首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
L Shi  L A Norling  A S Lau  S Krejci  A J Laney  Y Xu 《Biologicals》1999,27(3):253-262
Continuous cell lines used for pharmaceutical protein manufacturing have the potential to be contaminated by viruses. To ensure the safety of pharmaceutical proteins derived from continuous cell lines, validation of the ability of the manufacturing process to clear potential contaminating viruses is required for product registration. In this paper, a real time quantitative PCR method has been applied to the evaluation of simian virus 40 (SV40) removal during chromatography and filtration procedures. This method takes advantage of the 5'-3' exonuclease activity of Taq DNA polymerase and utilizes the PRISM 7700 sequence detection system of PE Applied Biosystems for automated SV40 DNA quantification through a dual-labeled fluorogenic probe. This method provides accurate and reproducible quantification of SV40 DNA. The SV40 clearance during chromatography and filtration procedures determined by this method is highly comparable with that determined by the cell-based infectivity assay. This method offers significant advantages over cell-based infectivity assays, such as higher sensitivity, greater reliability, higher sample throughput and lower cost. This method can be potentially used to evaluate the clearance of all model viruses during chromatography and filtration procedures. This method can be used to substitute cell-based infectivity assays for process validation of viral removal procedures and the availability of this method should greatly facilitate and reduce the cost of viral clearance evaluations required for new biologic product development.  相似文献   

3.
A real time quantitative PCR assay has been developed for detecting minute virus of mice (MVM). This assay directly quantifies PCR product by monitoring the increase of fluorescence intensity emitted during enzymatic hydrolysis of an oligonucleotide probe labelled covalently with fluorescent reporting and quenching dyes via Taq polymerase 5'-->3' exonuclease activity. The quantity of MVM DNA molecules in the samples was determined using a known amount of MVM standard control DNA fragment cloned into a plasmid (pCR-MVM). We have demonstrated that MVM TaqMan PCR assay is approximately 1000-fold more sensitive than the microplate infectivity assay with the lowest detection limit of approximately one particle per reaction. The reliable detection range is within 100 to 10(9) molecules per reaction with high reproducibility. The intra assay variation is <2.5%, and the inter assays variation is <6.5% when samples contain >100 particles/assay. When we applied the TaqMan PCR to MVM clearance studies done by column chromatography or normal flow viral filtration, we found that the virus removal factors were similar to that of virus infectivity assay. It takes about a day to complete entire assay processes, thus, the TaqMan PCR assay is at least 10-fold faster than the infectivity assay. Therefore, we concluded that this fast, specific, sensitive, and robust assay could replace the infectivity assay for virus clearance evaluation.  相似文献   

4.
C de Wit  C Fautz  Y Xu 《Biologicals》2000,28(3):137-148
Chinese hamster ovary (CHO) cells have been widely used to manufacture recombinant proteins intended for human therapeutic uses. Retrovirus-like particles, which are apparently defective and non-infectious, have been detected in all CHO cells by electron microscopy (EM). To assure viral safety of CHO cell-derived biologicals, quantification of retrovirus-like particles in production cell culture and demonstration of sufficient elimination of such retrovirus-like particles by the down-stream purification process are required for product market registration worldwide. EM, with a detection limit of 1x10(6) particles/ml, is the standard retrovirus-like particle quantification method. The whole process, which requires a large amount of sample (3-6 litres), is labour intensive, time consuming, expensive, and subject to significant assay variability. In this paper, a novel real-time quantitative PCR assay (TaqMan assay) has been developed for the quantification of retrovirus-like particles. Each retrovirus particle contains two copies of the viral genomic particle RNA (pRNA) molecule. Therefore, quantification of retrovirus particles can be achieved by quantifying the pRNA copy number, i.e. every two copies of retroviral pRNA is equivalent to one retrovirus-like particle. The TaqMan assay takes advantage of the 5'-->3' exonuclease activity of Taq DNA polymerase and utilizes the PRISM 7700 Sequence Detection System of PE Applied Biosystems (Foster City, CA, U.S.A.) for automated pRNA quantification through a dual-labelled fluorogenic probe. The TaqMan quantification technique is highly comparable to the EM analysis. In addition, it offers significant advantages over the EM analysis, such as a higher sensitivity of less than 600 particles/ml, greater accuracy and reliability, higher sample throughput, more flexibility and lower cost. Therefore, the TaqMan assay should be used as a substitute for EM analysis for retrovirus-like particle quantification in CHO cell-based production system.  相似文献   

