首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most of the members of the superfamily of mammalian small heat shock or stress proteins are abundant in muscles where they play a role in muscle function and maintenance of muscle integrity. One member of this protein superfamily, human HSP27, is rapidly phosphorylated on three serine residues (Ser(15), Ser(78), and Ser(82)) during cellular response to a number of extracellular factors. To understand better the role of HSP27, we performed a yeast two-hybrid screen of a human heart cDNA library for HSP27-interacting proteins. By using the triple aspartate mutant, a mimic of phosphorylated HSP27, as "bait" construct, a protein with a molecular mass of 21.6 kDa was identified as an HSP27-binding protein. Sequence analysis revealed that this new protein shares an overall sequence identity of 33% with human HSP27. This protein also contains the alpha-crystallin domain in its C-terminal half, a hallmark of the superfamily of small stress proteins. Thus, the new protein itself is a member of this protein superfamily, and consequently we designated it HSP22. According to the two-hybrid data, HSP22 interacts preferentially with the triple aspartate form of HSP27 as compared with wild-type HSP27. HSP22 is expressed predominantly in muscles. In vitro, HSP22 is phosphorylated by protein kinase C (at residues Ser(14) and Thr(63)) and by p44 mitogen-activated protein kinase (at residues Ser(27) and Thr(87)) but not by MAPKAPK-2.  相似文献   

2.
Nakamoto H  Honma D 《FEBS letters》2006,580(13):3029-3034
Phycobiliproteins such as phycocyanins are the most abundant proteins found in cyanobacteria which are assembled to form the phycobilisome. Here, we showed that a small heat shock protein, HspA, interacts directly with phycocyanins from the cyanobacterium Synechococcus sp. strain PCC 7942 in vitro and suppresses inactivation of their light-harvesting functions due to heat denaturation in the presence of hydrogen peroxide. Under the denaturing conditions, phycobilisomes were de-assembled to lighter complexes and then aggregated. HspA associated with phycocyanins in the dissociated complexes, and suppressed the aggregation. The specific interaction between a small heat shock protein and phycocyanins was further supported by the fact that HspA and alpha-crystallin protected isolated phycocyanins from denaturation, while HtpG and lysozyme did not. The maximum protection was observed at a molar ratio of four HspA monomer per one phycocyanin (alpha beta) monomer.  相似文献   

3.
Although multiple functions for the small heat shock protein HSP25 have been proposed, its specific role during developmental and differentiation processes is not known. Cartilage is one of the tissues in which HSP25 is specifically and highly expressed during development. C1 cells, able to form aggregates in vitro, can be induced to differentiate into chondrocytes. In this study, we generated two stable transfected clones overexpressing HSP25 at two different levels. Cell morphology and growth rate were modified in both clones, although the actin content and distribution did not seem to be altered. Overexpressing clones had more difficulties in coalescing, leading to smaller aggregates and they did not differentiate into chondrocytes. Subsequently, these aggregates tended to dissociate into loose masses of dying cells. The strength of all these effects was directly correlated to the level of HSP25 overexpression. These data suggest that overexpressing HSP25 decreases cellular adhesion and interferes with chondrocyte differentiation.  相似文献   

4.
Plasmid pSt04 of Streptococcus thermophilus contains a gene encoding a protein with homology to small heat shock proteins (A. Geis, H. A. M. El Demerdash, and K. J. Heller, Plasmid 50:53-69, 2003). Strains cured from the shsp plasmids showed significantly reduced heat and acid resistance and a lower maximal growth temperature. Transformation of the cloned shsp gene into S. thermophilus St11 lacking a plasmid encoding shsp resulted in increased resistance to incubation at 60 degrees C or pH 3.5 and in the ability to grow at 52 degrees C. A food-grade cloning system for S. thermophilus, based on the plasmid-encoded shsp gene as a selection marker, was developed. This approach allowed selection after transfer of native and recombinant shsp plasmids into different S. thermophilus and Lactococcus lactis strains. Using a recombinant plasmid carrying an erythromycin resistance (Em(r)) gene in addition to shsp, we demonstrated that both markers are equally efficient in selecting for plasmid-bearing cells. The average transformation rates in S. thermophilus (when we were selecting for heat resistance) were determined to be 2.4 x 10(4) and 1.0 x 10(4) CFU/0.5 micro g of DNA, with standard deviations of 0.54 x 10(4) and 0.32 x 10(4), for shsp and Em(r) selection, respectively. When we selected for pH resistance, the average transformation rates were determined to be 2.25 x 10(4) and 3.8 x 10(3) CFU/0.5 micro g of DNA, with standard deviations of 0.63 x 10(4) and 3.48 x 10(3), for shsp and Em(r) selection, respectively. The applicability of shsp as a selection marker was further demonstrated by constructing S. thermophilus plasmid pHRM1 carrying the shsp gene as a selection marker and the restriction-modification genes of another S. thermophilus plasmid as a functional trait.  相似文献   

