 kg (C) kg−1 (N) at C/N 50 when N only was added. In contrast, addition of NPK resulted in high (40–50 kg (C) kg−1 (N)) N-use efficiency also at N-rich (C/N 25) sites. The great difference in N-use efficiency between addition of NPK and N at N-rich sites reflects a limitation of P and K for tree growth at these sites. N-use efficiency for soil organic carbon (SOC) sequestration was, on average, 3–4 times lower than for tree C sequestration. However, SOC sequestration was about twice as high at P. abies as at P. sylvestris sites and averaged 13 and 7 kg (C) kg−1 (N), respectively. The strong relation between N-use efficiency and humus C/N ratio was used to evaluate the impact of N deposition on C sequestration. The data imply that the 10 kg N ha−1 year−1 higher deposition in southern Sweden than in northern Sweden for a whole century should have resulted in 2.0 ± 1.0 (95% confidence interval) kg m−2 more tree C and 1.3 ± 0.5 kg m−2 more SOC at P. abies sites in the south than in the north for a 100-year period. These estimates are consistent with differences between south and north in tree C and SOC found by other studies, and 70–80% of the difference in SOC can be explained by different N deposition.  相似文献   

13.
Growth and N, P, K uptake of Acala SJ-2 cotton (Gossypium hirsutum) were investigated in an irrigated permanent-plot field (Typic chromoxerert) at Bet Dagan, Israel, under semi-arid conditions using different nitrogen levels: 0, 60, 120, 180 and 240 kg N ha−1. The total dry matter accumulation at these levels was 9.0, 10.7, 15.1, 17.1 and 15.6 ton ha−1, respectively. The uptake of N, P and K was 110, 144, 267, 322 and 301 kg N ha−1∶31, 34, 46, 44 and 38 kg P ha−1; and 120, 151, 208, 251 and 230 kg K ha−1, respectively. Dry matter production, as well as N, P, K uptake by the cotton plants were greatly increased by raising the N application levels to 120 or 180 kg N ha−1, but the pattern of accumulation and relative distribution of dry matter and NPK among plant organs were not considerably affected. Joint contribution from the Dept. of Soil Chemistry and Plant Nutrition, ARO, the Volcani Center, Bet Dagan, Israel (No. 1413-E, 1985 series)  相似文献   

14.
The aim of this study was to identify the sources and depth of water uptake by 15-years old Quercus suber L. trees in southern Portugal under a Mediterranean climate, measuring δ18O and δD in the soil–plant-atmosphere continuum. Evidence for hydraulic lift was substantiated by the daily fluctuations observed in Ψs at 0.4 and 1 m depth and supported by similar δ18O values found in tree xylem sap, soil water in the rhizosphere and groundwater. From 0.25 m down to a depth of 1 m, δD trends differed according to vegetation type, showing a more depleted value in soil water collected under the evergreen trees (−47‰) than under dead grasses (−35‰). The hypothesis of a fractionation process occurring in the soil due to diffusion of water vapour in the dry soil is proposed to explain the more depleted soil δD signature observed under trees. Hydraulically lifted water was estimated to account for 17–81% of the water used during the following day by tree transpiration at the peak of the drought season, i.e., 0.1–14 L tree−1 day−1. Significant relationships found between xylem sap isotopic composition and leaf water potential in early September emphasized the positive impact of the redistribution of groundwater in the rhizosphere on tree water status.  相似文献   

