首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Through mRNA extract, RT and a series of PCR, phage antibody libraries were constructed from rP27kip 1-immunized and non-immunized mice. After only one round of selection with rP27kip 1, clones from each library were chosen randomly and digested byTag I and Hinf I. 11 of 64 clones from the immunized animal had consistent restriction pattern, while none of the 64 clones from the non-immunized animal had, except that one had the same fragments pattern as that of the 11 clones. The 12 fragments were expressed inE. coli BL21(DE3)/pET-28b(+) system. ELISA showed that some of the fragments could bind to rP27kip 1 specifically. AU these results implied that specific antibody can be obtained by genetic engineering without hybridoma or many rounds of growth and panning selection.  相似文献   

2.
Through mRNA extract, RT and a series of PCR, phage antibody libraries were constructed from rP27~(Kipl)immunized and non-immunized mice. After only one round of selection with rP27~(Kipl), clones from each library were chosen randomly and digested by Taq I and Hinf I. 11 of 64 clones from the immunized animal had consistent restriction pattern, while none of the 64 clones from the non-immunized animal had, except that one had the same fragments pattern as that of the 11 clones. The 12 fragments were expressed in E. coli BL21(DE3)/pET-28b( ) system. ELISA showed that some of the fragments could bind to rP27~(Kipl) specifically. All these results implied that specific antibody can be obtained by genetic engineering without hybridoma or many rounds of growth and panning selection.  相似文献   

3.
Listeria monocytogenes (LM), one of the eight species belonging to the genus Listeria, is pathogenic for both humans and animals. In this study, two novel LM-specific clones, designated L5-78 and L5-79, were isolated from a phage display antibody library that was derived from the variable domain of heavy-chain antibodies (VHHs) of non-immunized alpaca. These two clones were expressed, purified, and characterized. Results showed that both isolated VHHs recognize three serotypes (1/2a, 1/2b, and 4b), which are responsible for more than 95% of documented human listeriosis cases. The recombinant VHHs possess high thermal stability, pH tolerance, and urea resistance. A sandwich enzyme-linked immunosorbent assay (ELISA) based on the VHH clone L5-79 and a monoclonal antibody was developed to detect LM in pasteurized milk, with a detection limit of 1 × 104 colony-forming units (CFU)/ml. These findings indicated that the species-specific VHHs could be directly isolated from the non-immunized library with a properly designed panning strategy and VHH could be a new source for possible diagnosis/detection of foodborne pathogens in food because it was shown to be highly specific and stable.  相似文献   

4.
A single polymerase chain reaction (PCR) reaction targeting the spliced-leader intergenic region of Trypanosoma cruzi I was standardised by amplifying a 231 bp fragment in domestic (TcIDOM) strains or clones and 450 and 550 bp fragments in sylvatic strains or clones. This reaction was validated using 44 blind coded samples and 184 non-coded T. cruzi I clones isolated from sylvatic triatomines and the correspondence between the amplified fragments and their domestic or sylvatic origin was determined. Six of the nine strains isolated from acute cases suspected of oral infection had the sylvatic T. cruzi I profile. These results confirmed that the sylvatic T. cruzi I genotype is linked to cases of oral Chagas disease in Colombia. We therefore propose the use of this novel PCR reaction in strains or clones previously characterised as T. cruzi I to distinguish TcIDOMfrom sylvatic genotypes in studies of transmission dynamics, including the verification of population selection within hosts or detection of the frequency of mixed infections by both T. cruzi I genotypes in Colombia.  相似文献   

