首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of the neutral protease from Bacillus cereus has been refined to an R factor of 17.5% at 0.2-nm resolution. The enzyme, an extracellular metalloendopeptidase, consists of two domains and binds one zinc and four calcium ions. The structure is very similar to that of thermolysin, with which the enzyme shares 73% amino-acid sequence identity. The active-site cleft between the two domains is wider in neutral protease than in thermolysin. This suggests the presence of a flexible hinge region between the two domains, which may assist enzyme action. The high-resolution analysis allows detailed examination of possible causes for the difference in thermostability between neutral protease and thermolysin.  相似文献   

2.
The complete amino-acid sequence of a neutral proteinase, produced by Bacillus cereus, was determined by protein sequencing. The neutral proteinase consists of 317 amino-acid residues. The primary structure is 70% homologous to thermolysin, a thermostable neutral proteinase and 45% homologous to Bacillus subtilis neutral proteinase. The zinc-binding site and the hydrophobic pocket of the active site are highly similar in all three proteinases. B. cereus neutral proteinase which is 20 degrees C less thermostable (60 degrees C) than thermolysin (80 degrees C) shows only minor differences in calcium binding sites and salt bridges compared to thermolysin (known from its X-ray diffraction analysis), whereas B. subtilis neutral proteinase (50 degrees C) differs considerably. Therefore it was assumed that the difference in thermostability between B. cereus neutral proteinase and thermolysin is not caused by different metal binding properties, or differences in the active site, but by changes within the rest of the molecule. Calculation of secondary structure potentials according to Chou & Fasman, hydrophobicity and bulkiness of the different structural elements and preferred cold----hot amino-acid residue exchanges indicated, that the thermostability of thermolysin compared to B. cereus neutral proteinase is caused by small effects contributed by numerous amino-acid exchanges distributed over the whole molecule, resulting in increased hydrophobicity of beta-pleated sheet and higher bulkiness of alpha-helical regions.  相似文献   

3.
The role of the C-terminal Leu300 in maintaining thermal stability of the neutral protease of Bacillus subtilis was investigated. From model building studies based on the three-dimensional structure of thermolysin, the neutral protease of B. thermoproteolyticus, it was concluded that this residue is located in a hydrophobic pocket composed of residues located in the C-terminal and the middle domain. To test the hypothesis that Leu300, by contributing to a stabilizing interaction between these domains, is important for enzyme stability, several neutral protease mutants were constructed and characterized. The thermostability of the enzyme was lowered by deleting Leu300 or by replacing this residue by a smaller (Ala), a polar (Asn) or a sterically unfavourable (Ile) amino acid. Thermostability was increased upon replacing Leu300 by Phe. These results are in agreement with model-building studies. The effects on thermostability observed after mutating the corresponding Val318 in the thermostable neutral protease of B.stearothermophilus were less pronounced.  相似文献   

4.
Crystal structures are known for three members of the bacterial neutral protease family: thermolysin from Bacillus thermoproteolyticus (TLN), the neutral protease from Bacillus cereus (NEU), and the elastase of Pseudomonas aeruginosa (PAE), both in free and ligand-bound forms. Each enzyme consists of an N-terminal and C-terminal domain with the active site formed at the junction of the two domains. Comparison of the different molecules reveals that the structure within each domain is well conserved, but there are substantial hinge-bending displacements (up to 16 degrees) of one domain relative to the other. These domain motions can be correlated with the presence or absence of bound inhibitor, as was previously observed in the specific example of PAE [Thayer, M.M., Flaherty, K.M., & McKay, D.B. (1991) J. Biol. Chem. 266, 2864-2871]. The binding of inhibitor appears to be associated with a reduction of the domain hinge-bending angle by 6-14 degrees and a closure of the "jaws" of the active site cleft by about 2 A. Crystallographic refinement of the structure of thermolysin suggests that electron density seen in the active site of the enzyme in the original structure determination probably corresponds to a bound dipeptide. Thus, the crystal structure appears to correspond to an enzyme-inhibitor or enzyme-product complex, rather than the free enzyme, as has previously been assumed.  相似文献   

