首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Objectives:  Peroxisome proliferator-activated receptors (PPARs) are implicated in epithelial cell proliferation and differentiation, but investigation has been confounded by potential off-target effects of some synthetic PPAR ligands. Our aim was to determine mechanisms underlying the pro-apoptotic effect of synthetic PPAR agonists in normal human bladder uro-epithelial (urothelial) cells and to reconcile this with the role of PPARs in urothelial cytodifferentiation.
Materials and methods:  Normal human urothelial (NHU) cells were grown as non-immortal lines in vitro and exposed to structurally diverse agonists ciglitazone, troglitazone, rosiglitazone (PPARγ), ragaglitazar (PPARα/γ), fenofibrate (PPARα) and L165041 (PPARβ/δ).
Results:  NHU cells underwent apoptosis following acute exposure to ciglitazone, troglitazone or ragaglitazar, but not fenofibrate, L165041 or rosiglitazone, and this was independent of ERK or p38 MAP-kinase activation. Pro-apoptotic agonists induced sustained increases in intracellular calcium, whereas removal of extracellular calcium altered the kinetics of ciglitazone-mediated calcium release from sustained to transient. Cell death was accompanied by plasma-membrane disruption, loss of mitochondrial membrane-potential and caspase-9/caspase-3 activation. PPARγ-mediated apoptosis was unaffected following pre-treatment with PPARγ antagonist T0070907 and was strongly attenuated by store-operated calcium channel (SOC) inhibitors 2-APB and SKF-96365.
Conclusions:  Our results provide a mechanistic basis for the ability of some PPAR agonists to induce death in NHU cells and demonstrate that apoptosis is mediated via PPAR-independent mechanisms, involving intracellular calcium changes, activation of SOCs and induction of the mitochondrial apoptotic pathway.  相似文献   

3.
Shabir S  Southgate J 《Cell calcium》2008,44(5):453-464
Epithelial tissue repair requires coordination of migratory and proliferative activity both adjacent to and remote from the wound edge. Although calcium signalling is implicated, the specific mechanisms are poorly understood. This study characterises the calcium signal invoked in response to scratch wounding of normal human urothelial (NHU) cells and relates it to the localised cellular response. Immediately after wounding of confluent NHU cell monolayers, cells adjacent to the wound edge showed a sustained (>30 min) rise in [Ca(2+)](i), while there was an independent, but simultaneous calcium wave that propagated out from the wound edge. The transient signal involved release of calcium from intracellular stores and was not mediated via gap junctions, but by diffusion of extracellular agonists. We demonstrated that ATP was partially responsible for the initiation and propagation of the calcium wave and showed that the calcium release mechanism was mediated in part via activation of inositol-1,4,5-triphosphate (IP(3)) receptors. By contrast, the sustained calcium signal originated from the extracellular milieu and correlated with an increased rate of migration by these cells. The work presented here provides supportive evidence that the calcium signature, defined by its temporal and amplitude characteristics, is important in co-ordinating the response of cells within an epithelial cell monolayer after wounding.  相似文献   

4.
5.

Background

Despite the well-documented association between loss of E-cadherin and carcinogenesis, as well as the link between restoration of its expression and suppression of proliferation in carcinoma cells, the ability of E-cadherin to modulate growth-promoting cell signalling in normal epithelial cells is less well understood and frequently contradictory. The potential for E-cadherin to co-ordinate different proliferation-associated signalling pathways has yet to be fully explored.

Methodology/Principal Findings

Using a normal human urothelial (NHU) cell culture system and following a calcium-switch approach, we demonstrate that the stability of NHU cell-cell contacts differentially regulates the Epidermal Growth Factor Receptor (EGFR)/Extracellular Signal-Regulated Kinase (ERK) and Phosphatidylinositol 3-Kinase (PI3-K)/AKT pathways. We show that stable cell contacts down-modulate the EGFR/ERK pathway, whilst inducing PI3-K/AKT activity, which transiently enhances cell growth at low density. Functional inactivation of E-cadherin interferes with the capacity of NHU cells to form stable calcium-mediated contacts, attenuates E-cadherin-mediated PI3-K/AKT induction and enhances NHU cell proliferation by allowing de-repression of the EGFR/ERK pathway and constitutive activation of β-catenin-TCF signalling.