5.
6.
Hematopoietic stem cells (HSC) are a relatively quiescent pool of cells that perform the arduous task of replacing the short-lived mature cells of the peripheral blood. While a rapid expansion of HSCs under periods of hematological stress is warranted, their enhanced proliferation during homeostasis leads to loss of function. We recently reported that in HSCs, the evolutionarily conserved growth factor erv1-like (Gfer) acts to counter jun activation domain-binding protein 1 (Jab1)-mediated nuclear export and destabilization of the cell cycle inhibitor, p27kip1, by directly binding to and sequestering the COP9 signalosome (CSN) subunit. Through this mechanism, Gfer promotes quiescence and maintains the functional integrity of HSCs. Here, we extend our study to demonstrate an association between Gfer and Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) in the regulation of HSC proliferation. Highly proliferative and functionally deficient Camk4-/- HSCs possess significantly lower levels of Gfer and p27kip1. Ectopic expression of Gfer restores quiescence and elevates p27kip1 expression in Camk4-/- HSCs. These results further substantiate a critical role for Gfer in the restriction of unwarranted proliferation in HSCs through the inhibition of Jab1 and subsequent stabilization and nuclear retention of p27kip1. This Gfer-mediated pro-quiescence mechanism could be therapeutically exploited in the treatment of hematological malignancies associated with elevated Jab1 and reduced p27kip1.Key words: hematopoietic stem cells, quiescence, proliferation, Gfer, CaMKIV, Jab1, p27kip1, Bcl-2  相似文献   

7.

Background

Overexpression of the myristolated alanine-rich C kinase substrate (MARCKS) occurs in vascular proliferative diseases such as restenosis after bypass surgery. MARCKS knockdown results in arrest of vascular smooth muscle cell (VSMC) proliferation with little effect on endothelial cell (EC) proliferation. We sought to identify the mechanism of differential regulation by MARCKS of VSMC and EC proliferation in vitro and in vivo.

Methods and Results

siRNA-mediated MARCKS knockdown in VSMCs inhibited proliferation and prevented progression from phase G0/G1 to S. Protein expression of the cyclin-dependent kinase inhibitor p27kip1, but not p21cip1 was increased by MARCKS knockdown. MARCKS knockdown did not affect proliferation in VSMCs derived from p27kip1-/- mice indicating that the effect of MARCKS is p27kip1-dependent. MARCKS knockdown resulted in decreased phosphorylation of p27kip1 at threonine 187 and serine 10 as well as, kinase interacting with stathmin (KIS), cyclin D1, and Skp2 expression. Phosphorylation of p27kip1 at serine 10 by KIS is required for nuclear export and degradation of p27kip1. MARCKS knockdown caused nuclear trapping of p27kip1. Both p27kip1 nuclear trapping and cell cycle arrest were released by overexpression of KIS, but not catalytically inactive KIS. In ECs, MARCKS knockdown paradoxically increased KIS expression and cell proliferation. MARCKS knockdown in a murine aortic injury model resulted in decreased VSMC proliferation determined by bromodeoxyuridine (BrdU) integration assay, and inhibition of vascular wall thickening. MARCKS knockdown increased the rate of re-endothelialization.

Conclusions

MARCKS knockdown arrested VSMC cell cycle by decreasing KIS expression. Decreased KIS expression resulted in nuclear trapping of p27kip1 in VSMCs. MARCKS knockdown paradoxically increased KIS expression in ECs resulting in increased EC proliferation. MARCKS knockdown significantly attenuated the VSMC proliferative response to vascular injury, but accelerated reestablishment of an intact endothelium. MARCKS is a novel translational target with beneficial cell type-specific effects on both ECs and VSMCs.  相似文献   

8.
In colorectal cancer, mutation of KRAS (RASMUT) reduces therapeutic options, negatively affecting prognosis of the patients. In this setting, administration of CDK4/6-inhibitors, alone or in combination with other drugs, is being tested as promising therapeutic strategy. Identifying sensitive patients and overcoming intrinsic and acquired resistance to CDK4/6 inhibition represent still open challenges, to obtain better clinical responses. Here, we investigated the role of the CDK inhibitor p27kip1 in the response to the selective CDK4/6-inhibitor Palbociclib, in colorectal cancer. Our results show that p27kip1 expression inversely correlated with Palbociclib response, both in vitro and in vivo. Generating a model of Palbociclib-resistant RASMUT colorectal cancer cells, we observed an increased expression of p27kip1, cyclin D, CDK4 and CDK6, coupled with an increased association between p27kip1 and CDK4. Furthermore, Palbociclib-resistant cells showed increased Src-mediated phosphorylation of p27kip1 on tyrosine residues and low doses of Src inhibitors re-sensitized resistant cells to Palbociclib. Since p27kip1 showed variable expression in RASMUT colorectal cancer samples, our study supports the possibility that p27kip1 could serve as biomarker to stratify patients who might benefit from CDK4/6 inhibition, alone or in combination with Src inhibitors.Subject terms: Colorectal cancer, Cell growth, Cell signalling  相似文献   