5.
Cavities in the hydrophobic core of the neutral protease of Bacillus stearothermophilus were analyzed using a three-dimensional model that was inferred from the crystal structure of thermolysin, the highly homologous neutral protease of B. thermoproteolyticus (85% sequence identity). Site-directed mutagenesis was used to fill some of these cavities, thereby improving hydrophobic packing in the protein interior. The mutations had small effects on the thermostability, even after drastic changes, such as Leu284----Trp and Met168----Trp. The effects on T50, the temperature at which 50% of the enzyme is irreversibly inactivated in 30 min, ranged from 0.0 to +0.4 degrees C. These results can be explained by assuming that the mutations have positive and negative structural effects of approximately the same magnitude. Alternatively, it could be envisaged that the local unfolding steps, which render the enzyme susceptible towards autolysis and which are rate limiting in the process of thermal inactivation, are only slightly affected by alterations in the hydrophobic core.  相似文献   

6.
The overall folding of neutral protease from Bacillus subtilis has been predicted by computer-aided modelling, taking as a basis the known three-dimensional structure of thermolysin. As expected from the 50% similarity of sequence between the two proteins, the structure of B. subtilis protease is similar to that of thermolysin, including the two-domain topology and location of elements of regular secondary structure (helices and strands), whereas specific differences were predicted in loop regions. A protruding and loose loop predicted in B. subtilis has been detected also experimentally by a limited proteolysis approach. Incubation of B. subtilis protease at pH 9.0 for 24 h at room temperature with trypsin at 20:1 ratio (by mass) leads to a specific and almost quantitative fission of the Arg214-Asn215 peptide bond located in a highly exposed, and thus probably flexible, loop of the protease. On the other hand, thermolysin was completely resistant to tryptic hydrolysis when reacted under identical conditions. The 'nicked' B. subtilis protease can be isolated by gel filtration chromatography at neutral pH, whereas the two constituting fragments 1-214 and 215-300 are separated under protein-denaturing conditions. Overall, these results indicate that the limited proteolysis approach can pinpoint a peculiar difference in surface structure between the two similar protein molecules of B. subtilis neutral protease and thermolysin and emphasize the potential use of proteolytic enzymes as structural probes of globular proteins.  相似文献   

7.
G Voordouw  C Milo  R S Roche 《Biochemistry》1976,15(17):3716-3724
The total kinetic thermal stability of a protein molecule, expressed as the total free energy of activation in thermal denaturation reactions, can be separated into an intrinsic contribution of the polypeptide chain and a contribution due to the binding of calcium ions. The theory for this procedure is applied to thermal denaturation data, obtained at the pH of optimum stability, for the serine proteases, thermomycolase and subtilisin types Carlsberg and BPN', and for the zinc metalloendopeptidases, thermolysin and neutral protease A. The results, obtained from Arrhenius plots at high and low free calcium ion concentrations, reveal a considerable variation in the calcium ion contribution to the total kinetic thermal stability of the various enzymes. In the serine protease group, at 70 degrees C, the stability is largest for thermomycolase, mainly due to a relatively high intrinsic contribution. For the metalloendopeptidases the total kinetic thermal stability is largest for thermolysin, the difference between thermolysin and neutral protease A being dominated by bound calcium ion contributions. The intrinsic kinetic thermal stability of the polypeptide chain of thermolysin is considerably smaller than that of any of the serine proteases and is probably of the same order of magnitude as that of neutral protease A. Thus, the well known total kinetic thermal stability of thermolysin is due mainly to a single calcium ion (Voordouw, G., and Roche, R. S. (1975), Biochemistry 14, 4667) that binds with high affinity even at very high temperatures (K congruent to 6 X 10(7) M-1 at 80 degrees C).  相似文献   

