首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relatedness concepts have dominated the discussion on the evolutionand maintenance of eusociality in social insects. In the diploidtermites, explanations based on relatedness asymmetries havebeen less relevant than in the Hymenoptera; ecological factorshave been claimed to be paramount. Yet, relevant quantitativestudies investigating the role of ecological factors are lacking.We examined the influence of ecological factors on reproductivetactics in the drywood termite, Cryptotermes secundus. In thisspecies, caste development is very flexible, with individualshaving the option to remain at the natal nest as helpers/workersor to develop into dispersing reproductives (sexuals). An importantecological factor expected to influence this "decision" is foodavailability; C. secundus nests in a piece of wood that servesas food and shelter, with individuals never leaving the nestto forage. Thus, a reduction in the amount of food parallelsa reduction in the nests' longevity. Therefore, we tested theinfluence of food availability on caste-developmental decisionsin natural colonies, as well as in two experiments in whichwe simulated a gradual and a sudden decline in the amount ofavailable food. In all trials dispersing sexuals occurred moreoften in colonies with diminished food resources than in colonieswith abundant suitable food. Thus, regardless of how food declines,individuals seem to switch their tactic from being a helperto becoming a dispersing reproductive if nest conditions deteriorateand the nests's longevity decline.  相似文献   

2.
No general theory explains why a sterile worker caste is not found in all species of both Hymenoptera and Isoptera (Insecta). Recent empirical finding show that, in the termites (Isoptera), feeding outside the nest correlates well with the evolution of the sterile (true) worker caste from the non-sterile (false) worker caste. Here we explain the connection between food-nest separation and true worker evolution in termites, providing a general theory on the restricted distribution of the sterile worker caste in the Isoptera. A cost-benefit model suggests that there is a critical level of nest stability above which natural selection favours true workers over false workers, irrespective of genetical relatedness. Because food-nest separation tends to increase nest stability, this theoretical result implies that the less a termite species consumes its nest as food, the more likely is its nest stability to fall above the critical level and a true worker caste will evolve.  相似文献   

3.
In termites the evolution of reproductive altruism is not based on a particularly high relatedness between nestmates. For the evolution and maintenance of the ancestral sterile soldier caste, the benefits generated by the soldiers' presence must compensate the loss of the soldiers' reproductive potential. To study the impact of soldiers on colony's fitness, we manipulated the proportion of soldiers to nonsoldiers in colonies of the dry-wood termite Cryptotermes secundus.'Soldier-less' colonies were obtained by removing soldiers and inhibiting their development with an extract of soldier heads. The colonies were set up for 1 year in experimental nests in the field. 'Soldier-less' colonies produced fewer soldiers. The reduction of soldiers neither affected colony survival nor helper growth, but fewer dispersing sexuals were produced in 'soldier-less' than in control colonies. This confirms what was only supposed so far, that in termites soldiers are maintained for their intrinsic benefit to cost ratio.  相似文献   

4.
SUMMARY Wood-dwelling termites are characterized by an extremely high and unique developmental flexibility that allows workers, which are immatures, to explore all caste options. The endocrine signatures underlying this flexibility are only vaguely understood. We determined juvenile hormone (JH) and ecdysteroid hemolymph titers during postembryonic development and in terminal instars of the drywood termite Cryptotermes secundus using field and laboratory colonies. Postembryonic development is characterized by a drop in JH titers at the transition from larval (individuals without wing buds) to nymphal (individuals with wing buds) instars. JH titers were low in winged sexuals and reproducing primary reproductives (<200 pg/μl) but were by an order of magnitude higher in neotenic replacement reproductives. The unique regressive molts of termites seem to be characterized by elevated JH titers, compared with progressive or stationary molts. Ecdysteroid titers were generally low in nymphal instars and in primary reproductives (<50 pg/μl). It was only during the third and fourth nymphal instars and in winged sexuals where some individuals showed elevated ecdysteroid titers. These results are the most comprehensive endocrinological data set available for any lower termite, with the potential to serve as baseline for understanding the extreme developmental flexibility underlying the evolution of social life in termites.  相似文献   