15.
The stable carbon (C) composition of tree rings expressed as δ13C, is a measure of intrinsic water-use efficiency and can indicate the occurrence of past water shortages for tree growth. We examined δ13C in 3- to 5-year-old rings of Douglas-fir (Pseudotsuga menziesii (Mirb) Franco) trees to elucidate if decreased water supply or uptake was a critical factor in the observed growth reduction of trees competing with understory herb and shrub vegetation compared to those growing without competition. We hypothesized that there would be no differences in δ13C of earlywood in trees growing in plots with competing vegetation and those in plots receiving complete vegetation control during 5 years because earlywood formed early in the growing season when soil water was ample. We also hypothesized that δ13C in latewood which was formed during the later half of the growing season when precipitation was low, would be greater (less negative) in trees in plots without vegetation control. We then separated early and latewood from rings for three consecutive years and analyzed their δ13C composition. No significant differences in earlywood δ13C in years 3–5 were observed for trees in the two vegetation control treatments. δ13C of untreated latewood separated from wood cores was greater in 4- and 5-year-old rings of trees growing with competing vegetation compared to trees growing without vegetation competition (i.e., −25.5 vs. −26.3‰ for year 4, and −26.1 vs. −26.8‰ for year 5). Results suggest that water shortages occurred in Douglas-fir trees on this coastal Washington site in the latewood-forming portion of the growing season of years 4 and 5 in the no-vegetation control treatment. We also compared δ13C from untreated wood, crude cellulose extracted with the Diglyme–HCl method, and holocellulose extracted with toluene–ethanol to see if the extraction method would increase the sensitivity of the analysis. δ13C values from the two extraction methods were highly correlated with those from untreated samples (r 2 = 0.97, 0.98, respectively). Therefore, using untreated wood would be as effective as using crude cellulose or holocellulose to investigate δ13C patterns in young Douglas-fir.  相似文献   

16.
The application of betaine, a quaternary ammonium compound influenced the micropropagation in two commercially important UPASI (U-9 and U-10) cultivars of tea. Growth and multiplication of shoots of both the cultivars was enhanced significantly in the presence of 125–1,000 mg l−1 betaine with best response at 1,000 mg l−1 betaine. The shoots turned brown and died within 15 days when 1,500 mg l−1 betaine was applied. The study showed faster water/nutrient uptake in the presence of betaine. Higher assimilation of carbon and nitrogen in the presence of betaine was also indicated in biochemical analyses. Thus, a decrease in carbohydrates coupled with an increase in nitrate reductase activity was recorded. Moreover, faster differentiation of vascular elements and shoot thickness was observed in the shoots of U-9 and U-10 growing on medium containing 1,000 mg l−1 betaine. Nutrient uptake, assimilation and growth were significantly higher in U-10 as compared to U-9 shoots.  相似文献   

17.
Much of the research on the chemistry of snow and surface waters of the western US, Europe, and Asia has been conducted in high-elevation catchments above treeline. Here we provide information on the solute content of the seasonal snowpack at the Soddie site on Niwot Ridge, Colorado, a subalpine site near treeline. We focus on the storage and release of both inorganic and organic solutes to the soils underneath the snowpack, and subsequent effects on the chemical and nutrient content of the underlying soil solution and the adjacent headwater stream. The concentration of inorganic nitrogen (N) stored in the seasonal snowpack at the Soddie site of about 11 μeq L−1 was on the upper end of values reported for the northern hemisphere when compared to most areas of the Alps, Himalayas, and Tien Shan mountain ranges, but consistent with other reports of snowpacks in the Rocky Mountains. The storage of inorganic N in the snowpack at maximum accumulation averaged about 17 meq m−2, or 170 eq ha−1 (on the order of 2 kg-N ha−1). Solutes were released from storage in the form of an ionic pulse, with a maximum concentration factor of about four. In contrast to the seasonal snowpack, the dominant form of N in the soil solution was dissolved organic N. Thus, soils underlying the seasonal snowpack appear to assimilate inorganic N released from storage in the snowpack and convert it to organic N. A two component mixing model suggests that the majority of streamflow was this year’s snowmelt that had infiltrated the subsurface and undergone subsequent biological and geochemical reactions. The inorganic N in surface waters at the headwaters of Como creek were always near or below detection limits, suggesting that this area at treeline is still N-limited.  相似文献   