5.
6.
Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, (NH4)2HPO4, and MnSO4. The optimum pH and temperature for a batch culture ofLactobacillus sp. RKY2 was found to be 6.0 and 36°C, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity (6.21 gL−1h−1) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture ofLactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.  相似文献   

7.
In Caulobacter crescentus, the actin homologue MreB is critical for cell shape maintenance. Despite the central importance of MreB for cell morphology and viability, very little is known about MreB-interacting factors. Here, we use an overexpression approach to identify a novel MreB interactor, MbiA. MbiA interacts with MreB in both biochemical and genetic assays, colocalizes with MreB throughout the cell cycle, and relies on MreB for its localization. MbiA overexpression mimics the loss of MreB function, severely perturbing cell morphology, inhibiting growth and inducing cell lysis. Additionally, mbiA deletion shows a synthetic growth phenotype with a hypomorphic allele of the MreB interactor RodZ, suggesting that these two MreB-interacting proteins either have partially redundant functions or participate in the same functional complex. Our work thus establishes MbiA as a novel cell shape regulator that appears to function through regulating MreB, and opens avenues for discovery of more MreB-regulating factors by showing that overexpression screens are a valuable tool for uncovering potentially redundant cell shape effectors.  相似文献   

8.
Seven members of the small heat shock protein (sHSP) family are exceptional with respect to their constitutive high abundance in muscle tissue. It has been suggested that sHSPs displaying chaperone-like properties may stabilize myofibrillar proteins during stress conditions and prevent them from loss of function. In the present study five sHSPs (alphaB-crystallin, MKBP, HSP25, HSP20, and cvHSP) were investigated with respect to similarities and differences of their expression in heart and skeletal muscle under normal and ischemic conditions. In ischemic heart and skeletal muscle these five sHSPs translocated from cytosol to the Z-/I-area of myofibrils. Myofibrillar binding of all sHSPs was very tight and resisted for the most part extraction with 1 M NaSCN or 1 M urea. MKBP and HSP20 became extracted by 1 M NaSCN to a significant extent indicating that these two sHSPs may bind partially to actin-associated proteins which were completely extracted by this treatment. Ultrastructural localization of alphaB-crystallin showed diffuse distribution of immunogold label throughout the entire I-band in skeletal muscle fibers whereas in cardiomyocytes alphaB-crystallin was preferentially located at the N-line position of the I-band. These observations indicate different myofibrillar binding sites of alphaB-crystallin in cardiomyocytes versus skeletal muscle fibers. Further differences of the properties of sHSPs could be observed regarding fiber type distribution of sHSPs. Thus sHSPs form a complex stress-response system in striated muscle tissue with some common as well as some distinct functions in different muscle types.  相似文献   

9.
Small heat shock proteins (sHSPs) control the proteins stability in the cell preventing their irreversible denaturation. While many mycoplasmas possess the sHSP gene in the genome, Acholeplasma laidlawii is the only mycoplasma capable of surviving in the environment. Here we report that the sHSP IbpA directly interacts with the key division protein FtsZ in A. laidlawii, representing the first example of such interaction in prokaryotes. FtsZ co-immunoprecipitates with IbpA from A. laidlawii crude extract and in vitro binds IbpA with KD ~ 1 μM. Proteins co-localize in the soluble fraction of the cell at 30–37 °C and in the non-soluble fraction after 1 h exposition to cold stress (4 °C). Under heat shock conditions (42 °C) the amount of FtsZ decreases and the protein remains in both soluble and non-soluble fractions. Furthermore, in vitro, FtsZ co-elutes with IbpAHis6 from A. laidlawii crude extract at any temperatures from 4 to 42 °C, with highest yield at 42 °C. Moreover, in vitro FtsZ retains its GTPase activity in presence of IbpA, and the filaments and bundles formation seems to be even improved by sHSP at 30–37 °C. At extreme temperatures, either 4 or 42 °C, IbpA facilitates FtsZ polymerization, although filaments under 4 °C appears shorter and with lower density, while at 42 °C IbpA sticks around the bundles, preventing their destruction by heat. Taken together, these data suggest that sHSP IbpA in A. laidlawii contributes to the FtsZ stability control and may be assisting appropriate cell division under unfavorable conditions.  相似文献   

