首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under ultra-violet excitation, intact leaves generate a strong blue-green fluorescence emission with several bands. Their integrated energy is 6 to 11 times the energy released by chlorophyll a bands (Chappelle et al. 1984, Applied Optics 23, 134–138). This paper provides evidence that the blue-green fluorescence emission comes mainly from outer epidermal layers of the leaves and can be transferred on a quartz lamina by quickly dipping the leaves in organic solvents with subsequent solvent evaporation. Blue-green fluorescence displays a diffusion-controlled quenching of fluorescence intensity between 4°C (high fluorescence) and 37°C (low fluorescence). The blue-green fluorescence emissivity is not linked to short-term metabolic effects other than leaf temperature, but epidermis adaptations both to drought and to excessive radiation increase emissivity.  相似文献   

2.
Intensity, spectral characteristics and localization of the UV-laser (337 nm) induced blue-green and red fluorescence emission of green, etiolated and white primary leaves of wheat seedlings were studied in a combined fluorospectral and fluoromicroscopic investigation. The blue-green fluorescence of the green leaf was characterized by a maximum near 450 nm (blue region) and a shoulder near 530 nm (green region), whereas the red chlorophyll fluorescence exhibited maxima in the near-red (F690) and far-red (F735). The etiolated leaf with some carotenoids and traces of chlorophyll a, in turn, showed a higher intensity of the blue-green fluorescence with a shoulder in the green region and a strong red fluorescence peak near 684 to 690 nm, the far-red chlorophyll fluorescence maximum (F735) was, however, absent. The norfluorazone-treated white leaf, free of chlorophylls and carotenoids, only exhibited blue-green fluorescence of a very high intensity. In green and etiolated leaves the blue-green fluorescence primarily derived from the cell walls of the epidermis and the red fluorescence from the chlorophyll a of the mesophyll cells. In white leaves the blue-green fluorescence emanated from all cell walls of epidermis, mesophyll and leaf vein bundles. The shape and intensity of the blue-green and red fluorescence emission is determined by the reabsorption properties of chlorophylls and carotenoids in the mesophyll, thus giving rise to quite different values of the various fluorescence ratios F450/F690, F450/F530, F450/F735 and F690/F735 in green and etiolated leaves.  相似文献   

3.
Protoplasts from leaves of radish ( Raphanus sativus L. var. sativus ) were examined for the subcellular localization of p -coumaric, caffeic, ferulic and sinapic acid esters of malic acid and the enzyme(s) involved in their syntheses. Vacuoles isolated from leaf protoplasts contained all the hydroxycinnamic acid esters as well as all the dependent enzyme activities. Protein from leaf vacuoles was shown to form the hydroxycinnamoylmalic acids, using the corresponding hydroxycinnamic acid glucose esters (1-O-acyl glucosides) as acyl donors. It is proposed that the vacuole is the cell compartment for synthesis and deposition of the hydroxycinnamoylmalic acids.  相似文献   

4.
The UV light (337 nm) induced blue-green fluorescence emission of green leaves is characterized at room temperature (298 K) by a maximum near 450 nm (blue region) and a shoulder near 525 nm (green region) and was here also studied at 77 K. At liquid nitrogen temperature (77 K) the blue (F450) and green fluorescence (F525) are much enhanced as is the red chlorophyll fluorescence near 735 nm. During development of green tobacco leaves the blue fluorescence F450 (77 K) is shifted towards longer wavelengths from about 410 nm to 450 nm. The isolated leaf epidermis of tobacco showed only slight fluorescence emission with a maximum near 410 nm. The green fluorescence F525 was found to mainly originate from the mesophyll of the leaf, its intensity increased when the epidermis was removed. The red chlorophyll fluorescence emission was also enhanced when the epidermis was stripped off; this considerably changed the blue/red fluorescence ratios F450/F690 and F450/F735. The epidermis, with its cell wall and UV-light-absorbing substances in its vacuole, plays the role of a barrier for the exciting UV-light. In contrast to intact and homogenized leaves, isolated intact chloroplasts and thylakoid membranes did not exhibit a blue-green fluorescence emission.  相似文献   

