首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

2.
Dermorphin (Tyr? D-Ala? Phe? Gly? Tyr? Pro? Ser? NH2), a potent natural peptide opioid, its synthetic L-Ala2 analog, and all the N fragments from the tripeptide (Tyr? D -Ala? Phe? NH2) to the parent hexapeptide amide were characterized for the first time by means of proton nmr spectroscopy at 11.74 T. Assignments of most protons of dermorphin were facilitated by the study of the N-terminal fragments. Comparison of spectroscopic parameters with relative pharmacological activity is proposed as a possible means of studying flexible agonists in solution.  相似文献   

3.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

4.
R Simantov  H Snyder 《Life sciences》1976,18(8):781-787
The ability of bovine brain extracts to compete in a selective fashion for opiate receptor binding is attributable to a small peptide. The substance has been purified to homogeneity and identified as comprising two penta-peptides HTyrGlyGlyPheLeuOH (Leucine-enkephalin) and HTyrGlyGlyPheMetOH (methionine enkephalin). Bovine brain contains 4 times as much leucine-enkephalin as methionine-enkephalin in contrast to pig brain in which these ratios are reversed. Competition for opiate receptor binding by leucine-enkephalin is reduced more by sodium and enhanced more by manganese than is the case for methionine-enkephalin, suggesting that leucine-enkephalin may be a “purer” agonist than methionine-enkephalin.  相似文献   

5.
Delta‐opioid (DOP) receptors are members of the G protein‐coupled receptor (GPCR) sub‐family of opioid receptors, and are evolutionarily related, with homology exceeding 70%, to cognate mu‐opioid (MOP), kappa‐opioid (KOP), and nociceptin opioid (NOP) receptors. DOP receptors are considered attractive drug targets for pain management because agonists at these receptors are reported to exhibit strong antinociceptive activity with relatively few side effects. Among the most potent analgesics targeting the DOP receptor are the linear and cyclic enkephalin analogs known as DADLE (Tyr‐D ‐Ala‐Gly‐Phe‐D ‐Leu) and DPDPE (Tyr‐D ‐Pen‐Gly‐Phe‐D ‐Pen), respectively. Several computational and experimental studies have been carried out over the years to characterize the conformational profile of these penta‐peptides with the ultimate goal of designing potent peptidomimetic agonists for the DOP receptor. The computational studies published to date, however, have investigated only a limited range of timescales and used over‐simplified representations of the solvent environment. We provide here a thorough exploration of the conformational space of DADLE and DPDPE in an explicit solvent, using microsecond‐scale molecular dynamics and bias‐exchange metadynamics simulations. Free‐energy profiles derived from these simulations point to a small number of DADLE and DPDPE conformational minima in solution, which are separated by relatively small energy barriers. Candidate bioactive forms of these peptides are selected from identified common spatial arrangements of key pharmacophoric points within all sampled conformations. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 21–27, 2014.  相似文献   

6.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

7.
为了研究胰岛素受体结合部位的结构和功能,设计并用固相方法合成了3个六肽.在浓度大于1×103nmol/L时,cyclo(Phe-Phe-Val-Leu-Tyr-Gly)具有明显的胰岛素受体结合活力;H-Phe-Phe-Val-Leu-Tyr-Gly-OH的这一活力则不明显;而H-Gly-Glu-Arg-Gly-Phe-Phe-OH则增强胰岛素和其受体的亲和性.然而,它们都没有体内生物活性.这表明:环六肽部分模拟了胰岛素受体结合部位的空间构象;胰岛素受体结合部位的疏水性和其中的B23Gly-B24Phe-B25Phe对胰岛素和其受体的结合起重要作用.  相似文献   

8.
By using 13C enrichment in [Leu5]-enkephalin, it has been possible to improve the assignment of carbonyl resonances in the nuclear resonance spectrum and to remove some of the ambiguities in the derived phi and chi dihedral angles, thereby providing information about the conformation of this molecule in solution. The combined use of 13C and 1H nuclear magnetic resonance experiments leads to the conclusion that [Leu5]0enkephalin contains a type I beta bend at residues Gly3-Phe4 in dimethyl-d6 sulfoxide (Me2SO0d6) solution. Furthermore, the side chains of Tyr1, Phe4, and Leu5 exist predominantly in one conformation (tg-) in this solvent. A comparison is made between the conformation found in Me2SO-d6 and those determined by X-ray diffraction and conformational energy calculations.  相似文献   