Conclusions/Significance

Our findings provide evidence that E-cadherin can differentially and concurrently regulate specific growth-related signalling pathways in a context-specific fashion, with direct, functional consequences for cell proliferation and population growth. Our observations not only reveal a novel, complex role for E-cadherin in normal epithelial cell homeostasis and tissue regeneration, but also provide the basis for a more complete understanding of the consequences of E-cadherin loss on malignant transformation.  相似文献   

6.
7.
Bladder cancer evolves via the accumulation of numerous genetic alterations, with loss of p53 and p16 function representing key events in the development of malignant disease. In addition, components of the epidermal growth factor receptor (EGFR) signaling pathway are frequently overexpressed, providing potential chemotherapeutic targets. We have previously described the generation of "paramalignant" human urothelial cells with disabled p53 or p16 functions. In this study, we investigated the relative responses of normal, paramalignant, and malignant human urothelial cells to EGFR tyrosine kinase inhibitors (PD153035 and GW572016), a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) kinase (MEK) inhibitor (U0126), and a phosphatidylinositol 3-kinase inhibitor (LY294002). The proliferation of normal human urothelial cells was dependent on signaling via the EGFR and MEK pathways and was abolished reversibly by inhibitors of EGFR or downstream MEK signaling pathways. Inhibitors of phosphatidylinositol 3-kinase resulted in only transient cytostasis, which was most likely mediated via cross-talk with the MEK pathway. These responses were maintained in cells with disabled p16 function, whereas cells with loss of p53 function displayed reduced sensitivity to PD153035 and malignant cell lines were the most refractory to PD153035 and U0126. These results indicate that urothelial cells acquire insensitivity to inhibitors of EGFR signaling pathways as a result of malignant transformation. This has important implications for the use of EGFR inhibitors for bladder cancer therapy, as combination treatments with conventional chemotherapy or radiotherapy may protect normal cells and enable better selective targeting of malignant cells.  相似文献   

8.
Effector functions in tumor resistance by dendritic cells (DCs) are less well characterized. In this study, we describe that the murine DCs upon stimulation with recombinant IL-15 in vitro or in vivo, expresses TNF superfamily member TRAIL which mediates cytotoxicity and growth inhibition against a murine lymphoma called Dalton lymphoma (DL) via apoptosis. Presence of tumor lysate or intact tumor cells significantly reduces the DC mediated tumoricidal effect, possibly via masking and down-regulating TRAIL in DCs. The antitumor effect of DC derived TRAIL was further augmented by deactivation of STAT3 in tumor cells by cucurbitacin I, which makes it more susceptible to DC derived TRAIL Treatment of tumor cells with cucurbitacin I upregulates TRAIL receptor expression in addition to activation of caspases. Compared to naïve DCs, DCs from tumor bearing mice are significantly impaired in TRAIL expression and consequent antitumor functions against DL which was partially restored by activation with IL-15 or LPS. Priming with recombinant IL-15 prolongs the survival of tumor bearing mice treated with cucurbitacin I. Naïve peripheral blood DCs derived from chronic myeloid leukemia (CML) patients have significant impairment in expression of TRAIL and consequent tumoricidal properties against TRAIL sensitive lymphoma cell lines and primary tumor cells compared to normal control.  相似文献   

9.
Specific membrane capacitance (SMC) and Young’s modulus are two important parameters characterizing the biophysical properties of a cell. In this work, the SMC and Young’s modulus of two cell lines, RT4 and T24, corresponding to well differentiated (low grade) and poorly differentiated (high grade) urothelial cell carcinoma (UCC), respectively, were quantified using microfluidic and AFM measurements. Quantitative differences in SMC and Young’s modulus values of the high-grade and low-grade UCC cells are, for the first time, reported.  相似文献   

10.
Urothelial cell carcinoma (UCC) is the second most common genitourinary malignant disease in the USA, and tobacco smoking is the major known risk factor for UCC development. Exposure to carcinogens, such as those contained in tobacco smoke, is known to directly or indirectly damage DNA, causing mutations, chromosomal deletion events and epigenetic alterations in UCC. Molecular studies have shown that chromosome 9 alterations and P53, RAS, RB and PTEN mutations are among the most frequent events in UCC. Recent studies suggested that continuous tobacco carcinogen exposure drives and enhances the selection of epigenetically altered cells in UCC, predominantly in the invasive form of the disease. However, the sequence of molecular events that leads to UCC after exposure to tobacco smoke is not well understood.