5.
6.
Multicolumn capture chromatography is gaining increased attention lately due to the significant economic and process advantages it offers compared with traditional batch mode chromatography. However, for wide adoption of this technology in clinical and commercial space, it requires scalable models for executing viral validation studies. In this study, viral validation studies were conducted under cGLP guidelines to assess retro- (X-MuLV) and parvo-virus (MVM) clearance across twin-column continuous capture chromatography (CaptureSMB). A surrogate model was also developed using standard batch mode chromatography based on flow path modifications to mimic the loading strategy used in CaptureSMB. The results show that a steady state was achieved by the second cycle for both antibody binding and virus clearance and that the surrogate model using batch mode chromatography equipment provided impurity clearance that was comparable to that obtained during cyclical operation of CaptureSMB. Further, the log reduction values (LRVs) achieved during CaptureSMB were also comparable to the LRVs obtained using standard batch capture chromatography. This was expected since the mode of virus separation during protein A chromatography is primarily based on removal during the flow through and wash steps. Finally, this study also presents assessments on the resin cleaning strategy during continuous chromatography and how the duration of clean-in-place solution exposure impacts virus carryover.  相似文献   

7.
The potential of viral contamination is a regulatory concern for continuous cell line-derived pharmaceutical proteins. Complementary and redundant safety steps, including an evaluation of the viral clearance capacity of unit operations in the purification process, are performed prior to registration and marketing of biotechnology pharmaceuticals. Because process refinement is frequently beneficial, CBER/FDA has published guidance facilitating process improvement by delineating specific instances where the bracketing and generic approaches are appropriate for virus removal validation. In this study, a generic/matrix study was performed using Q-Sepharose Fast Flow (QSFF) chromatography to determine if bracketing and generic validation can be applied to anion exchange chromatography. Key operational parameters were varied to upper and lower extreme values and the impact on viral clearance was assessed using simian virus 40 (SV40) as the model virus. Operational ranges for key chromatography parameters were identified where an SV40 log(10) reduction value (LRV) of >or=4.7 log(10) is consistently achieved. On the basis of the apparent robustness of SV40 removal by Q-anion exchange chromatography, we propose that the concept of "bracketed generic" validation can be applied to this and potentially other chromatography unit operations.  相似文献   

8.
In the production of monoclonal antibodies (mAbs) intended for use in humans, it is a global regulatory requirement that the manufacturing process includes unit operations that are proven to inactivate or remove adventitious agents to ensure viral safety. Viral inactivation by low pH hold (LPH) is typically used to ensure this viral safety in the purification process of mAbs and other biotherapeutics derived from mammalian cell lines. To ascertain the effectiveness of the LPH step, viral clearance studies have evaluated LPH under worst-case conditions of pH above the manufacturing set point and hold duration at or below the manufacturing minimum. Highly acidic conditions (i.e., pH < 3.60) provide robust and effective enveloped virus inactivation but may lead to reduced product quality of the therapeutic protein. However, when viral inactivation is operated above pH 3.60 to ensure product stability, effective (>4 log10 reduction factor) viral inactivation may not be observed under these worst-case pH conditions in viral clearance studies. A multivariate design of experiments was conducted to further characterize the operating space for low pH viral inactivation of a model retrovirus, xenotropic murine leukemia virus (X-MuLV). The statistically designed experiment evaluated the effect of mAb isotype, pH, temperature, acid titrant, sodium chloride (NaCl) concentration, virus spike timing, and post-spike filtration on X-MuLV inactivation. Data from the characterization study were used to generate predictive models to identify conditions that reliably achieve effective viral inactivation at pH ≥ 3.60. Results of the study demonstrated that NaCl concentration has the greatest effect on virus inactivation in the range studied, and pH has a large effect when the load material has no additional NaCl. Overall, robust and effective inactivation of X-MuLV at pH 3.65–3.80 can be achieved by manipulating either the pH or the NaCl concentration of the load material. This study contributes to the understanding of ionic strength as an influential parameter in low pH viral inactivation studies.  相似文献   

9.
Viral contamination is a common risk to continuous cell line-derived biologics. Viral validation is thus required for license applications. Viral validation for chromatography procedures is routinely performed by spiking a model virus into the load material and performing the chromatography procedures at small scale under conditions equivalent to the commercial scale. With traditional cell-based infectivity assays, one can only spike one model virus at one time. Quantitative PCR methods (TaqMan) make it possible to spike multiple model viruses for a chromatography procedure simultaneously. TaqMan assays can quantify multiple types of viruses and other types of nucleic acid in a single sample without cross interference because of its extremely high specificity. Therefore, a multivirus spike approach was evaluated and compared to a single virus spike approach. The study was further extended to the evaluation of host cell DNA clearance. The data shows highly comparable viral and host cell DNA clearance between the single and multiple virus spike approaches. Application of a multivirus spike approach provides significant time, manpower, and cost savings for new drug development.  相似文献   

