首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scavenger receptors have been proven to be implicated in the formation of atherosclerotic lesions. A series of novel derivatives of sulfatides were synthesized, and their inhibitory activities against incorporation of DiI-acetyl-LDL into macrophages were evaluated in order to clarify the structure-activity relationships of sulfatides as a scavenger receptor inhibitor and find out novel inhibitors with synthetic easiness. The chemical modification of the substructures of sulfatides led to the establishment of the following structure-activity relationships; (1) the ceramide moiety can be replaced with another structure bearing two long chains, (2) the galactose moiety can be replaced with another structure or be deleted without a large decrease in the inhibitory activity, (3) the sulfate moiety was crucial, and it was the most preferable functional group for a potent inhibitory activity. The inhibitory activity of (S)-2-octadecanoylamino-2-tetradecylcarbamoyl)ethyl sulfate sodium salt (3a) against incorporation of DiI-acetyl-LDL into macrophages was proven to be based on the inhibition against the binding of acetyl-LDL to the surface of macrophages. We discovered novel scavenger receptor inhibitors with synthetic easiness, such as (S)-2-octadecanoylamino-2-(tetradecylcarbamoyl)ethyl sulfate sodium salt (3a) and 2-octadecanoylamino-1-(octadecanoylaminomethyl)ethyl sulfate sodium salt (13q).  相似文献   

2.
3-(4-Hydroxypiperidine-1-yl) phthalic acid 1 shows potent inhibitory activity against metallo-β-lactamase, which is known to inactivate β-lactam antibiotics such as carbapenems. Here, the structure of co-crystals of the metallo-β-lactamase IMP-1 and 1 was first analyzed by X-ray crystallography, and then used for structure-based drug design. Four novel compounds bearing substituents at the 6-position were synthesized to produce 3,6-disubstituted phthalic acid derivatives, and their IMP-1 inhibitory activity and synergistic effect with the carbapenem biapenem (BIPM) were evaluated. 3,6-Disubstituted phthalic acid derivatives showed potent IMP-1 inhibitory activity. In particular, compound 13 showed 10-fold higher IMP-1 inhibitory activity as compared with the parent derivative 1.  相似文献   

3.
Gambogic acid (GA) has been reported as a potent apoptosis inducer. Previously, we have reported chemical modification at C(34) and C(39) of GA, leading to some agents with improved activity. To investigate the further structure? activity relationship (SAR) and preliminary mechanism of GA activity, a series of derivatives with modified prenyl side chains of GA were synthesized and evaluated. Most of the derivatives showed potent inhibitory activities against the proliferation of HepG2 and A549 cell lines. Compound 4 was selected for further mechanistic studies due to its outstanding activity. It was established that 4 induces the apoptosis of HepG2 cells by using Annexin‐V/PI double staining and Western blot assay, thus, compound 4 can serve as a promising lead compound for the development of novel apoptosis in anticancer treatment.  相似文献   

4.
Novel derivatives of 6-fluoro-4-piperidinyl-1,2-benzisoxazole amides 4(I-VI) were obtained by the condensation of different acid chlorides with 6-fluoro-3-piperidin-4yl-benzo[d]isoxazole. Also, 6-fluoro-chroman-2-carboxamides 6(I-III) were synthesized by using nebulic acid chloride with different amines in presence of triethylamine as acid scavenger and dichloroethane as solvent. The synthesized compounds were characterized by IR, 1H NMR, and CHN analysis. These molecules were evaluated for their efficacy as antimicrobials in vitro by disc diffusion and microdilution method against pathogenic strains such as Bacillus substilis, Escherichia coli, Pseudomonas fluorescens, Xanthomonas campestris pvs, X. oryzae, Aspergillus niger, A. flavus, Fusarium oxysporum, Trichoderma species, F. monaliforme, and Penicillum species. Compounds 4I, 4IV, 4V, 6I, 6II and 6III showed better inhibitory activity than compared to standard drugs. Among these compounds, 4IV and 6III showed potent inhibitory activity against all the strains and found to be nonstrain dependent. The title compounds represent a novel class of potent antimicrobial agents.  相似文献   