10.
HSP25, a previously uncharacterized member of the alpha-crystallin family of small heat shock proteins in Caenorhabditis elegans, has been examined using biochemical and immunological techniques. HSP25 is the second largest of 16 identifiable small heat shock proteins in the nematode and is expressed at all developmental stages under normal growth conditions. Recombinant HSP25 produced in Escherichia coli exists predominantly as small oligomers (dimers to tetramers) and possesses chaperone activity against citrate synthase in vitro. In C. elegans, HSP25 is localized to dense bodies and M-lines in body wall muscle, to the lining of the pharynx, and to the junctions between cells of the spermathecal wall. Affinity chromatography of nematode extracts on a column of immobilized HSP25 resulted in specific binding of vinculin and alpha-actinin but not actin, as revealed by Western blotting. These results suggest a role for HSP25 in the organization or maintenance of the myofilament lattice and adherens junctions in C. elegans.  相似文献   

11.
Plasma membrane transporter SLC6A14 transports all neutral and basic amino acids in a Na/Cl – dependent way and it is up-regulated in many types of cancer. Mass spectrometry analysis of overexpressed SLC6A14–associated proteins identified, among others, the presence of cytosolic heat shock proteins (HSPs) and co-chaperones. We detected co-localization of overexpressed and native SLC6A14 with HSP90-beta and HSP70 (HSPA14). Proximity ligation assay confirmed a direct interaction of overexpressed SLC6A14 with both HSPs. Treatment with radicicol and VER155008, specific inhibitors of HSP90 and HSP70, respectively, attenuated these interactions and strongly reduced transporter presence at the cell surface, what resulted from the diminished level of the total transporter protein. Distortion of SLC6A14 proper folding by both HSPs inhibitors directed the transporter towards endoplasmic reticulum-associated degradation pathway, a process reversed by the proteasome inhibitor – bortezomib. As demonstrated in an in vitro ATPase assay of recombinant purified HSP90-beta, the peptides corresponding to C-terminal amino acid sequence following the last transmembrane domain of SLC6A14 affected the HSP90-beta activity. These results indicate that a plasma membrane protein folding can be controlled not only by chaperones in the endoplasmic reticulum, but also those localized in the cytosol.  相似文献   

12.
Erythrocyte ghosts, prepared from the blood of rats fed zinc-deficient diets, were evaluated for membrane fluidity and surface sialic acid properties using spin-labeled probes and electron spin resonance (ESR) spectroscopy. These physical parameters of the erythrocyte ghosts from the zinc-deficient group were compared to those for erythrocyte ghosts obtained from ad libitum and pair fed controls consuming zinc-adequate diets. As the animals became progressively zinc deficient, the erythrocyte ghost membranes became more fluid than those from the control groups. In addition, the apparent rotational correlation time of Tempamine spin probes on surface sialic acid residues was smaller for the zinc deficient group, indicative of an increased rotational mobility of the spin label. These results suggest that zinc deficiency can have pronounced effects on the physical state of membrane bilayer lipids and cell surface carbohydrates and supports the view that many of the pathological signs of zinc deficiency are due to a general membrane defect.  相似文献   

13.
14.
15.
Searching EST databases for new members of the human small heat shock protein family, we recently identified HSPB9, which is expressed exclusively in testis as determined by Northern blotting (Kappé et al., Biochim. Biophys. Acta 1520, 1-6, 2001). Here we confirm this testis-specific expression pattern by RT-PCR in a larger series of normal tissues. Interestingly, while screening HSPB9 ESTs, we also noted expression in tumours, which could be verified by RT-PCR. Protein expression of HSPB9 was also detected in normal human testis and various tumour samples using immunohistochemical staining. We thus conclude that HSPB9 belongs to the steadily growing number of cancer/testis antigens. To get a better understanding of the function of HSPB9, we performed a yeast two-hybrid screen to search for HSPB9-interacting proteins. TCTEL1, a light chain component of cytoplasmic and flagellar dynein, interacted in both the yeast two-hybrid system and in immunoprecipitation experiments with HSPB9. Additionally, immunohistochemical staining showed co-expression of HSPB9 and TCTEL1 in similar stages of spermatogenesis and in tumour cells. The possible functional significance of this interaction is discussed.  相似文献   

16.
Heat shock proteins (HSPs) are attractive therapeutic targets for neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), characterized by aberrant formation of protein aggregates. Although motor neurons have a high threshold for activation of HSP genes, HSP90 inhibitors are effective inducers. This study evaluated NXD30001, a novel, small molecule HSP90 inhibitor based on the radicicol backbone, for its ability to induce neuronal HSPs and for efficacy in an experimental model of ALS based on mutations in superoxide-dismutase 1 (SOD1). In motor neurons of dissociated murine spinal cord cultures, NXD30001-induced expression of HSP70/HSPA1 (iHSP70) and its co-chaperone HSP40/DNAJ through activation of HSF1 and exhibited a protective profile against SOD1G93A similar to geldanamycin, but with less toxicity. Treatment prevented protein aggregation, mitochondrial fragmentation, and motor neuron death, important features of mutant SOD1 toxicity, but did not effectively prevent aberrant intracellular Ca2+ accumulation. NXD30001 distributed to brain and spinal cord of wild-type and SOD1G93A transgenic mice following intraperitoneal injection; however, unlike in culture, in vivo levels of SOD1 were not reduced. NXD30001-induced expression of iHSP70 in skeletal and cardiac muscle and, to a lesser extent, in kidney, but not in liver, spinal cord, or brain, with either single or repeated administration. NXD30001 is a very useful experimental tool in culture, but these data point to the complex nature of HSP gene regulation in vivo and the necessity for early evaluation of the efficacy of novel HSP inducers in target tissues in vivo.  相似文献   