9.
EagI and NotI linking libraries were prepared in the lambda vector, EMBL5, from the mouse-human somatic cell hybrid 1W1LA4.9, which contains human chromosomes 11 and Xp as the only human component. Individual clones containing human DNA were isolated by their ability to hybridise with total human DNA and digested with SalI and EcoRI to identify the human insert size and single-copy fragments. The mean (± SD) insert sizes of the EagI and NotI clones were 18.3 ± 3.2 kb and 16.6 ± 3.6 kb, respectively. Regional localisation of 66 clones (52 EagI, 14 NotI) was achieved using a panel of 20 somatic cell hybrids that contained different overlapping deletions of chromosomes 11 or Xp. Thirty-nine clones (36 EagI, 3 NotI) were localised to chromosome 11; 17 of these were clustered in 11q13 and another nine were clustered in 11q14–q23.1. Twenty-seven clones (16 EagI, 11 NotI) were localised to Xp and 10 of these were clustered in Xp11. The 66 clones were assessed for seven different microsatellite repetitive sequences; restriction fragment length polymorphisms for five clones from 11q13 were also identified. These EagI and NotI clones, which supplement those previously mapped to chromosome 11 and Xp, should facilitate the generation of more detailed maps and the identification of genes that are associated with CpG-rich islands. Received: 27 December 1995 / Revised: 30 January 1996  相似文献   

10.
AimsIn the present study, we determined whether Phosphoinositide 3-kinase (PI3K) and Notch signal pathways are involved in the expression of cyclinD1, cyclinA and p27kip1 which were key molecules in controlling cell cycling from CD4+ T lymphocyte in animal model of asthma.Main methodsOvalbumin (OVA) sensitized murine model of asthma was used to investigate the expression of cyclin D1, cyclin A, and p27kip1 by splenic CD4+ T lymphocytes. We further observed the effect of specific inhibitor of PI3K(LY294002) and specific inhibitor of Notch(DAPT) on the proliferation of such CD4+ T lymphocytes.Key findingsWe found that the expression of cyclinD1 and cyclinA was upregulated at both protein and mRNA levels in asthma group while p27kip1 was down-regulated. Both LY294002 and DAPT inhibit the proliferation of CD4+ T lymphocytes in a time- and dose-dependent manner. Furthermore, LY294002 and DAPT have additive effect in down-regulation of cyclinD1 and upregulation of p27kip1. An upregulation of cyclinA, although not statistically significant, was also observed.SignificanceThese data suggested that PI3K signal pathway and Notch signal pathway may coordinately regulate the cell proliferation and differentiation processes through up-regulating cyclinD1 and down-regulating p27kip1 of CD4+ T lymphocytes.  相似文献   

11.
Mitf has been reported to play a crucial role in regulating the differentiation of pigment cells in homeothermal animals, i.e. the melanocytes and the retinal pigment epithelium (RPE). However, less is known about the functions of Mitf in the developing RPE. To elucidate such functions, we introduced wild-type and dominant-negative Mitf expression vectors into chick optic vesicles by electroporation. Over-expression of wild-type Mitf altered neural retina cells to become RPE-like and repressed the expression of neural retina markers in vivo. In contrast, dominant-negative Mitf inhibited pigmentation in the RPE. The percentage of BrdU-positive cells decreased during normal RPE development, which was followed by Mitf protein expression. The percentage of BrdU-positive cells decreased in the wild-type Mitf-transfected neural retina, but increased in the dominant-negative Mitf-transfected RPE. p27kip1, one of the cyclin-dependent kinase inhibitors, begins to be expressed in the proximal region of the RPE at stage 16. Transfection of wild-type Mitf induced expression of p27kip1, while transfection of dominant-negative Mitf inhibited p27kip1 expression. We found that Mitf was associated with the endogenous p27kip1 5′ flanking region. These results demonstrate for the first time “in vivo” that Mitf uniquely regulates both differentiation and cell proliferation in the developing RPE.  相似文献   