5.
A series of (3,5-trans)-2-oxo-5-phenyl-1,2,3,5-tetrahydro-4,1-benzoxazepine derivatives were synthesized and evaluated for squalene synthase inhibitory and cholesterol biosynthesis inhibitory activities. Through modification of substituents of the lead compounds 1a and 1b, it was found that 4,1-benzoxazepine-3-acetic acid derivatives with isobutyl and neopentyl groups at the 1-position, the chloro atom at the 7-position, and the chloro and methoxy groups at the 2'-position on the 5-phenyl ring, had potent squalene synthase inhibitory activity. Among such compounds, the 5-(2,3-dimethoxyphenyl) derivative 2t exhibited potent inhibition of cholesterol biosynthesis in HepG2 cells. As a result of optical resolution study of 2t, the absolute stereochemistry required for inhibitory activity was determined to be 3R,5S. In vivo study showed that the sodium salt of (3R,5S)-7-chloro-5-(2,3-dimethoxyphenyl)-1-neopentyl-2-oxo-1,2,3,5-tetrahydro-4,1-benzoxazepine-3-acetic acid 20 effectively reduced plasma cholesterol in marmosets.  相似文献   

6.
The mechanism for the regulation of 12-hydroxyeicosatetraenoic acid (12-HETE) production by cholesterol-rich macrophages was investigated. beta-VLDL and acetyl-LDL, lipoproteins which result in cholesterol accumulation in macrophages, stimulated 12-HETE secretion. Lipoproteins which do not induce cholesterol accumulation, such as low- and high-density lipoproteins, did not. Cell-free homogenates from cholesterol-rich macrophages had significantly more 12-lipoxygenase activity than homogenates from unmodified cells. Preincubating homogenates prepared from unmodified macrophages with acetyl-LDL, LDL or multilamellar liposomes containing total lipids from acetyl-LDL but not apoproteins significantly increased 12-lipoxygenase activity. This stimulatory effect was caused by the phospholipid moiety of the lipoprotein. 12-HETE synthesis was not increased in macrophages enriched 6-fold in unesterified cholesterol. Acetyl-LDL stimulated 12-HETE synthesis in macrophages in which cholesteryl ester accumulation was prevented by inhibiting acylcoenzyme A:cholesterol acyltransferase activity. When binding of acetyl-LDL to its receptor was decreased by increasing concentrations of dextran sulfate, or when lysosomal metabolism of the lipoprotein was prevented by chloroquine, 12-HETE production significantly decreased. Moreover, the combination of inhibiting acetyl-LDL binding and degradation completely blocked the stimulation of 12-HETE synthesis by acetyl-LDL. The data indicate that acetyl-LDL must enter the macrophage and be partially degraded to regulate 12-HETE synthesis. The regulation is independent of cholesterol accumulation but is related to the entering lipoprotein phospholipid.  相似文献   

7.
3-Alkyloxy and 3-amino phthalic acid derivatives were found to have metallo-β-lactamase inhibitory activity. Among them, 3-amino phthalic acid derivatives showed both potent activity against metallo-β-lactamase, IMP-1 inhibitory activity and a strong combination effect with biapenem (BIPM), carbapenem antibiotic. In particular, the 4′-hydroxy-piperidine derivative showed strong IMP-1 inhibitory activity and a combination effect with various antibiotics.  相似文献   