17.
Oligomerization is an essential property of small heat shock proteins (sHSPs) that appears to regulate their chaperone activity. We have examined the role of conserved hydrophobic residues that are postulated to stabilize sHSP oligomers. We identified a mutation of Synechocystis Hsp16.6 that impairs function in vivo and in vitro. The V143A mutation is in the C-terminal extension, a region predicted to form an oligomeric interaction with a hydrophobic region that includes the site of a previously characterized mutation, L66A. Both mutants were dimeric, but V143A had a stronger oligomerization defect than L66A. However, V143A protected a model substrate better than L66A. This suggests that although the two regions both play a role in oligomerization, they are not equivalent. Nevertheless, the addition of either dimeric sHSP enhanced the in vitro chaperone activity of wild type Hsp16.6, consistent with models that the sHSP dimers initiate interactions with substrates. Suppressor analysis of V143A identified mutations in the N terminus that restored activity by restabilizing the oligomer. These mutants were allele-specific and unable to suppress L66A, although they suppressed a dimeric C-terminal truncation of Hsp16.6. Conversely, suppressors of L66A were unable to suppress either V143A or the truncation, although they, like suppressors of V143A, stabilize the Hsp16.6 oligomer. We interpret these data as evidence that the mutations V143A and L66A stabilize two different dimeric structures and as further support that sHSP dimers are active species.  相似文献   

18.
The small heat shock proteins (sHSPs) recently have been reported to have molecular chaperone activity in vitro; however, the mechanism of this activity is poorly defined. We found that HSP18.1, a dodecameric sHSP from pea, prevented the aggregation of malate dehydrogenase (MDH) and glyceraldehyde-3-phosphate dehydrogenase heated to 45 degrees C. Under conditions in which HSP18.1 prevented aggregation of substrates, size-exclusion chromatography and electron microscopy revealed that denatured substrates coated the HSP18.1 dodecamers to form expanded complexes. SDS-PAGE of isolated complexes demonstrated that each HSP18.1 dodecamer can bind the equivalent of 12 MDH monomers, indicating that HSP18.1 has a large capacity for non-native substrates compared with other known molecular chaperones. Photoincorporation of the hydrophobic probe 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid (bis-ANS) into a conserved C-terminal region of HSP18.1 increased reversibly with increasing temperature, but was blocked by prior binding of MDH, suggesting that bis-ANS incorporates proximal to substrate binding regions and that substrate-HSP18.1 interactions are hydrophobic. We also show that heat-denatured firefly luciferase bound to HSP18.1, in contrast to heat-aggregated luciferase, can be reactivated in the presence of rabbit reticulocyte or wheat germ extracts in an ATP-dependent process. These data support a model in which sHSPs prevent protein aggregation and facilitate substrate refolding in conjunction with other molecular chaperones.  相似文献   

19.
It is well known that unloading of skeletal muscle with spaceflight or tail suspension leads rat soleus muscle atrophy. Previously, we reported that one of small heat shock protein (sHSP), alpha B-crystallin shows an early dramatic decrease in atrophied rat soleus muscle (Atomi et al, 1991). In this report, we focused to study the gravitational responses of another HSP, which may be reactive to the gravity. HSP47, a collagen-specific stress protein, has been postulated to be a collagen-specific molecular chaperone localized in the ER (Nagata et al, 1992). Western blot analysis revealed that HSP47 in slow skeletal muscle decreases at 5 days after tail suspension (TS) and increased at 5 days recovery after 10 days of TS as compared with the control level. Hypothetically, HSP47 in slow soleus muscle increases at 5 days after hypergravity (HG) induced by the centrifugation. The content of HSP47 in soleus muscle was strongly affected by gravity conditions.  相似文献   

20.
The 35.5-kb ICESt1 element of Streptococcus thermophilus CNRZ368 is bordered by a 27-bp repeat and integrated into the 3' end of a gene encoding a putative fructose-1,6-biphosphate aldolase. This element encodes site-specific integrase and excisionase enzymes related to those of conjugative transposons Tn5276 and Tn5252. The integrase was found to be involved in a site-specific excision of a circular form. ICESt1 also encodes putative conjugative transfer proteins related to those of the conjugative transposon Tn916. Therefore, ICESt1 could be or could be derived from an integrative conjugative element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号