To elucidate molecular events that lead to UCC oncogenesis and progression after tobacco exposure, we developed an in vitro cellular model for smoking-induced UCC. SV-40 immortalized normal HUC1 human bladder epithelial cells were continuously exposed to 0.1% cigarette smoke extract (CSE) until transformation occurred. Morphological alterations and increased cell proliferation of non-malignant urothelial cells were observed after 4 months (mo) of treatment with CSE. Anchorage-independent growth assessed by soft agar assay and increase in the migratory and invasive potential was observed in urothelial cells after 6 mo of CSE treatment. By performing a PCR mRNA expression array specific to the PI3K-AKT pathway, we found that 26 genes were upregulated and 22 genes were downregulated after 6 mo of CSE exposure of HUC1 cells. Among the altered genes, PTEN, FOXO1, MAPK1 and PDK1 were downregulated in the transformed cells, while AKT1, AKT2, HRAS, RAC1 were upregulated. Validation by RT-PCR and western blot analysis was then performed. Furthermore, genome-wide methylation analysis revealed MCAM, DCC and HIC1 are hypermethylated in CSE-treated urothelial cells when compared with non-CSE exposed cells. The methylation status of these genes was validated using quantitative methylation-specific PCR (QMSP), confirming an increase in methylation of CSE-treated urothelial cells compared to untreated controls. Therefore, our findings suggest that a tobacco signature could emerge from distinctive patterns of genetic and epigenetic alterations and can be identified using an in vitro cellular model for the development of smoking-induced cancer.  相似文献   

11.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in many transformed cells, suggesting TRAIL as an ideal candidate for cancer gene therapy. A main obstacle in cancer therapy is intrinsic or acquired therapy resistance of malignant cells. To study induction of resistance against TRAIL, we generated lentiviral vectors allowing efficient TRAIL expression and apoptosis induction in a variety of human cancer cell lines. Within days upon TRAIL overexpression, cells became resistant towards TRAIL, but not to CD95 ligation or DNA damage by cisplatin. Cell surface expression of TRAIL receptors 1 and 2 was completely abrogated in resistant cells due to intracellular retention of the receptors by TRAIL. SiRNA directed against TRAIL resensitized the resistant cells by restoring cell surface expression of TRAIL receptors. These findings represent a novel resistance mechanism towards TRAIL, specifically caused by TRAIL overexpression, and question the use of TRAIL expression in tumor-cell targeting gene therapy.  相似文献   

12.
Invasive urothelial cell carcinoma (UCC) is characterized by increased chromosomal instability (CIN) and follows an aggressive clinical course in contrast to non-invasive disease. To identify molecular processes that confer and maintain an aggressive malignant phenotype we used a high-throughput genome-wide approach to interrogate a cohort of high and low clinical risk UCC tumors. Differential expression analyses highlighted cohesive dysregulation of critical genes involved in the G2/M checkpoint in aggressive UCC. Hierarchical clustering based on DNA Damage Response (DDR) genes separated tumors according to a pre-defined clinical risk phenotype. Using array-comparative genomic hybridization, we confirmed that the DDR was disrupted in tumors displaying high genomic instability. We identified DNA copy number gains at 20q13.2-q13.3 (AURKA locus) and determined that overexpression of AURKA accompanied dysregulation of DDR genes in high risk tumors. We postulated that DDR-deficient UCC tumors are advantaged by a selective pressure for AURKA associated override of M phase barriers and confirmed this in an independent tissue microarray series. This mechanism that enables cancer cells to maintain an aggressive phenotype forms a rationale for targeting AURKA as a therapeutic strategy in advanced stage UCC.  相似文献   

13.
Deregulation of apoptosis is common in cancer and is often caused by overexpression of anti-apoptotic proteins in tumour cells. One important regulator of apoptosis is the cellular FLICE-inhibitory protein (c-FLIP), which is overexpressed, for example, in melanoma and Hodgkin''s lymphoma cells. Here, we addressed the question whether deregulated c-FLIP expression in urothelial carcinoma impinges on the ability of death ligands to induce apoptosis. In particular, we investigated the role of the c-FLIP splice variants c-FLIPlong (c-FLIPL) and c-FLIPshort (c-FLIPS), which can have opposing functions. We observed diminished expression of the c-FLIPL isoform in urothelial carcinoma tissues as well as in established carcinoma cell lines compared with normal urothelial tissues and cells, whereas c-FLIPS was unchanged. Overexpression and RNA interference studies in urothelial cell lines nevertheless demonstrated that c-FLIP remained a crucial factor conferring resistance towards induction of apoptosis by death ligands CD95L and TRAIL. Isoform-specific RNA interference showed c-FLIPL to be of particular importance. Thus, urothelial carcinoma cells appear to fine-tune c-FLIP expression to a level sufficient for protection against activation of apoptosis by the extrinsic pathway. Therefore, targeting c-FLIP, and especially the c-FLIPL isoform, may facilitate apoptosis-based therapies of bladder cancer in otherwise resistant tumours.  相似文献   