5.
Termites (Isoptera) are the phylogenetically oldest social insects, but in scientific research they have always stood in the shadow of the social Hymenoptera. Both groups of social insects evolved complex societies independently and hence, their different ancestry provided them with different life-history preadaptations for social evolution. Termites, the 'social cockroaches', have a hemimetabolous mode of development and both sexes are diploid, while the social Hymenoptera belong to the holometabolous insects and have a haplodiploid mode of sex determination. Despite this apparent disparity it is interesting to ask whether termites and social Hymenoptera share common principles in their individual and social ontogenies and how these are related to the evolution of their respective social life histories. Such a comparison has, however, been much hampered by the developmental complexity of the termite caste system, as well as by an idiosyncratic terminology, which makes it difficult for non-termitologists to access the literature.
Here, we provide a conceptual guide to termite terminology based on the highly flexible caste system of the "lower termites". We summarise what is known about ultimate causes and underlying proximate mechanisms in the evolution and maintenance of termite sociality, and we try to embed the results and their discussion into general evolutionary theory and developmental biology. Finally, we speculate about fundamental factors that might have facilitated the unique evolution of complex societies in a diploid hemimetabolous insect taxon. This review also aims at a better integration of termites into general discussions on evolutionary and developmental biology, and it shows that the ecology of termites and their astounding phenotypic plasticity have a large yet still little explored potential to provide insights into elementary evo-devo questions.  相似文献   

6.
Phenotypes of organisms are not determined completely genetically, but vary according to environmental factors (phenotypic plasticity). Some organisms express several discrete adaptive phenotypes (polyphenism). Social insects possess a few types of individuals (castes) in their colonies, to which specific tasks are allocated. Here, I review studies on caste polyphenism in ants and termites, in terms of the developmental mechanisms of caste-specific characters, such as alate wings and soldier mandibles. In ants, the developmental fate of caste is probably determined by the pattern-formation genes in the early stage of postembryonic development, but apoptotic degeneration occurs in the wing primordia of future workers. As apoptotic wing degeneration has been observed in two phylogenetically distant groups of ants, this phenomenon is suggested to be conserved in many ant species. On the other hand, all termite species possess distinct sterile soldiers with specific morphologies suitable for defense. Recent studies using molecular techniques isolated genes related to soldier differentiation and analyzed the expression profiles of those genes in order to understand the mechanism of caste differentiation and the link between molecular and social evolution. In this review, I focus on these studies, in terms of the alteration of body plan in response to environmental signals, and discuss the evolutionary process of the interaction between ontogeny and environment.  相似文献   

7.
Phenotypic plasticity and polyphenism, in which phenotypes can be changed depending on environmental conditions, are common in insects. Several studies focusing on physiological, developmental, and molecular processes underlying the plastic responses have revealed that similar endocrine mechanisms using juvenile hormone (JH) are used to coordinate the flexible developmental processes. This review discusses accumulated knowledge on the caste polyphenism in social insects (especially termites), the wing and the reproductive polyphenisms in aphids, and the nutritional polyphenism and sexual dimorphism in stag beetles. For the comparison with non-insect arthropods, extensive studies on the inducible defense (and reproductive polyphenism) in daphnids (crustacean) are also addressed. In all the cases, JH (and methyl farnesoate in daphnids) plays a central role in mediating environmental stimuli with morphogenetic processes. Since the synthetic pathways for juvenoids, i.e., the mevalonate pathway and downstream pathways to sesquiterpenoids, are conserved across pancrustacean lineages (crustaceans and hexapods including insects), the evolution of developmental regulation by juvenoids that control molting (ecdysis) and metamorphosis is suggested to have occurred in the ancestral arthropods. The discontinuous postembryonic development (i.e., molting) and the regulatory physiological factors (juvenoids) would have enabled plastic developmental systems observed in many arthropod lineages.  相似文献   

8.
Social insect colonies contain multiple phenotypes, i.e. castes, and this caste polyphenism is often linked to sexual dimorphism. Unlike social hymenopterans, both termite sexes are diploid and contribute to helper-type tasks within the colony. Nonetheless, a biased sex ratio is frequently observed in termites, especially in soldiers. To explain this bias in soldier sex ratio, Matsuura (Evol. Ecol. 20: 565–574, 2006) postulated the existence of a size threshold for workers molting into soldiers. Under the influence of sexual size dimorphism (SSD), such a threshold was considered to indirectly favor one sex. We conducted a literature survey of sex ratio among termite soldiers and tested this size-threshold hypothesis using data for 67 termite species from a variety of termite lineages. We demonstrated the existence of a size threshold for individuals molting into soldiers, resulting in the acquisition of soldiers of only one sex in species exhibiting strong SSD. In species exhibiting weak SSD, the size threshold skews the sex ratio of soldiers, but does not necessarily cause the loss of one sex. Finally, we observed a prevalence of single-sex soldiers in the Termitidae, regardless of SSD, suggesting that the ancestral developmental mechanisms that constrain soldier differentiation from one sex are maintained in certain extant species.  相似文献   