8.
Comparisons of the crystal structures of thermolysin and the thermolysin-like protease produced by B. cereus have recently led to the hypothesis that neutral proteases undergo a hinge-bending motion. We have investigated this hypothesis by analyzing molecular dynamics simulations of thermolysin in vacuum and water, using the essential dynamics method. This method is able to extract large concerted atomic motions of biological importance from a molecular dynamics trajectory. The analysis of the thermolysin trajectories indeed revealed a large rigid body hinge-bending motion of the Nterminal and C-terminal domains, similar to the motion hypothesized from the crystal structure comparisons. In addition, it appeared that the essential dynamics properties derived from the vacuum simulation were similar to those derived from the solvent simulation. © 1995 Wiley-Liss, Inc.  相似文献   

9.
Bacillus stearothermophilus MK232, which produced a highly thermostable neutral protease, was isolated from a natural environment. By several steps of mutagenesis, a hyper-producing mutant strain, YG185, was obtained. The enzyme productivity was twice as much as that of the original strain. This extracellular neutral protease was purified and crystallized. The molecular weight of the enzyme was 34,000 by SDS-polyacrylamide gel electrophoresis and gel filtration. The optimum pH and temperature for the enzyme activity were 7.5 and 70°C, respectively, and the enzyme was stable at pH 5–10 and below 70°C. The thermostability and specific activity of the new protease are around 10% and 40% higher than those of thermolysin (the neutral protease from Bacillus thermoproteolyticus), respectively. The enzyme was inactivated by EDTA, but not by phenylmethylsulfonyl fluoride. These results indicate that the enzyme is a highly thermostable neutral-(metallo)protease.  相似文献   

10.
Amino acid sequence of neutral metalloprotease from Bac. brevis has been compared with that of Bac. amyloloquefaciens, Bac. cereus, Bac. subtilis, Bac. stearothermophilis, Bac. thermoproteolyticus (thermolysine). A sequence region from N-40 to N-1 with a significant degree of homology allowed to predict the processing site of the propart of Bac. brevis enzyme. The sequence comparison allows to put Bac. brevis enzyme within the evolutionary branch of enzymes, which includes thermolysin and proteases of Bac. cereus and Bac. stearothermophilus. Using automated Edman degradation the N-terminal sequence of Bac. brevis protease has been determined. It does not differ from the sequence predicted from the nucleotide sequence of the gene. It was shown that, when Bac. brevis gene coding for thermostable protease is expressed on a plasmid vector in Bac. subtilis cells at 37 degrees C, enzyme forms possessing low activity are secreted. The enzyme may be significantly activated without an additional cleavage or processing and the activation includes numerous conformation transition states of the protein molecule.  相似文献   

11.
Summary An asporogenous mutant ofBacillus stearothermophilus (TPM-8) which produces 4-fold higher levels of a thermostable neutral protease than does wild-type strain 308-1 was obtained by mutagenesis with ethyl methanesulfonate. The protease produced by both the mutant and wild-type strain is a metalloprotease requiring Zn2+ and Ca2+ for activity and thermostability, respectively. It has a temperature optimum of 80°C at pH 7.0 and is highly thermostable, retaining 60% of its activity after 60 min at 85°C. The properties of the enzyme are similar to those of thermolysin.  相似文献   