10.
Viral safety is required for biological products to treat human diseases, and the burden of inactivation and or virus removal lies on the downstream purification process. Minute virus of mice (MVM) is a nonenveloped parvovirus commonly used as the worst-case model virus in validation studies because of its small size and high chemical stability. In this study, we investigated the use of MVM-mock virus particle (MVP) and bacteriophage ΦX174 as surrogates for MVM to mimic viral clearance studies, with a focus on chromatography operations. Based on structural models and comparison of log reduction value among MVM, MVP, and ΦX174, it was demonstrated that MVP can be used as a noninfectious surrogate to assess viral clearance during process development in multiple chromatography systems in a biosafety level one (BSL-1) laboratory. Protein A (ProA) chromatography was investigated to strategically assess the impact of the resin, impurities, and the monoclonal antibody product on virus removal.  相似文献   

11.
Virus removal studies are used to insure the safety of biopharmaceutical products by quantitatively estimating the viral clearance capacity by the manufacturing process. Virus quantification assays are used to measure the log10 clearance factor of individual purification unit operations in spike recovery studies. We have developed a multiplex RT Q-PCR assay that detects and quantifies three commonly used model viruses X-MuLV, SV40, and MMV simultaneously. This RT Q-PCR multiplex assay has a 6 log10 dynamic range with a limit of detection (LOD) of ≈1 genome copy/μL. Amplification profiles are similar to existing singleplex assays. Overall, this RT Q-PCR multiplex assay is highly quantitative, accurately identifies multiple viruses simultaneously, and may prove useful to validate viral clearance of biological products in small scale studies.  相似文献   

12.
L Shi  J Ho  L A Norling  M Roy  Y Xu 《Biologicals》1999,27(3):241-252
A real time quantitative PCR-based simian virus 40 (SV40) detection and quantification method has been developed. This method takes advantage of the 5' to 3'-exonuclease activity of Taq DNA polymerase and utilizes the PRISM 7700 sequence detection system of PE Applied Biosystems for direct monitoring of PCR product accumulation through a dual-labelled fluorogenic probe. This method provides accurate, precise and reproducible quantification of SV40 DNA over a linear dynamic range of at least 100,000-fold with a minimum detection level of 6.4 copy equivalents/microL of SV40 viral particle in test samples. The sample preparation procedure employed allows for efficient and consistent recovery of SV40 DNA from test samples. High concentrations of protein and cellular DNA presenting in test samples have been demonstrated to have no impact on SV40 quantification. This method offers significant advantages over other PCR methods and cell-based infectivity assays currently available for SV40 detection and quantification. The availability of this method should greatly facilitate the pathogenic investigation of SV40, as well as viral clearance evaluations required for the development of new biological products.  相似文献   

13.
Investigations of prion and virus safety of a new liquid IVIG product.   总被引:2,自引:0,他引:2  
A highly purified, liquid, 10% immunoglobulin product stabilized with proline, referred to as IgPro10 has recently been developed. IgG was purified from human plasma by cold ethanol fractionation, octanoic acid precipitation and anion-exchange chromatography. The manufacturing process includes two distinctly different partitioning steps and virus filtration, which were also assessed for the removal of prions. Prion removal studies used different spike preparations (brain homogenate, microsomes, purified PrP(sc)) and three different detection methods (bioassay, Western blot, conformation-dependent immunoassay). All of the investigated production steps were shown to reduce significantly all different spike preparations, resulting in an overall reduction of >10log(10). Moreover, the biochemical assays proved equally effective to the bioassay for the demonstration of prion elimination. Four of the manufacturing steps cover three different mechanisms of virus clearance. These are: i) virus inactivation; ii) virus filtration; and iii) partitioning. These mechanisms were assessed for their virus reduction capacity. Virus validation studies demonstrated overall reduction factors of >18log(10) for enveloped and >7log(10) for non-enveloped model viruses. In conclusion, the IgPro10 manufacturing process has a very high reduction potential for prions and for a wide variety of viruses resulting in a state-of-the-art product concerning safety towards known and emerging pathogens.  相似文献   