9.
Termites express polyphenism during caste differentiation that is mostly undefined at the molecular level. Using the eastern subterranean termite, Reticulitermes flavipes Kollar, we wanted (1) to test juvenile hormone (JH) model assays for their ability to induce detectable molecular changes in worker termites and (2) to investigate hemolymph proteins and their corresponding genes during JH-induced soldier caste differentiation. Our results illustrate pronounced changes in two hemolymph proteins after JH treatment, as well as differences among several caste phenotypes. Significant increases in the expression of four genes encoding hemolymph proteins, including two vitellogenins and two hexamerins, were observed after JH exposure. These findings are the first to demonstrate such protein and gene expression changes during termite caste differentiation. These results also validate the utility of JH model assays for inducing detectable molecular changes in worker termites that have begun presoldier differentiation.  相似文献   

10.
11.
12.
Social insects are key examples of organisms that display polyphenism. Their genomes encode instructions for the development of multiple phenotypes, known as castes, which typically have highly divergent morphology, physiology and behaviour. DNA methylation, an epigenetic mechanism associated with modulation of gene expression in various eukaryotes, has recently been shown to provide a key link between environmental cues and caste-specific gene expression in honey bees (Hymenoptera). In termites—a major social insect group phylogenetically distant from Hymenoptera—the existence of DNA methylation has not, to our knowledge, been reported to date. Since genes encoding key DNA methylation enzymes are known to be absent in the genomes of a number of insect species, we sought to test whether termites are able to methylate their DNA, and, if so, whether caste-specific patterns of DNA methylation exist. We performed methylation-specific amplified fragment length polymorphism on the termite Coptotermes lacteus, and found evidence for DNA methylation. However, a comparison of methylation levels in different castes did not reveal any significant differences in methylation levels. The demonstration of DNA methylation in termites sets the stage for future epigenetic studies in these important social insects.  相似文献   

13.

Background  

Social insects such as termites express dramatic polyphenism (the occurrence of multiple forms in a species on the basis of differential gene expression) both in association with caste differentiation and between castes after differentiation. We have used cDNA macroarrays to compare gene expression between polyphenic castes and intermediary developmental stages of the termite Reticulitermes flavipes.  相似文献   

14.
Worker termites of the genus Reticulitermes are temporally-arrested juvenile forms that can terminally differentiate into adultsoldier- or reproductive-caste phenotypes. Soldier-caste differentiation is a developmental transition that is induced by high juvenile hormone (JH) titers. Recently, a status quo hexamerin mechanism was identified, which reduces JH efficacy and maximizes colony fitness via the maintenance of high worker-caste proportions. Our goal in these studies was to investigate more thoroughly the influences of the hexamerins on JH-dependent gene expression in termite workers. Our approach involved RNA interference (RNAi), bioassays and quantification of gene expression. We first investigated the expression of 17 morphogenesis-associated genes in response to RNAi-based hexamerin silencing. Hexamerin silencing resulted in significant downstream impacts on 15 out of the 17 genes, suggesting that these genes are members of a JH-responsive genomic network. Next, we compared gene-expression profiles in workers after RNAi-based hexamerin silencing to that of (i) untreated workers that were held away from the colony; and (ii) workers that were also held away from the colony, but with ectopic JH. Here, although there was no correlation between hexamerin silencing and colony-release effects, we observed a significant correlation between hexamerin silencing and JH-treatment effects. These findings provide further evidence supporting the hypothesis that the hexamerins modulate JH availability, thus limiting the impacts of JH on termite caste polyphenism. Results are discussed in a context relative to outstanding questions on termite developmental biology, particularly on regulatory gene networks that respond to JH-, colony- and environmental-cues.  相似文献   

15.
白蚁是危险性社会昆虫,建立安全有效的白蚁防治方法有赖多学科的参与,分子生物学已经成为白蚁研究的重要工具。目前,DNA序列分析方法已应用于白蚁鉴定和分类,其中线粒体基因是最通用的分子标记;基因工程技术成功构建了可用于白蚁防治的白蚁肠道工程菌;Hexamerin、COX Ⅲ、纤维素酶等白蚁功能基因以及白蚁品级分化相关的若干蛋白相继得到了分离和鉴定。文章从白蚁分类、防治、功能基因、品级分化4个方面综述白蚁分子生物学的研究进展,为白蚁的防治提供新的方法和思路。  相似文献   