12.
Proteins of the subtilisin superfamily (subtilases) are widely distributed through many living species, where they perform a variety of processing functions. They are also used extensively in industry. In many of these enzymes, bound calcium ions play a key role in protecting against autolysis and thermal denaturation. We have determined the crystal structure of a highly thermostable protease from Bacillus sp. Ak.1 that is strongly stabilized by calcium. The crystal structure, determined at 1.8 A resolution (R=0. 182, Rfree=0.247), reveals the presence of four bound cations, three Ca(2+) and one Na(+). Two of the Ca(2+) binding sites, Ca-1 and Ca-2, correspond to sites also found in thermitase and the mesophilic subtilisins. The third calcium ion, however, is at a novel site that is created by two key amino acid substitutions near Ca-1, and has not been observed in any other subtilase. This site, acting cooperatively with Ca-1, appears to give substantially enhanced thermostability, compared with thermitase. Comparisons with the mesophilic subtilisins also point to the importance of aromatic clusters, reduced hydrophobic surface and constrained N and C termini in enhancing the thermostability of thermitase and Ak.1 protease. The Ak.1 protease also contains an unusual Cys-X-Cys disulfide bridge that modifies the active site cleft geometry.  相似文献   

13.
14.
A 10 residue beta-hairpin, which is characteristic of thermostable Bacillus neutral proteases, was engineered into the thermolabile neutral protease of Bacillus subtilis. The recipient enzyme remained fully active after introduction of the loop. However, the mutant protein exhibited autocatalytic nicking and a 0.4 degree C decrease in thermostability. Two additional point mutations designed to improve the interactions between the enzyme surface and the introduced beta-hairpin resulted in reduced nicking and increased thermostability. After the introduction of both additional mutations in the loop-containing mutant, nicking was largely prevented and an increase in thermostability of 1.1 degrees C was achieved.  相似文献   

15.
Juers DH  Kim J  Matthews BW  Sieburth SM 《Biochemistry》2005,44(50):16524-16528
Dialkylsilanediols have been found to be an effective functional group for the design of active-site-directed protease inhibitors, including aspartic (HIV protease) and metallo (ACE and thermolysin) proteases. The use of silanediols is predicated on its resemblance to the hydrated carbonyl transition-state structure of amide hydrolysis. This concept has been tested by replacing the presumed tetrahedral carbon of a thermolysin substrate with a silanediol group, resulting in an inhibitor with an inhibition constant K(i) = 40 nM. The structure of the silanediol bound to the active site of thermolysin was found to have a conformation very similar to that of a corresponding phosphonamidate inhibitor (K(i) = 10 nM). In both cases, a single oxygen is within bonding distance to the active-site zinc ion, mimicking the presumed tetrahedral transition state. There are binding differences that appear to be related to the presence or absence of protons on the oxygens attached to the silicon or phosphorus. This is the first crystal structure of an organosilane bound to the active site of a protease.  相似文献   

16.
Bacillus cereus KCTC 3674 excretes several kinds of extracellular proteases into the growth medium. Two proteases with molecular masses of approximately 36-kDa and 38-kDa, as shown by SDS-PAGE, were purified from the culture broth. The 38-kDa protease was purified from B. cereus cultivated at 37 degrees C, and the 36-kDa protease was obtained from the B. cereus cultivated at 20 degrees C. The 38-kDa protease was identified as an extracellular neutral (metallo-) protease and was further characterized. The 36-kDa protease was shown to be a novel enzyme based on its N-terminal amino acid sequence, its identification as a metallo-enzyme that was strongly inhibited by EDTA and o-phenanthroline, its hemolysis properties, and its optimal pH and temperature for activity of 8.0 and 70 degrees C, respectively.  相似文献   

17.
A thermophilic Bacillus stearothermophilus F1 produces an extremely thermostable serine protease. The F1 protease sequence was used to predict its three-dimensional (3D) structure to provide better insights into the relationship between the protein structure and biological function and to identify opportunities for protein engineering. The final model was evaluated to ensure its accuracy using three independent methods: Procheck, Verify3D, and Errat. The predicted 3D structure of F1 protease was compared with the crystal structure of serine proteases from mesophilic bacteria and archaea, and led to the identification of features that were related to protein stabilization. Higher thermostability correlated with an increased number of residues that were involved in ion pairs or networks of ion pairs. Therefore, the mutants W200R and D58S were designed using site-directed mutagenesis to investigate F1 protease stability. The effects of addition and disruption of ion pair networks on the activity and various stabilities of mutant F1 proteases were compared with those of the wild-type F1 protease.  相似文献   