8.
A series of novel chalcone derivatives have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of tubulin. These compounds were assayed for growth-inhibitory activity against MCF-7 and A549 cell lines in vitro. Compound 3d showed the most potent antiproliferative activity against MCF-7 and A549 cell lines with IC(50) values of 0.03 and 0.95 μg/mL and exhibited the most potent tubulin inhibitory activity with IC(50) of 1.42 μg/mL. Docking simulation was performed to insert compound 3d into the crystal structure of tubulin at colchicines binding site to determine the probable binding model. Based on the preliminary results, compound 3d with potent inhibitory activity in tumor growth may be a potential anticancer agent.  相似文献   

9.
Horner-Emmons reaction of 4"-dehydro-5-O-TBDMS-avermectin B(1a) with a variety of phosphorus ylides using LHMDS gave novel 4"-alkylidene avermectin derivatives in high yields. Further modifications led to derivatives bearing diverse functional groups. The new avermectin derivatives showed potent growth inhibitory activity against Artemia salina and Caenorhabditis elegans.  相似文献   

10.
Mast cells, neutrophils and macrophages are important inflammatory cells that have been implicated in the pathogenesis of acute and chronic inflammatory diseases. To explore a novel anti-inflammatory agent, we have synthesized certain 9-phenoxyacridine and 4-phenoxyfuro[2,3-b]quinoline derivatives and evaluated their anti-inflammatory activities. The title compounds were synthesized by reaction of either 9-chloroacridine or 3,4-dichlorofuro[2,3-b]quinoline with appropriate Ar-OH and their anti-inflammatory activities were studied on inhibitory effects on the activation of mast cells, neutrophils and macrophages. Four 9-(4-formylphenoxy)acridine derivatives 2b-2e were proved to be more potent than the reference inhibitor, mepacrine for the inhibition of rat peritoneal mast cell degranulation with IC(50) values of 6.1, 5.9, 13.5, and 4.7 microM, respectively. Compounds 2c, 3b, 3c, and 5a also showed potent inhibitory activity (IC(50)=4.3-18.3 microM) for the secretion of lysosomal enzyme and beta-glucuronidase from neutrophils. In addition, 2d, 3a, and 4 inhibited TNF-alpha formation from the N9 cells (the brain resident macrophages) with IC(50) vales less then 10 microM. These results indicated that acridine derivatives exhibited more potent anti-inflammatory activities than their respective furo[2,3-b]quinoline counterparts (4 vs 9; 5a vs 10a; 5b vs 10b).  相似文献   

11.
A series of novel piperazine based cinnamic acid bearing coumarin derivatives were designed and synthesized by piperazine based cinnamic acids esterification with 4-hydroxycoumarin and characterized by various spectral techniques like infrared, 1H nuclear magnetic resonance (NMR), 13C NMR, and mass. The novel bioactive compounds (7a-7m) screen their potential against different bacterial and fungal strains. Compound 7g (minimum inhibitory concentration [MIC] = 12.5 µg/ml) exhibited potent antibacterial activity against Escherichia coli strain. Compounds 7d, 7f, 7g, 7k, 7l , and 7m showed potent antibacterial activity against all bacterial strains. Compounds 7a, 7g, 7h, 7k, 7l , and 7m exhibited potent antifungal activity against all fungal strains. Furthermore, a molecular docking study revealed that compounds 7d, 7f, 7g , and 7k could bind to the active site of E. coli DNA gyrase subunit B protein and form hydrogen bonding with crucial amino acid residues Arg136 in the active sites. Comprehensively, our study recommends that 7d, 7f, 7g , and 7k could be a promising lead for developing more efficient antimicrobial drug candidates and DNA gyrase inhibitors.  相似文献   

12.
We designed and synthesized hydroxamic acid derivatives bearing a 4-(3-pyridyl)phenyl group as a cap structure, and found that they exhibit potent histone deacetylase (HDAC) inhibitory activity. A representative compound, 17a, showed more potent growth-inhibitory activity against pancreatic cancer cells and greater upregulation of p21(WAF1/CIP1) expression than the clinically used HDAC inhibitor suberoylanilide hydroxamic acid (Zolinza).  相似文献   