16.
Caste polymorphism, defined as the presence within a colony of two or more morphologically differentiated individuals of the same sex, is an important character of highly eusocial insects both in the Hymenoptera (ants, bees and wasps) and in the Isoptera (termites), the only two groups in the animal kingdom where highly eusocial species occur. Frequently, caste polymorphism extends beyond mere variations in size (although the extent of variations in size can be in the extreme) and is accompanied by allometric variations in certain body parts. How such polymorphism has evolved and why, in its extreme form, it is essentially restricted to the social insects are questions of obvious interest but without satisfactory answers at the present time. I present a hypothesis entitled ‘genetic release followed by diversifying evolution’, that provides potential answers to these questions. I argue that genetic release followed by diversifying evolution is made possible under a number of circumstances. One of them I propose is when some individuals in a species begin to rely on the indirect component of inclusive fitness while others continue to rely largely on the direct component, as workers and queens in social insects are expected to do. Thus when queens begin to rely on workers for most of the foraging, nest building and brood care, and workers begin to rely increasingly on queens to lay eggs—when queen traits and worker traits do not have to be expressed in the same individual—I postulate the relaxation of stabilizing selection and new spurts of directional selection on both queen-trait genes and worker-trait genes (in contrasting directions) leading to caste polymorphism.  相似文献   

17.
The difference in phenotypes of queens and workers is a hallmark of the highly eusocial insects. The caste dimorphism is often described as a switch‐controlled polyphenism, in which environmental conditions decide an individual's caste. Using theoretical modeling and empirical data from honeybees, we show that there is no discrete larval developmental switch. Instead, a combination of larval developmental plasticity and nurse worker feeding behavior make up a colony‐level social and physiological system that regulates development and produces the caste dimorphism. Discrete queen and worker phenotypes are the result of discrete feeding regimes imposed by nurses, whereas a range of experimental feeding regimes produces a continuous range of phenotypes. Worker ovariole numbers are reduced through feeding‐regime‐mediated reduction in juvenile hormone titers, involving reduced sugar in the larval food. Based on the mechanisms identified in our analysis, we propose a scenario of the evolutionary history of honeybee development and feeding regimes.  相似文献   

18.

Background  

Caste differentiation in social insects is a type of polyphenism that enables division of labor among members of a colony. This elaborate social integration has attracted broad interest, although little is known about its regulatory mechanisms, especially in Isoptera (termites). In this study, we analyzed soldier differentiation in the damp-wood termite Hodotermopsis sjostedti, focusing on a possible effector gene for caste development. The gene for an actin-binding protein, HsjCib, which shows a high level of expression in developing mandibles during soldier differentiation, is characterized in detail.  相似文献   

19.
In termites, the soldiers’ sex ratio is often biased toward one sex. Unlike in the Hymenoptera, this bias cannot easily be explained by relatedness asymmetries because termites are diploid. Matsuura proposed that when large body size is adaptive for colony defence (e.g. in case of phragmotic defence) then the larger sex (given sexual size dimorphism exists) should be more likely to reach a threshold size and develop into soldiers. This would explain biased sex ratios. Matsuura validated his hypothesis for four Reticulitermes species. Here, we tested his hypothesis for two species of Cryptotermes with phragmotic defence. These drywood termites have a life type that is thought to be ancestral in termite’s evolution, thus giving us potential insights into the evolution of the soldier caste. In one of these species, the sex ratio of soldiers was highly female biased, but we could not support Matsuura’s hypothesis. Both species lacked sexual size dimorphism in all castes. Additionally, in both species, the sex ratio of helpers and sexuals did not deviate from a 1:1 ratio, and hence can also not account for the bias observed in soldiers. However, this study showed that there were behavioural differences between the sexes in both species, which could shed some light on biased sex ratio in soldiers. Our findings also indicate that the developmental pathway taken by individuals reflects a ‘decision’ at the colony level. The discovery of behavioural differences between sexes in termites should open the way to similar studies in other taxa with helpers/ workers of both sexes, as it might reveal more task partitioning in colonies than previously thought and it raises questions concerning the selective pressures that acted on caste evolution in termites. Received 30 October 2007; revised 17 January and 27 February; accepted 4 March 2008.  相似文献   

20.
Food availability affects the trade-off between maintenance and reproduction in a wide range of organisms, but its effects on social insects remain poorly understood. In social insects, the maintenance-reproduction trade-off seems to be absent in individuals but may appear at the colony level, although this is rarely investigated. In this study, we restricted food availability in a termite species to test how it affects survival and reproduction, both at the individual and colony level. Using Bayesian multivariate response models, we found very minor effects of food restriction on the survival of queens, individual workers or on the colonies. In contrast, queen fecundity was significantly reduced, whereas colony-level fecundity (i.e., the number of dispersing alates, future reproductives) increased under food restriction as workers gave up cooperation within the colony and became alates that dispersed. Our study shows that life-history trade-offs can be mitigated by individuals' social behaviours in social organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号