9.
Three series of model peptides containing histidine have been examined by 1H-n.m.r. and c.d. spectroscopy: X-His peptides with X = Gly, Ala, Leu; His-X peptides with X = Gly, Ala, Leu, Ser, Lys, Phe, Tyr; and Pro-His-X peptides with X = Gly; Ala; Leu; Val; Phe; Tyr, C.d. spectra were obtained for pH values between 1 and 11 to give titration curves [θ] vs. pH; 1H-n.m.r. spectra were recorded at four selected pH values corresponding to defined ionic species. 1H-n.m.r. spectra in Me2SO of the NH3+, Imid+, COO? ionic state (pH 4.5) were also obtained. The histidine side chain conformation in the various peptides and the changing ionic states is reflected in the 3Jαβ,β coupling constants, the Δδ ββ′ anisochrony values and the c.d. histidine chromophore contribution at 215 nm, and qualitative and semiquantitative correlations can be established between these parameters. Whereas the histidine side chain conformation is quite different in each of the three series, and varies with the ionic state and environment, it is practically identical for each peptide within a series: the nature of the X-residue does not exert any influence on the histidine side chain conformational behaviour. Thus, the classical rotamer distribution R I > R II > R III which is due to steric factors is usually observed unless specific intramolecular interactions such as hydrogen or ionic bonds override these.  相似文献   

10.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

11.
In this work, a pair of new palladium(II) complexes, [Pd(Gly)(Phe)] and [Pd(Gly)(Tyr)], (where Gly is glycine, Phe is phenylalanine, and Tyr is tyrosine) were synthesized and characterized by UV–Vis, FT-IR, elemental analysis, 1H-NMR, and conductivity measurements. The detailed 1H NMR and infrared spectral studies of these Pd(II) complexes ascertain the mode of binding of amino acids to palladium through nitrogen of -NH2 and oxygen of -COO? groups as bidentate chelates. The Pd(II) complexes have been tested for in vitro cytotoxicity activities against cancer cell line of K562. Interactions of these Pd(II) complexes with CT-DNA and human serum albumin were identified through absorption/emission titrations and gel electrophoresis which indicated significant binding proficiency. The binding distance (r) between these synthesized complexes and HSA based on Forster?s theory of non-radiation energy transfer were calculated. Alterations of HSA secondary structure induced by complexes were confirmed by FT-IR measurements. The results of emission quenching at three temperatures have revealed that the quenching mechanism of these Pd(II) complexes with CT-DNA and HSA were the static and dynamic quenching mechanism, respectively. Binding constants (Kb), binding site number (n), and the corresponding thermodynamic parameters were calculated and revealed that the hydrogen binding and hydrophobic forces played a major role when Pd(II) complexes interacted with DNA and HSA, respectively. We bid that [Pd(Gly)(Phe)] and [Pd(Gly)(Tyr)] complexes exhibit the groove binding with CT-DNA and interact with the main binding pocket of HSA. The complexes follow the binding affinity order of [Pd(Gly)(Tyr)] > [Pd(Gly)(Phe)] with CT-DNA- and HSA-binding.  相似文献   

12.
Models of mu- and delta-receptor-bound backbone conformations of enkephalin cyclic analogues containing Phe4 were determined by comparing geometrical similarity among the previously found low-energy backbone structures of [D-Cys2,Cys5]-enkephalinamide, [D-Cys2,D-Cys5]-enkephalinamide, [D-Pen2,L-Pen5]-enkephalin and [D-Pen2,D-Pen5]-enkephalin. The present mu-receptor-bound conformation resembles a beta-I bend in the peptide backbone centred on the Gly3-Phe4 region. Two slightly different models were found for the delta-receptor-bound conformation; both of them are more extended than the mu-receptor-bound conformation and include a gamma-turn (or a gamma-like turn) on the Gly3 residue. Energetically favourable rotamers of Tyr and Phe side chains were also determined for the mu- and delta-conformations. The present models of mu- and delta-conformations share geometrical similarity with the low-energy structures of Leu-enkephalin and the Tyr-D-Lys-Gly-Phe-analogue.  相似文献   