13.
A series of novel substituted pyrazole-fused oleanolic acid derivative were synthesized and evaluated as selective α-glucosidase inhibitors. Among these analogs, compounds 4a – 4f exhibited more potent inhibitory activities compared with their methyl ester derivatives, and standard drugs acarbose and miglitol as well. Besides, all these analogs exhibited good selectivity towards α-glucosidase over α-amylase. Analog 4d showed potent inhibitory activity against α-glucosidase (IC50=2.64±0.13 μM), and greater selectivity towards α-glucosidase than α-amylase by ∼33-fold. Inhibition kinetics showed that compound 4d was a non-competitive α-glucosidase inhibitor, which was consistent with the result of its simulation molecular docking. Moreover, the in vitro cytotoxicity of compounds 4a – 4f towards hepatic LO2 and HepG2 cells was tested.  相似文献   

14.
On the basis of the one strain–many compounds strategy, five compounds including two new holomycin derivatives 2 – 3 , two new cyclopropaneacetic acid derivatives 4 – 5 , together with one known compound holomycin ( 1 ) were isolated from a marine‐derived bacterium Streptomyces sp. DT‐A37. Their structures were elucidated using NMR and HR‐ESI‐MS analyses. All these compounds were evaluated for their antimicrobial activity, cytotoxic activity, and inhibitory activity against BRD4 protein. Compound 1 exhibited potent cytotoxicity against H1975 cells with IC50 value of 1 μm , and its minimal inhibitory concentration values against Escherichia coli and Staphylococcus aureus were both 64 μm .  相似文献   

15.
Design, synthesis, and structure-activity relationships of 3,4-dihydro-2(1H)-quinazolinone derivatives as inhibitors of the sodium/calcium (Na(+)/Ca(2+)) exchanger are discussed. These studies, based on a lead compound 9a, which was identified in our library, involved systematic modification of three regions and revealed that (1) the 3,4-dihydro-2(1H)-quinazolinone having a tertiary amino alkyl side chain at the 3-position is essential for activity, (2) a nonsubstituted phenyl ring is most suitable for high activity, and (3) introduction of a 4-substituted piperidine moiety enhanced the activity, in particular 4-benzylpiperidin-1-yl showed strong inhibitory activity. Based on these SAR studies, a structurally novel and highly potent inhibitor against the Na(+)/Ca(2+) exchanger, 12g (SM-15811), was discovered. In particular, SM-15811 directly inhibited the Na(+)-dependent Ca(2+) influx via the Na(+)/Ca(2+) exchanger in cardiomyocytes with a high potency. The activity was almost two orders more potent than the lead compound 9a and SM-15811 exerted a protective effect against myocardial ischemic reperfusion injury. These Na(+)/Ca(2+) inhibitors could have a therapeutic potential for the treatment of ischemic reperfusion injury.  相似文献   

16.
Phytochemical investigation of Cassia petersiana Bolle leaves afforded four new compounds, including two chromone derivatives, 7-acetonyl-5-hydroxy-2-methylchromone (petersinone 1, 1) and 7-(propan-2'-ol-l'-yl)-5-hydroxy-2-methylchromone (petersinone 2, 2), two benzoic acid derivatives, 5-methyl-3-(propan-2'-on-1'-yl) benzoic acid (petersinone 3, 3) and 5-(methoxymethyl)-3-(propan-2'-ol-1'-yl) benzoic acid (petersinone 4, 4), and glyceryl-1-tetracosanoate (6), in addition to the known compound sistosterol-3-beta-D-glycoside (5). The structures of these compounds were determined by comprehensive NMR studies, including DEPT, COSY, HMQC, HMBC, MS and IR. Compounds 1, 2, 5 and 6 were tested for antioxidant, anti-cancer and immunostimulatory properties. The biological investigations indicated that compound 6, among others, possessed the highest anti-cancer activity against hepatocellular carcinoma, immunoproliferative activity via induction of T-lymphocytes and macrophage proliferation, anti-inflammatory activity as indicated by NO inhibition, and antioxidant activity against DPPH radicals. Moreover, compound 5 was the most effective cytotoxic compound against breast carcinoma and stimulated a consistent immunoproliferative effect on lymphocytes and macrophages combined with strong NO inhibitory activity, while compound 1 was promising as immunoproliferative agent and may act as anti-inflammatory agent as a consequence of its NO inhibitory activity.  相似文献   