14.
Previous studies have shown that repeated application of TRAIL induces acquired resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Using human prostate adenocarcinoma DU-145 and human pancreatic carcinoma MiaPaCa-2 cells as a model, we now demonstrate for the first time that two states of acquired TRAIL resistance can be developed after TRAIL treatment. Data from survival assay and Western blot analysis show that acquired TRAIL resistance was developed within 1 day and gradually decayed within 6 days after TRAIL treatment in both cell lines. After TRAIL treatment, the level of Bcl-xL increased and reached a maximum within 2 days and gradually decreased in both cell lines. Bcl-xL-mediated development of acquired TRAIL resistance was suppressed by knockdown of Bcl-xL expression. Protein interaction assay revealed that during the development of TRAIL resistance, Bcl-xL dissociated from Bad and then associated with Bax. Overexpression of mutant-type Bad (S136A), which prevents this dissociation, partially suppressed the development of acquired TRAIL resistance. Thus, our results suggest that (a) dissociation of Bad from Bcl-xL and (b) an increase in the intracellular level of Bcl-xL are responsible for development of acquired TRAIL resistance.  相似文献   

15.
16.
17.
Gazitt Y  Shaughnessy P  Montgomery W 《Cytokine》1999,11(12):1010-1019
TRAIL, the ligand for the newly discovered DR-4 and DR-5 receptor is a member of the tumour necrosis factor (TNF) family of death signal tranduction proteins with a mechanism of cell death, similar to the Fas and Fas ligand (Fas-L) system. Here, we provide first time evidence that TRAIL and TNF-alpha are potent inducers of apoptosis in multiple myeloma (MM) cell lines and freshly isolated myeloma cells. TRAIL effectively induced extensive apoptosis in 8226 and ARP-1 MM cells in a time- and dose-dependent manner reaching 80% within 48 h of treatment with a dose of 160 ng/ml. Bcl-2 transfected 8226 and ARP-1 cells were equally sensitive to apoptosis by TRAIL. Apoptosis with TNFalpha, reached >60% within 48 h of treatment with a dose of 160 ng/ml. In addition to MM cell lines, freshly isolated, flow-sorted myeloma cells from 8 different MM patients expressing variable levels of bcl-2 were equally sensitive to both TRAIL and TNF-alpha. We have previously shown that anti-Fas-induced apoptosis is not blocked by endogenous or ectopic bcl-2 in MM cell lines. Here we extend our observation with Fas to include TNF-alpha and TRAIL to the apoptotic signals that are not be blocked by bcl-2, in MM cells.  相似文献   

18.
19.
20.
TRAIL, the ligand for the newly discovered DR-4 and DR-5 receptor is a member of the tumour necrosis factor (TNF) family of death signal tranduction proteins with a mechanism of cell death, similar to the Fas and Fas ligand (Fas-L) system. Here, we provide first time evidence that TRAIL and TNF-α are potent inducers of apoptosis in multiple myeloma (MM) cell lines and freshly isolated myeloma cells. TRAIL effectively induced extensive apoptosis in 8226 and ARP-1 MM cells in a time- and dose-dependent manner reaching 80% within 48 h of treatment with a dose of 160 ng/ml. Bcl-2 transfected 8226 and ARP-1 cells were equally sensitive to apoptosis by TRAIL. Apoptosis with TNFα, reached >60% within 48 h of treatment with a dose of 160 ng/ml. In addition to MM cell lines, freshly isolated, flow-sorted myeloma cells from 8 different MM patients expressing variable levels of bcl-2 were equally sensitive to both TRAIL and TNF-α. We have previously shown that anti-Fas-induced apoptosis is not blocked by endogenous or ectopic bcl-2 in MM cell lines. Here we extend our observation with Fas to include TNF-α and TRAIL to the apoptotic signals that are not be blocked by bcl-2, in MM cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号