12.
We report that cyclin D3/cdk4 kinase activity is regulated by p27kip1 in BALB/c 3T3 cells. The association of p27kip1 was found to result in inhibition of cyclin D3 activity as measured by immune complex kinase assays utilizing cyclin D3-specific antibodies. The ternary p27kip1/cyclin D3/cdk4 complexes do exhibit kinase activity when measured in immune complex kinase assays utilizing p27kip1-specific antibodies. The association of p27kip1 with cyclin D3 was highest in quiescent cells and declined upon mitogenic stimulation, concomitantly with declines in the total level of p27kip1 protein. The decline in this association could be elicited by PDGF treatment alone; this was not sufficient, however, for activation of cyclin D3 activity, which also required the presence of factors in platelet-poor plasma in the culturing medium. Unlike cyclin D3 activity, which was detected only in growing cells, p27kip1 kinase activity was present throughout the cell cycle. Since we found that the p27kip1 activity was dependent on cyclin D3 and cdk4, we compared the substrate specificity of the active ternary complex containing p27kip1 and the active cyclin D3 lacking p27kip1 by tryptic phosphopeptide mapping of GST-Rb phosphorylated in vitro and also by comparing the relative phosphorylation activity toward a panel of peptide substrates. We found that ternary p27kip1/cyclin D3/cdk4 complexes exhibited a different specificity than the active binary cyclin D3/cdk4 complexes, suggesting that p27kip1 has the capacity to both inhibit cyclin D/cdk4 activity as well as to modulate cyclin D3/cdk4 activity by altering its substrate preference.  相似文献   

13.
Summary. 1′-Acetoxychavicol acetate (ACA) has been shown to inhibit tumor cell growth, but there is limited information on its effects on cell signaling and the cell cycle control pathway. In this study, we sought to determine how ACA alters cell cycle and its related control factors in its growth inhibitory effect in Ehrlich ascites tumor cells (EATC). ACA caused an accumulation of cells in the G1 phase and an inhibition of DNA synthesis, which were reversed by supplementation with N-acetylcysteine (NAC) or glutathione ethyl ester (GEE). Furthermore, ACA decreased hyperphosphorylated Rb levels and increased hypophosphorylated Rb levels. NAC and GEE also abolished the decease in Rb phosphorylation by ACA. As Rb phosphorylation is regulated by G1 cyclin dependent kinase and CDK inhibitor p27kip1, which is an important regulator of the mammalian cell cycle, we estimated the amount of p27kip1 levels by western blotting. Treatment with ACA had virtually no effect on the amount of p27kip1 levels, but caused a decrease in phosphorylated p27kip1 and an increase in unphosphorylated p27kip1 as well as an increase in the nuclear localization of p27kip1. These events were abolished in the presence of NAC or GEE. These results suggest that in EATC, cell growth inhibition elicited by ACA involves decreases in Rb and p27kip1 phosphorylation and an increase in nuclear localization of p27kip1, and these events are dependent on the cellular thiol status.  相似文献   

14.

Background

Ribosome display technology has provided an alternative platform technology for the development of novel low-cost antibody based on evaluating antibiotics derived residues in food matrixes.