13.
Sets of low-energy structures were determined by energy calculations for two cyclic analogues of enkephalin (Ek), [D-Pen2, D-Pen5]-Ek and [D-Pen2, L-Pen5]-Ek, possessing the highest specificity towards delta-opioid receptors. Comparison of mutual spatial orientations of the alpha-amino group and aromatic moieties of the Tyr and Phe residues permitted one to suggest a model for the delta-receptor-bound conformation of enkephalin-related peptides. The model involves a pronounced gamma-like turn of the peptide backbone centred on the Gly3 residue.  相似文献   

14.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

15.
In this study, proteinogenic amino acids residues of dimeric dermorphin pentapeptides were replaced by the corresponding β3homo‐amino acids. The potency and selectivity of hybrid α/β dimeric dermorphin pentapeptides were evaluated by competetive receptor binding assay in the rat brain using [3H]DAMGO (a μ ligand) and [3H]DELT (a δ ligand). Tha analog containing β3homo‐Tyr in place of Tyr (Tyr‐d ‐Ala‐Phe‐Gly‐β3homo‐Tyr‐NH‐)2 showed good μ receptor affinity and selectivity (IC50 = 0.302, IC50 ratio μ/δ = 68) and enzymatic stability in human plasma. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
We performed conventional and targeted molecular dynamics simulations to address the dynamic transition mechanisms of the conformational transitions from the GA98 protein with only 1 mutation of Leu45Tyr to GB98 and from the GA88 protein with 7 mutations of Gly24Ala, Ile25Thr, Ile30Phe, Ile33Tyr, Leu45Tyr, Ile49Thr, and Leu50Lys to GB88. The results show that the conformational transition mechanism from the mutated 3α GA98 (GA88) state to the α+4β GB98 (GB88) state via several intermediate conformations involves the bending of loops at the N and C termini firstly, the unfolding of αA and αC, then the traversing of αB, and the formation of the 4β layer with the conversion of the hydrophobic core. The bending of loops at the N and C termini and the formation of the crucial transition conformation with the full unfolded structure are key factors in their transition processes. The communication of the interaction network, the bending directions of loops, and the traversing site of αB in the transition of GA98 to GB98 are markedly different from those in GA88 to GB88 because of the different mutated residues. The analysis of the correlations and the calculated mass center distances between some segments further supported their conformational transition mechanisms. These results could help people to better understand the Paracelsus challenge. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
As part of our continuing effort to define structure-activity relationships for enkephalin and design enzymatically resistant analogs, we report the synthesis and biological activities of linear and cyclic enkephalin analogs modified at the Gly3-Phe4 amide bond. The partial retro-inverso enkephalin analog Tyr-D-Ala-gGly-(R,S)-mPhe-Leu-NH2 and its cyclic counterpart, Tyr-cyclo[D-A2 bu-gGly-(R,S)-mPhe-Leu-], were synthesized as diastereomeric mixtures using solution methodology. The racemic benzylmalonate allowed the linear analog to be synthesized by fragment coupling at the reversed bond. Cyclization of the second analog was carried out at high concentration, eliminating formation of polymer by the use of an insoluble base. All gem-diaminoalkyl residues were prepared by conversion of peptidyl amides with benzene iodonium bis(trifluoroacetate). Diastereomers of both compounds were separable by reverse phase HPLC but those of the linear compound racemized rapidly under conditions of testing and were therefore tested together. All analogs tested had activities ranging from 6 to 14% of the activity of Leu enkephalin, indicating that the Gly3-Phe4 amide bond is important, though not crucial, for receptor binding.  相似文献   