14.
15.
There are few reports of the adoption of continuous processes in bioproduction, particularly the implementation of end-to-end continuous or integrated processes, due to difficulties such as feed adjustment and incorporating virus filtration. Here, we propose an end-to-end integrated continuous process for a monoclonal antibody (mAb) with three integrated process segments: upstream production processes with pool-less direct connection, pooled low pH virus inactivation with pH control and a total flow-through integrated polishing process in which two columns were directly connected with a virus filter. The pooled virus inactivation step defines the batch, and high impurities reduction and mAb recovery were achieved for batches conducted in succession. Viral clearance tests also confirmed robust virus reduction for the flow-through two-column chromatography and the virus filtration steps. Additionally, viral clearance tests with two different hollow fiber virus filters operated at flux ranging from 1.5 to 40 LMH (liters per effective surface area of filter in square meters per hour) confirmed robust virus reduction over these ranges. Complete clearance with virus logarithmic reduction value ≥4 was achieved even with a process pause at the lowest flux. The end-to-end integrated continuous process proposed in this study is amenable to production processes, and the investigated virus filters have excellent applicability to continuous processes conducted at constant flux.  相似文献   

16.
In virus clearance study (VCS) design, the amount of virus loaded onto the virus filters (VF) must be carefully controlled. A large amount of virus is required to demonstrate sufficient virus removal capability; however, too high a viral load causes virus breakthrough and reduces log reduction values. We have seen marked variation in the virus removal performance for VFs even with identical VCS design. Understanding how identical virus infectivity, materials and operating conditions can yield such different results is key to optimizing VCS design. The present study developed a particle number-based method for VCS and investigated the effects on VF performance of discrepancies between apparent virus amount and total particle number of minute virus of mice. Co-spiking of empty and genome-containing particles resulted in a decrease in the virus removal performance proportional to the co-spike ratio. This suggests that empty particles are captured in the same way as genome-containing particles, competing for retention capacity. In addition, between virus titration methods with about 2.0 Log10 difference in particle-to-infectivity ratios, there was a 20-fold decrease in virus retention capacity limiting the throughput that maintains the required LRV (e.g., 4.0), calculated using infectivity titers. These findings suggest that ignoring virus particle number in VCS design can cause virus overloading and accelerate filter breakthrough. This article asserts the importance of focusing on virus particle number and discusses optimization of VCS design that is unaffected by virological characteristics of evaluation systems and adequately reflect the VF retention capacity.  相似文献   

17.
Viral safety is an important prerequisite for clinical immunoglobulin preparations. A common manufacturing practice is to utilize several virus removal/inactivation process steps to ensure the safety of human intravenous immunoglobulin (IVIg). In this regard, we examined the use of Planova 35 nm filters to reduce potential loads of both non-enveloped and enveloped viruses prior to end-stage solvent detergent treatment. The nanofiltration process was validated for removal of a variety of enveloped and non-enveloped viruses ranging in size from 70 nm to 18 nm including: Sindbis virus, Simian Virus 40 (SV40), Bovine Viral Diarrhoea virus (BVDV), Feline Calicivirus, Encephalomyocarditis virus (EMC), Hepatitis A virus (HAV), Bovine Parvovirus (BPV) and Porcine Parvovirus (PPV). The filtration procedure was carried out by first spiking a 7% solution of IVIg with < 10(8) virus. The spiked IVIg solution was then filtered through a 75 nm Planova filter followed by two Planova 35 nm filters in series (75/35/35). The 75 nm prefilter is incorporated into this process to increase the capacity of the 35 nm viral removal filters. As a result of the inclusion of the 75 nm pre-filtration step it was possible to assess the removal of virus by the 35 nm filters independent of possible aggregation of the initial viral spiking material. Samples were collected at each step and immediately titred by viral plaque assay. A process control sample of the spiked load solution was held at the same conditions for the duration of the filtration process and then titred to determine the extent to which antibody neutralization may have contributed to overall viral reduction. Control assays of spiked IVIg were performed to establish the degree of toxicity of the IVIg solution to the indicator cell lines and the extent to which the IVIg interfered with plaque formation in the assay system. This combined data was used to establish assay sensitivity for the calculation of log removal by the filtration process. It was noted that toxicity/interference effects could have a significant effect upon apparent log reductions, and these effects could vary greatly, even within viruses of the same family. The results of these studies indicate that 35 nm filtration is very effective for removing substantial quantities of both non-enveloped and enveloped viruses from IVIg. Complete clearance (to the limits of detection of the assay) was obtained for all viruses larger than 35 nm. Interestingly, viruses reported to have mean diameters of less than 35 nm (EMC and HAV) were at least partially removed by the filtration (4.3 and > 4.7 logs removal, respectively). Even small viruses such as PPV were to some extent removed from the IVIg solution by the filters (2.6 logs removal). Reduction of BPV would not be assessed due to extensive neutralization and interference with plaque formation by the IVIg. Sindbis and SV40 also were subject to neutralization and assay interference due to the IVIg, though to a lesser extent. We conclude from these studies that the 35 nm mean pore size is functionally efficient in removal of smaller size viruses from spiked IVIg concentrates.  相似文献   