Methodology/Principal Findings

In our current studies, the single chain variable fragments (scFvs) were selected from hybridoma cell lines against sulfadimidine (SM2) by using a ribosome library technology. A DNA library of scFv antibody fragments was constructed for ribosome display, and then mRNA–ribosome–antibody (MRA) complexes were produced by a rabbit reticulocyte lysate system. The synthetic sulfadimidine-ovalbumin (SM2-OVA) was used as an antigen to pan MRA complexes and putative scFv-encoding genes were recovered by RT-PCR in situ following each panning. After four rounds of ribosome display, the expression vector pCANTAB5E containing the selected specific scFv DNA was constructed and transformed into Escherichia coli HB2151. Three positive clones (SAS14, SAS68 and SAS71) were screened from 100 clones and had higher antibody activity and specificity to SM2 by indirect ELISA. The three specific soluble scFvs were identified to be the same molecular weight (approximately 30 kDa) by Western-blotting analysis using anti-E tag antibodies, but they had different amino acids sequence by sequence analysis.

Conclusions/Significance

The selection of anti-SM2 specific scFv by in vitro ribosome display technology will have an important significance for the development of novel immunodetection strategies for residual veterinary drugs.  相似文献   

15.
16.
17.
Estrogen deficiency accelerates the aging process and increases the risk of developing cardiovascular disease (CVD). Apoptosis is one of the important mechanisms of aging. p27kip1 is a cyclin-dependent kinase inhibitor that can regulate cell cycle, apoptosis, and cell motility. p27kip1 overexpression can inhibit cell cycle and increase apoptosis so it has been considered as a marker of aging. In the present study, bilateral ovariectomy (OVX) was performed as a model for menopause in wild-type (WT) and p27kip1 knockout (KO) mice to assess the effects of p27kip1 loss in myocardial aging caused by estrogen deficiency. We found that myocardial fibrosis and heart weight/body weight ratio of mice in the OVX group and p27kip1 KO group were significantly increased. Echocardiography showed that the left ventricular diameter and volume of the WT OVX group increased significantly and the cardiac function decreased. However, there was no significant difference in the results of echocardiography between the two p27kip1 KO groups. The aging and apoptosis indexes in OVX group were increased significantly, However, the indexes in p27kip1 KO mice were decreased. The expression of antioxidant indexes in OVX group was decreased significantly and p27kip1 KO can improve the antioxidant ability. These results provided that estrogen deficiency increased oxidative stress and apoptosis, accelerated aging of heart. p27kip1 KO can partly delay the aging and apoptosis of heart through upregulated antioxidant enzymes.  相似文献   

18.
S phase kinase-associated protein 2 (Skp2), an F-box protein, is required for the ubiquitination and consequent degradation of p27kip1. Previous reports have showed that p27kip1 played important roles in cell cycle regulation and neurogenesis in the developing central nervous system. But the distribution and function of p27kip1 and Skp2 in nervous system lesion and regeneration remains unclear. In this study, we observed that they were expressed mainly in both Schwann cells and axons in adult rat sciatic nerve. Sciatic nerve crush and transection resulted in a significant up-regulation of Skp2 and a down-regulation of p27kip1. By immunochemistry, we found that in the distal stumps of transected nerve from the end to the edge, the appearance of Skp2 in the edge is coincided with the decrease in p27kip1 levels. Changes of them were inversely correlated. Results obtained by coimmunoprecipitation and double labeling further showed their interaction in the regenerating process. Thus, these results indicate that p27kip1 and Skp2 likely play an important role in peripheral nerve injury and regeneration. Ai-Guo Shen and Shu-Xian Shi contributed equally to this work.  相似文献   

19.
The CDK inhibitor p27kip1 is a critical regulator of cell cycle progression, but the mechanisms by which p27kip1 controls cell proliferation in vivo are still not fully elucidated. We recently demonstrated that the microtubule destabilizing protein stathmin is a relevant p27kip1 binding partner. To get more insights into the in vivo significance of this interaction, we generated p27kip1 and stathmin double knock-out (DKO) mice. Interestingly, thorough characterization of DKO mice demonstrated that most of the phenotypes of p27kip1 null mice linked to the hyper-proliferative behavior, such as the increased body and organ weight, the outgrowth of the retina basal layer and the development of pituitary adenomas, were reverted by co-ablation of stathmin. In vivo analyses showed a reduced proliferation rate in DKO compared to p27kip1 null mice, linked, at molecular level, to decreased kinase activity of CDK4/6, rather than of CDK1 and CDK2. Gene expression profiling of mouse thymuses confirmed the phenotypes observed in vivo, showing that DKO clustered with WT more than with p27 knock-out tissue. Taken together, our results demonstrate that stathmin cooperates with p27kip1 to control the early phase of G1 to S phase transition and that this function may be of particular relevance in the context of tumor progression.  相似文献   