18.
The change of current pools of soil C in Norway spruce ecosystems in Sweden were studied using a process-based model (CoupModel). Simulations were conducted for four sites representing different regions covering most of the forested area in Sweden and representing annual mean temperatures from 0.7°C to 7.1°C. The development of both tree layer and field layer (understory) was simulated during a 100-year period using data on standing stock volumes from the Swedish Forest Inventory to calibrate tree growth using different assumptions regarding N supply to the plants. The model successfully described the general patterns of forest stand dynamics along the Swedish climatic transect, with decreasing tree growth rates and increasing field layer biomass from south to north. However, the current tree growth pattern for the northern parts of Sweden could not be explained without organic N uptake and/or enhanced mineralisation rates compared to the southern parts. Depending on the assumption made regarding N supply to the tree, different soil C sequestration rates were obtained. The approach to supply trees with both mineralised N and organic N, keeping the soil C:N ratio constant during the simulation period was found to be the most realistic alternative. With this approach the soils in the northern region of Sweden lost 5 g C m−2 year−1, the soils in the central region lost 2 g C m−2 year−1, and the soils in the two southern regions sequestered 9 and 23 g C m−2 year−1, respectively. In addition to climatic effects, the feedback between C and N turnover plays an important role that needs to be more clearly understood to improve estimates of C sequestration in boreal forest ecosystems.  相似文献   

19.
Riparian zones effectively remove nitrogen (N) from water flowing through riparian soils, particularly in agricultural watersheds. The mechanism of N removal is still unclear, especially the role of vegetation. Uptake and denitrification are the two most commonly studied mechanisms. Retention of groundwater N by plant uptake is often inferred from measurements of N in net incremental biomass. However, this assumes other sources of N are not contributing to the N demand of plants. The purpose of this work was to investigate the relative importance of three sources of available N to riparian trees in a desert stream—input in stream water during floods, input during baseflow, and mineralization of N from soil organic matter. Two approaches were used; a mass balance approach in which the mass of available N from each source was estimated, and a correlational approach in which indexes of each source were compared to leaf N for individual willow trees. Total N from all sources was 396 kg ha−1 y−1, with 172 kg ha−1 y−1 from mineralization, 214 kg ha−1 y−1 from the stream during baseflow, and 9.6 kg ha−1 y−1 from floods. Leaf N was significantly related to N mineralization rates and flood inputs; it was not related to baseflow inputs. We conclude that mineralization is a major source of available N for willow trees, subsidized by input of N from floods. Baseflow inputs are most likely removed by rapid denitrification at the stream–riparian edge, while higher rates of flood supply exceed the capacity of this “filter.” Received 18 January 2001; accepted 15 June 2001.  相似文献   

20.
In N-limited ecosystems, fertilization by N deposition may enhance plant growth and thus impact C sequestration. In many N deposition–C sequestration experiments, N is added directly to the soil, bypassing canopy processes and potentially favoring N immobilization by the soil. To understand the impact of enhanced N deposition on a low fertility unmanaged forest and better emulate natural N deposition processes, we added 18 kg N ha−1 year−1 as dissolved NH4NO3 directly to the canopy of 21 ha of spruce-hemlock forest. In two 0.3-ha subplots, the added N was isotopically labeled as 15NH4 + or 15NO3 (1% final enrichment). Among ecosystem pools, we recovered 38 and 67% of the 15N added as 15NH4 + and 15NO3 , respectively. Of 15N recoverable in plant biomass, only 3–6% was recovered in live foliage and bole wood. Tree twigs, branches, and bark constituted the most important plant sinks for both NO3 and NH4 +, together accounting for 25–50% of 15N recovery for these ions, respectively. Forest floor and soil 15N retention was small compared to previous studies; the litter layer and well-humified O horizon were important sinks for NH4 + (9%) and NO3 (7%). Retention by canopy elements (surfaces of branches and boles) provided a substantial sink for N that may have been through physico-chemical processes rather than by N assimilation as indicated by poor recoveries in wood tissues. Canopy retention of precipitation-borne N added in this particular manner may thus not become plant-available N for several years. Despite a large canopy N retention potential in this forest, C sequestration into new wood growth as a result of the N addition was only ~16 g C m−2 year−1 or about 10% above the current net annual C sequestration for this site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号