18.
The solid state conformations of cyclo[Gly–Proψ[CH2S]Gly–D –Phe–Pro] and cyclo[Gly–Proψ[CH2–(S)–SO]Gly–D –Phe–Pro] have been characterized by X-ray diffraction analysis. Crystals of the sulfide trihydrate are orthorhombic, P212121, with a = 10.156(3) Å, b = 11.704(3) Å, c = 21.913(4) Å, and Z = 4. Crystals of the sulfoxide are monoclinic, P21, with a = 10.662(1) Å, b = 8.552(3) Å, c = 12.947(2) Å, β = 94.28(2), and Z = 2. Unlike their all-amide parent, which adopts an all-trans backbone conformation and a type II β-turn encompassing Gly-Pro-Gly-D -Phe, both of these peptides contain a cis Gly1-Pro2 bond and form a novel turn structure, i.e., a type II′ β-turn consisting of Gly–D –Phe–Pro–Gly. The turn structure in each of these peptides is stabilized by an intramolecular H bond between the carbonyl oxygen of Gly1 and the amide proton of D -Phe4. In the cyclic sulfoxide, the sulfinyl group is not involved in H bonding despite its strong potential as a hydrogen-bond acceptor. The crystal structure made it possible to establish the absolute configuration of the sulfinyl group in this peptide. The two crystal structures also helped identify a type II′ β-turn in the DMSO-d6 solution conformers of these peptides. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
Hydrolysis of [Leu]- and [Met]enkephalin was determined in whole rat plasma in vitro by using HPLC-ECD to measure Tyr, Tyr-Gly and Tyr-Gly-Gly formation. Although [Leu]- and [Met]enkephalin did not differ in Tyr or Tyr-Gly accumulation, the amount of Tyr-Gly-Gly resulting from [Met]enkephalin hydrolysis was greater than that resulting from [Leu]enkephalin hydrolysis, and [Met]enkephalin's half-life in plasma was slightly shorter than that of [Leu]enkephalin. By comparing metabolite formation in the presence and absence of peptidase inhibitors with high selectivity for their respective enzymes, these studies demonstrated that aminopeptidase M and angiotensin converting enzyme are the major peptidases that hydrolyze enkephalins in rat plasma.  相似文献   

20.
NH2-terminal sequence analysis was performed on subregions of human plasma fibronectin including 24,000-dalton (24K) DNA-binding, 29,000-dalton (29K) gelatin-binding, and 18,000-dalton (18K) heparin-binding tryptic fragments. These fragments were obtained from fibronectin after extensive trypsin digestion followed by sequential affinity purification on gelatin-Sepharose, heparin-agarose, and DNA-cellulose columns. The gelatin-binding fragment was further purified by gel filtration on Sephadex G-100, and the DNA-binding and heparin-binding fragments were further purified by high-performance liquid chromatography. The 29K fragment had the following NH2-terminal sequence: AlaAlaValTyrGlnProGlnProHisProGlnProPro (Pro)TyrGlyHis HisValThrAsp(His)(Thr)ValValTyrGly(Ser) ?(Ser)?-Lys. The NH2-terminal sequence of a 50K, gelatin-binding, subtilisin fragment by L. I. Gold, A. Garcia-Pardo, B. Prangione, E. C. Franklin, and E. Pearlstein (1979, Proc. Nat. Acad. Sci. USA76, 4803–4807) is identical to positions 3–19 (with the exception of some ambiguity at position 14) of the 29K fragment. These data strongly suggest that the 29K tryptic fragment is included in the 50K subtilisin fragment, and that subtilisin cleaves fibronectin between the Ala2Val3 residues of the 29K tryptic fragment. The 18K heparin-binding fragment had the following NH2-terminal sequence: (Glu)AlaProGlnProHisCysIleSerLysTyrIle LeuTyrTrpAspProLysAsnSerValGly?(Pro) LysGluAla?(Val)(Pro). The 29K gelatin-binding and 18K heparin-binding fragments have proline-rich NH2-terminal sequences suggesting that they may have arisen from protease-sensitive, random coil regions of fibronectin corresponding to interdomain regions preceding macromolecular-binding domains. Both of these fragments contain the identical sequence ProGlnProHis, a sequence which may be repeated in other interdomain regions of fibronectin. The 24K DNA-binding fragment has the following NH2-terminal sequence: SerAspThrValProSerProCysAspLeuGlnPhe ValGluValThrAspVal LysValThrIleMetTrpThrProProGluSerAla ValThrGlyTyrArgVal AspValCysProValAsnLeuProGlyGluHisGly Gln(Cys)LeuProIleSer. The sequence of positions 9–22 are homologous to positions 15–28 of the α chain of DNA-dependent RNA polymerase from Escherichia coli. The homology observed suggests that this stretch of amino acids may be a DNA-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号