5.
菰(Zizania latifolia)是一种多年生挺水植物,为了探讨该植物根、茎和叶的解剖结构、组织化学及其质外体屏障的通透性生理。该文利用光学显微镜和荧光显微镜,对菰的根、茎、叶进行了解剖学和组织化学研究。结果表明:(1)菰不定根解剖结构由外而内分别为表皮、外皮层、单层细胞的厚壁机械组织层、皮层、内皮层和维管柱;茎结构由外而内分别为角质层、表皮、周缘厚壁机械组织层、皮层、具维管束的厚壁组织层和髓腔。叶鞘具有表皮和具维管束皮层,叶片具有表皮,叶肉和维管束。(2)不定根具有位于内侧的内皮层及其邻近栓质化细胞和外侧的外皮层组成的屏障结构;茎具内侧厚壁机械组织层,外侧的角质层和周缘厚壁机械组织层组成的屏障结构,屏障结构的细胞壁具凯氏带、木栓质和木质素沉积的组织化学特点,叶表面具有角质层。(3)菰通气组织包括根中通气组织,茎、叶皮层的通气组织和髓腔。(4)菰的屏障结构和解剖结构是其适应湿地环境的重要特征,但其茎周缘厚壁层和厚壁组织层较薄。由此推测,菰适应湿地环境,但在旱生环境中分布有一定的局限性。  相似文献   

6.
Many growing leaves of tulips show subtle undulations of their surface, oriented mostly transversely to the leaf axis. The undulations move acropetally with respect to cells. The epidermal peels from the leaves with the undulations placed on agar plates containing a pH indicator dye produce band patterns of more acid and less acid zones. Similar patterns also appear when the agar-indicator is applied to the abraded leaf surface. This indicates that there is spatially variable H+ efflux from the epidermis into agar. No variation of the colour appears when the agar-indicator is applied to the mesophyll surface formed by peeling off the epidermis, which indicates that the pH pattern is a feature of the epidermis only. The pattern of pH bands correlates closely with the pattern of undulation; more acid bands correspond to the convex zones of the surface. The movement of the undulations also indicates that the pH pattern moves, which means that in the epidermal apoplast the pH oscillates at a particular location.  相似文献   

7.
为了从显微结构上进一步探讨虉草(Phalaris arundinacea L.)的抗旱耐涝性及与利用的关系,于2011年采用常规石蜡切片技术,对其根、茎叶3种营养器官进行解剖观察。结果表明,虉草根的结构自外而内依次为表皮、皮层、维管束鞘、初生韧皮部和初生木质部;茎由表皮、基本组织和维管束构成;叶片内部结构可分为表皮、叶肉和叶脉3部分。根皮层大的细胞间隙和气腔,初生木质部的后生大导管和茎基本组织解体形成的髓腔都是虉草良好的通气组织,是其耐水淹的主要显微特征。茎、叶片角质化的表皮和叶表皮所含的丰富泡状细胞组是虉草具有抗旱性的主要解剖结构特征。叶肉细胞排列紧密且只有少量气孔分布于叶片下表皮,这样的结构可减少蒸腾;叶肉细胞富含叶绿体,增强光合作用,获得更多的同化产物,确保了植株在干旱条件下也有足够的光合产物来维持正常的生理活动。茎、叶维管束部分大量的木纤维起到支撑作用。虉草根的皮层和维管柱部分、茎的基本组织和维管束部分、叶的叶脉部分都含有大面积的厚壁细胞,厚壁细胞中含有丰富的粗纤维和木质素。丰富的粗纤维、木质素等成分则是虉草能成为新能源燃料植物的必备条件。  相似文献   

8.
Epidermally located ultraviolet (UV)‐absorbing phenolic compounds, flavonoids and hydroxycinnamic acid esters (HCAs), can shield the underlying tissues in plants against harmful UV‐radiation. The relative importance of the two different classes of phenolic compounds for UV‐screening was a matter of recent debate. Using a non‐invasive method based on chlorophyll fluorescence measurements to estimate epidermal UV transmittance, the relationship between epidermal UV shielding and the content of the two different groups of secondary phenolic compounds in the epidermal layers and the underlying photosynthetic mesophyll of developing rye primary leaves grown under supplementary UV‐B radiation was investigated. From the fourth to the tenth day after sowing, epidermally located flavonoids increased in an age‐ and irradiation‐dependent manner, whereas mesophyll flavonoids and epidermal HCAs, mainly ferulic acid and p‐coumaric acid esters, were constitutively present and did not vary in their contents over the observed time period. There was an excellent correlation between epidermal UV‐A and UV‐B absorbances as assessed by chlorophyll fluorescence measurements and contents of epidermal flavonoids. However, HCAs showed an additional contribution to UV‐B shielding. In contrast, mesophyll flavonoids did not seem to play a respective role. When absorbances of the abaxial and adaxial epidermal layers were compared, it became apparent that in fully expanded primary leaves epidermal tissues from both sides were equally effective in absorption of UV‐radiation. However, the earlier and more UV‐exposed abaxial epidermis of young unrolling leaves showed a significantly higher absorption. It is shown that in early stages of development the epidermal HCAs are the dominant UV‐B protective compounds of the primary leaf. This function is increasingly replaced by the epidermal flavonoids during leaf development and acclimation. The application of chlorophyll fluorescence measurements has been proven to be a useful tool for estimating relative contents of these compounds in epidermal tissue.  相似文献   