20.
Pericellular proteolysis by membrane-type 1 matrix metalloproteinase (MT1-MMP) plays a pivotal role in tumor cell invasion. Localization of MT1-MMP at the invasion front of cells, e.g. on lamellipodia and invadopodia, has to be regulated in coordination with reorganization of the actin cytoskeleton. However, little is known about how such invasion-related actin structures are regulated at the sites where MT1-MMP localizes. During analysis of MT1-MMP-associated proteins, we identified a heretofore uncharacterized protein. This protein, which we call p27RF-Rho, enhances activation of RhoA by releasing it from inhibition by p27kip1 and thereby regulates actin structures. p27kip1 is a well known cell cycle regulator in the nucleus. In contrast, cytoplasmic p27kip1 has been demonstrated to bind GDP-RhoA and inhibit GDP-GTP exchange mediated by guanine nucleotide exchange factors. p27RF-Rho binds p27kip1 and prevents p27kip1 from binding to RhoA, thereby freeing the latter for activation. Knockdown of p27RF-Rho expression renders cells resistant to RhoA activation stimuli, whereas overexpression of p27RF-Rho sensitizes cells to such stimulation. p27RF-Rho exhibits a punctate distribution in invasive human tumor cell lines. Stimulation of the cells with lysophosphatidic acid induces activation of RhoA and induces the formation of punctate actin structures within foci of p27RF-Rho localization. Some of the punctate actin structures co-localize with MT1-MMP and cortactin. Down-regulation of p27RF-Rho prevents both redistribution of actin into the punctate structures and tumor cell invasion. Thus, p27RF-Rho is a new potential target for cancer therapy development.Malignant tumor cells grow invasively and form distant metastases after moving through multiple tissue barriers. Invasion requires cell locomotion together with degradation of the extracellular matrix (ECM)2 by matrix metalloproteinases (MMPs) (1). MT1-MMP (MMP-14) is an integral membrane protease that degrades a variety of protein components within the extracellular milieu (2). The substrates of MT1-MMP include a variety of components of the ECM, membrane proteins including cell adhesion molecules, and growth factors and cytokines (3). To degrade the ECM barrier in advance of an invading cell, MT1-MMP localizes to the leading edge of invasion (4) and cellular protrusions called invadopodia (57). Therefore, it is of particular interest how reorganization of actin structures is regulated at sites where MT1-MMP localizes.During mass spectrometric analysis of proteins co-purified with MT1-MMP, we identified a protein of unknown function (8). Although this protein did not affect MT1-MMP activity, we observed that enhanced expression or down-regulation of this protein affected activation of RhoA. Thus, we became interested in the possibility that this protein mediates focal reorganization of actin structures close to sites where MT1-MMP localizes.RhoA plays a pivotal role in signal transduction pathways that regulate reorganization of actin structures and does so by assuming active GTP-bound and inactive GDP-bound states, with the transition between the two forms finely regulated by many cellular proteins (9, 10). In addition to the classical modulators, recent studies have revealed that p27kip1 also regulates activation of RhoA and Rac1 (11, 12). p27kip1 has been characterized as a cyclin-dependent kinase inhibitor localized to the nucleus, but phosphorylation of p27kip1 by protein kinase B/Akt or kinase-interacting stathmin (KIS) mediates its translocation from the nucleus to the cytoplasm. Cytoplasmic p27kip1 binds RhoA and prevents activation of RhoA by GEFs (12, 13). However, it is not known how inhibition of RhoA by p27kip1 is released to allow activation. The protein we identified binds p27kip1, thereby preventing its binding to RhoA (schematically illustrated in supplemental Fig. S1). We named this protein p27RF-Rho (p27kip1 releasing factor from RhoA) based on this activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号