18.
Cathepsin E is an intracellular, non-lysosomal aspartic protease expressed in a variety of cells and tissues. The protease has proposed physiological roles in antigen presentation by the MHC class II system, in the biogenesis of the vasoconstrictor peptide endothelin, and in neurodegeneration associated with brain ischemia and aging. Cathepsin E is the only A1 aspartic protease that exists as a homodimer with a disulfide bridge linking the two monomers. Like many other aspartic proteases, it is synthesized as a zymogen which is catalytically inactive towards its natural substrates at neutral pH and which auto-activates in an acidic environment. Here we report the crystal structure of an activation intermediate of human cathepsin E at 2.35A resolution. The overall structure follows the general fold of aspartic proteases of the A1 family, and the intermediate shares many features with the intermediate 2 on the proposed activation pathway of aspartic proteases like pepsin C and cathepsin D. The pro-sequence is cleaved from the protease and remains stably associated with the mature enzyme by forming the outermost sixth strand of the interdomain beta-sheet. However, different from these other aspartic proteases the pro-sequence of cathepsin E remains intact after cleavage from the mature enzyme. In addition, the active site of cathepsin E in the crystal is occupied by N-terminal amino acid residues of the mature protease in the non-primed binding site and by an artificial N-terminal extension of the pro-sequence from a neighboring molecule in the primed site. The crystal structure of the cathepsin E/pro-sequence complex, therefore, provides further insight into the activation mechanism of aspartic proteases.  相似文献   

19.
A neutral protease from Bacillus subtilis var. amylosacchariticus was modified with tetranitromethane (TNM) at pH 8.0 for 1 h at 25 degrees C, by which treatment the proteolytic activity toward casein was markedly reduced, whereas activity changes toward N-blocked peptide substrates were variable depending upon the substrate used. The modified enzyme was digested with a Staphylococcus aureus V8 protease at pH 7.9 and the resultant peptides were separated by HPLC. Two peptides which contain nitrotyrosyl residue(s) were purified. One of the peptides was found to have an amino acid sequence of Thr-Ala-Asn-Leu-Ile-Tyr-Glu, which corresponds to residue Nos. 153-159 of the neutral protease, and Tyr-158 was identified as PTH-nitrotyrosine. The other one was the amino-terminal peptide of residue Nos. 1-22, and Tyr-21 was shown to be nitrated. From a comparison with the active site structure of thermolysin, which is a zinc metalloprotease with a high sequence homology to B. subtilis neutral proteases, nitration of Tyr-158 was inferred to be closely related to the activity changes of the neutral protease from B. subtilis var. amylosacchariticus.  相似文献   

20.
Trypanosoma cruzi chagasin belongs to a recently discovered family of cysteine protease inhibitors found in lower eukaryotes and prokaryotes but not in mammals. Chagasin binds tightly to cruzain, the major lysosomal T. cruzi cysteine protease, involved with infectivity and survival of the parasite in mammalian host cells. In the scope of a project to characterize proteins diferentially expressed during T. cruzi metacyclogenesis, we have determined the crystal structure of chagasin, which is now the first X-ray structure of a chagasin-like cysteine protease inhibitor to be reported. The structure was solved by the SIRAS method and refined at 1.7A resolution and a comparison with the two NMR structures available revealed some differences in the loops involved in binding to cysteine proteases. The highly flexible loop 4 could be entirely modeled and residues 29-33 from loop 2 form a 3(10)-helix structure that may be important to stabilize the loop conformation. Chagasin crystal structure was docked to the highest resolution structure available of cruzain and a model of chagasin-cruzain interaction was analyzed. The knowledge of the chagasin crystal structure may contribute to the elucidation of the molecular mechanism involved in the inhibition of cruzain and other T. cruzi cysteine proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号