9.
Laser-induced fluorescence images of the leaf of an aurea mutant of Nicotiana tabacum were recorded for the blue and green fluorescence at 440 and 520 nm and the red chlorophyll fluorescence at 690 and 735 nm. The results obtained were compared with direct measurements of the fluorescence emission spectra of leaves using a conventional spectrofluorometer. The highest emission of blue (F440) and green fluorescence (F520) within the leaf was found in the leaf veins, particularly the main leaf vein. In contrast, the intercostal fields of leaves, which exhibited the highest chlorophyll content, showed only a very low blue and green fluorescence emission, which was much lower than the red and far-red chlorophyll fluorescence emission bands (F690 and F735). Correspondingly, the ratio of blue to red leaf fluorescence F440/F690 of upper and lower leaf side was much higher in the leaf veins (values 1.2 to 1.5) than in intercostal fields (values of 0.6 to 0.7). The results also demonstrated that in the intercostal fields the major part of the blue-green fluorescence was reabsorbed by chlorophylls and carotenoids. A partial reabsorption of the red fluorescence band near 690 nm by leaf chlorophyll took place, but did not affect the far-red fluorescence band near F735. As a consequence the chlorophyll fluorescence ratio F690/F735 exhibited significantly higher values in the chlorophyll-poor leaf vein regions (1.7 to 1.8) than in the chlorophyll-rich intercostal fields (0.8 to 1.3). Imaging spectroscopy of leaves was shown to be much more precise than the screening of fluorescence signatures by conventional fluorometers. It clearly demonstrated that the blue-green fluorescence and the red chlorophyll fluorescence of leaves exhibit an inverse contrast to each other. The advantage of the fluorescence imaging spectroscopy, which allows the simultaneous screening of the whole leaf surface and distinct parts of it, and its possible application in the detection of stress effects or local damage by insects and pathogens, is discussed.  相似文献   

10.
In higher plants one of the important functions of the leaf epidermis is the effective screening of ultraviolet-B (280–320 nm, UV-B) radiation, due mostly to phenolic compounds. The assessment of the contribution of this function is necessary for an evaluation of the impact of increasing UV-B radiation. A method is proposed to estimate epidermal transmittance on the basis of chlorophyll fluorescence measurements. Fluorescence of chlorophyll induced by UV-A (320–400 nm, measuring beam centered at 366 nm, half band width 32 nm) or UV-B (measuring beam centered at 314 nm, half band width 18 nm) is compared to that induced by a blue-green measuring light (475 nm, half band width 140 nm). It is shown that the ratios of UV-and blue-green (BG)-induced fluorescence, F(UV-A)/F(BG) and F(UV-B)/F(BG), are relatively constant among leaf samples of various species ( Vicia faba, Spinacia oleracea, Rumex scutatus ) from which the epidermis was removed. In epidermis-free leaves no significant differences were found between adaxial and abaxial leaf sides, suggesting that leaf structure has negligible influence on the F(UV)/F(BG) ratios. On the other hand, fluorescence excitation ratios varied over a vast range when intact leaves from different species and habitats were investigated. Ratios were low in sun leaves and relatively high in shade- and greenhouse-grown leaves. By relating these results to those obtained with epidermis-free leaves, epidermal transmittances for UV-B radiation could be estimated, with values ranging between 1 and 45%. The data demonstrate a large adaptability of epidermal UV-A and UV-B transmittance in higher plants. The proposed method may prove a versatile and relatively simple tool for investigating epidermal UV transmittance complementing established methods.  相似文献   

11.
Comparative leaf anatomy of New Zealand and Tasmanian Inuleae (Compositae)   总被引:1,自引:0,他引:1  
Leaf anatomy is compared for 47 taxa of the tribe Inuleae (Compositae) from New Zealand and Tasmania. The taxa are tabulated according to their lamina structure. Noteworthy anatomical features are lamina type and grade of differentiation, stomatal position, epidermis and cuticle thickness, shape of palisade cells, number of bundle-sheath layers; presence or absence of sclerenchyma caps, water storage cells, secretory canals, abaxial collenchyma and protruding midrib. It is shown that leaf anatomy data provide characters which are taxonomically useful in classification of Inuleae.  相似文献   