17.
The N-(2-(trifluoromethyl)pyridin-4-yl)anthranilic acid 6 and a series of its ester and amide derivatives were synthesized and evaluated for their in vitro cytotoxic activity against human cancer cells. Ester derivatives 13 and 18 exhibited potent growth inhibitory activity with GI(50) values at nanomolar concentrations. Among amide derivatives, N-anthraniloylglycinate 19 shown moderate inhibitory activity in the full panel cancer cell line screening.  相似文献   

18.
A new series of phenanthridinone derivatives, and diketo acid analogs, as well as related phenanthrene and anthracene diketo acids have been synthesized and evaluated as HIV integrase (IN) inhibitors. Several new beta-diketo acid analogs with the phenanthridinone scaffold replaced by phenanthrene, anthracene or pyrene exhibited the highest IN inhibitory potency. There is a general selectivity against the integrase strand transfer step. The most potent IN was 2,4-dioxo-4-phenanthren-9-yl-butyric acid (27f) with an IC(50) of 0.38microM against integrase strand transfer. The phenanthrene diketo acids 27d-f were more potent (IC(50)=2.7-0.38microM) than the corresponding phenanthridinone diketo acid 16 (IC(50)=65microM), suggesting that the polar amide bridge in the phenanthridinone system decreases inhibitory activity relative to the more lipophilic phenanthrene system. This might have to do with the possible binding of the aryl group of the compounds binding to a lipophilic pocket at the integrase active site as suggested by the docking simulations. Molecular modeling also suggested that effectiveness of chelation of the active site Mg(2+) contributes to IN inhibitory potency. Finally, some of the potent compounds inhibited HIV-1 replication in human peripheral blood mononuclear cells (PBMC) with EC(50) down to 8microM for phenanthrene-3-(2,4-dioxo)butyric acid (27d), with a selectivity index of 10 against PBMCs.  相似文献   

19.
20.
The structural similarities between N1 substituted 1,4‐dihydropyridines and the known gp41 inhibitors, NB ‐2 and NB ‐64 , were considered in the current research for the design of some novel anti‐HIV‐1 agents. A series of novel 4‐[4‐arylpyridin‐1(4H)‐yl]benzoic acid derivatives were synthesized and after a comprehensive structural elucidation were screened for in vitro anti‐HIV‐1 activity. Most of the tested compounds displayed moderate to good inhibitory activity against HIV‐1 growth and were evaluated for in vitro cytotoxic activity using XTT assay at the concentration of 100 μm . Among the tested compounds, 1c , 1d and 1e showed potent anti‐HIV‐1 activity against P24 expression at 100 μm with inhibition percentage of 84.00%, 76.42% and 80.50%, respectively. All the studied compounds possessed no significant cytotoxicity on MT‐2 cell line. The binding modes of these compounds to gp41 binding site were determined through molecular docking study. Docking studies proved 1a as the most potent compound and binding maps exhibited that the activities might be attributed to the electrostatic and hydrophobic interactions and additional H‐bonds with the gp41 binding site. The Lipinski's ‘rule of five’ and drug‐likeness criteria were also calculated for the studied compounds. All derivatives obeyed the Lipinski's ‘rule of five’ and had drug‐like features. The findings of this study suggest that novel 4‐[4‐arylpyridin‐1(4H)‐yl]benzoic acid might be a promising scaffold for the discovery and development of novel anti‐HIV‐1 agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号