18.
A new human liquid intravenous immunoglobulin product, Flebogamma® DIF, has been developed. This IgG is purified from human plasma by cold ethanol fractionation, PEG precipitation and ion exchange chromatography. The manufacturing process includes three different specific pathogen clearance (inactivation/removal) steps: pasteurization, solvent/detergent treatment and Planova? nanofiltration with a pore size of 20 nm. This study evaluates the pathogen clearance capacity of seven steps in the production process for a wide range of viruses through spiking experiments: the three specific steps mentioned above and also four more production steps. Infectivity of samples was measured using a Tissue Culture Infectious Dose assay (log10 TCID50) or Plaque Forming Units assay (log10 PFU). Validation studies demonstrated that each specific step cleared more than 4 log10 for all viruses assayed. An overall viral clearance between ≥13.33 log10 and ≥25.21 log10, was achieved depending on the virus and the number of steps studied for each virus. It can be concluded that Flebogamma® DIF has a very high viral safety profile.  相似文献   

19.
Continuous processing for the production of monoclonal antibodies (mAb) gains more and more importance. Several solutions exist for all the necessary production steps, leading to the possibility to build fully continuous processes. Low pH viral inactivation is a part of the standard platform process for mAb production. Consequently, Klutz et al. introduced the coiled flow inverter (CFI) as a tool for continuous low pH viral inactivation. Besides theoretical calculations of viral reduction, no viral clearance study has been presented so far. In addition, the validation of continuous viral clearance is often neglected in the already existing studies for continuous processing. This study shows in detail the development and execution of a virus study for continuous low pH viral inactivation inside a CFI. The concept presented is also valid for adaptation to other continuous viral clearance steps. The development of this concept includes the technical rationale for an experimental setup, a valid spiking procedure, and finally a sampling method. The experimental results shown represent a viral study using xenotropic murine leukemia virus as a model virus. Two different protein A (ProtA) chromatography setups with varying pH levels were tested. In addition, one of these setups was tested against a batch experiment utilizing the same process material. The results show that sufficient low pH viral inactivation (decadic logarithm reduction value >4) was achieved in all experiments. Complete viral inactivation took place within the first 14.5 min for both continuous studies and the batch study, hence showing similar results. This study therefore represents a successful virus study concept and experiment for a continuous viral inactivation step. Moreover, it was shown that the transfer from batch results to the continuous process is possible. This is accomplished by the narrow residence time distribution of the CFI, showing how close the setup approaches the ideal plug flow and with that batch operation.  相似文献   

20.
Risk of transmission of hepatitis C virus (HCV) by clinical plasma remains high in countries with a high prevalence of hepatitis C, justifying the implementation of viral inactivation treatments. In this study, we assessed the extent of inactivation of HCV during minipool solvent/detergent (SD; 1% TnBP / 1% Triton X-45) treatment of human plasma. Luciferase-tagged infectious cell culture-derived HCV (HCVcc) particles were used to spike human plasma prior to treatment by SD at 31 ± 0.5°C for 30 min. Samples were taken before and after SD treatment and filtered on a Sep-Pak Plus C18 cartridge to remove the SD agents. Risk of cytotoxicity was assessed by XTT cell viability assay. Viral infectivity was analyzed based on the luciferase signals, 50% tissue culture infectious dose viral titer, and immunofluorescence staining for HCV NS5A protein. Total protein, cholesterol, and triglyceride contents were determined before and after SD treatment and C18 cartridge filtration. Binding analysis, using patient-derived HCV clinical isolates, was also examined to validate the efficacy of the inactivation by SD. SD treatment effectively inactivated HCVcc within 30 min, as demonstrated by the baseline level of reporter signals, total loss of viral infectivity, and absence of viral protein NS5A. SD specifically targeted HCV particles to render them inactive, with essentially no effect on plasma protein content and hemostatic function. More importantly, the efficacy of the SD inactivation method was confirmed against various genotypes of patient-derived HCV clinical isolates and against HCVcc infection of primary human hepatocytes. Therefore, treatment by 1% TnBP / 1% Triton X-45 at 31°C is highly efficient to inactivate HCV in plasma for transfusion, showing its capacity to enhance the safety of therapeutic plasma products. We propose that the methodology used here to study HCV infectivity can be valuable in the validation of viral inactivation and removal processes of human plasma-derived products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号