12.
Fluorescence spectra in the blue-green region and excitation fluorescence spectra of green wheat leaves, etiolated wheat leaves and isolated inner etioplast membranes (prolamellar bodies and prothylakoids) were compared to specify the structure of the active protochlorophyllide pigment-protein complex of inner etioplast membranes. Three bands in the blue region at 420, 443 and 470 nm and a broader green band at 525 nm were found. Comparison of the emission and excitation spectra suggests that the main components responsible for the blue fluorescence of etioplast inner membranes are pyridine nucleotides and pterins. The green fluorescence (525 nm) excitation spectra of etiolated samples were identical to the excitation spectrum of flavin fluorescence. The fact confirms the suggestion that flavins are the constituents of the active protochlorophyllide-protein complex.  相似文献   

13.
Biosynthesis of both ascorbic acid (AsA) and peroxidase activity were induced by light in cv. Sultana grapevine leaves. Induced peroxidase activity mainly involved basic isoenzymes of pI 9.8 and 9.6 and catalyzed the oxidation of flavonoids like quercetin and kaempferol and derivatives of hydroxycinnamic acids such as ferulic and p-coumaric acids, but not AsA. However, the peroxidase-dependent oxidation of ferulic acid and quercetin was temporarily suppressed by AsA as long as it remained in the reaction medium. Kinetics and spectroscopic results indicated that AsA was oxidized to dehydroascorbic acid only in the presence of phenols or flavonoids, and did not interfere with the catalytic activity of the peroxidase. Ascorbate peroxidase isoenzymes (APx), whose activities are widely considered central for detoxification of H(2)O(2) in most plant cells, were not detected in grape leaves extracts. The significance of light stimulus on peroxidase activity and leaf AsA content is discussed in terms of a flavonoid-redox cycle proposed as an alternative system to detoxify H(2)O(2) in grapevine leaves.  相似文献   

14.

Background and Aims

Epidermal phenolic compounds (mainly flavonoids) constitute a vital screen that protects the leaf from damage by natural ultraviolet (UV) radiation. The effectiveness of epidermal UV-screening depends on leaf anatomy, the content of UV-screening compounds and their spatial uniformity over the leaf area. To investigate in vivo the spatial pattern of the epidermal UV-screen during leaf development, a fluorescence imaging method was developed to map the epidermal UV-absorbance at a microscopic scale. This study was done on oak (Quercus petraea) leaves that were used as a model of woody dicotyledonous leaves.

Methods

The leaf development of 2-year-old trees, grown outdoors, was monitored, at a macroscopic scale, by in vivo measurements of chlorophyll content per unit area and epidermal UV-absorbance using two optical leaf-clip meters. The distribution of pigments within leaves was assessed in vivo spectroscopically. The microscopic images of UV-induced fluorescence and UV-absorbance acquired in vivo during leaf development were interpreted from spectral characteristics of leaves.

Key Results

At a macroscopic scale, epidermal UV-absorbance was high on the upper leaf side during leaf development, while it increased on the lower leaf side during leaf expansion and reached the adaxial value at maturity. At a microscopic scale, in immature leaves, for both leaf sides, the spatial distribution of epidermal UV-absorbance was heterogeneous, with a pattern depending on the flavonoid content of vacuoles in developing epidermal cells. At maturity, epidermal UV-absorbance was uniform.

Conclusions

The spatial pattern of epidermal UV-screen over the area of oak leaves is related to leaf anatomy during development. In vivo spectroscopy and fluorescence imaging of the leaf surface showed the distribution of pigments within the leaf and hence can provide a tool to monitor optically the leaf development in nature.Key words: Blue-green fluorescence, chlorophyll fluorescence, epidermis, flavonoids, leaf development, microscopic imaging, polyphenols, Quercus petraea  相似文献   

15.
Isolated chloroplasts show a light-induced reversible increase in blue-green fluorescence (BGF), which is only dependent on NADPH changes. In the present communication, we report a time-resolved and spectral analysis of this BGF in reconstituted chloroplasts and intact isolated chloroplasts, in the dark and under actinic illumination. From these measurements we deduced the contribution of the different forms of NADPH (free and bound to proteins) to the light-induced variation of BGF and conclude that this variation is due only to the redox change of the NADP pool. A simple model estimating the distribution of NADPH between the free and bound form was designed, that explains the differences measured for the BGF of reconstituted chloroplasts and intact chloroplasts. From the decay-associated spectra of the chloroplast BGF, we also deduced the participation of flavins to the green peak of chloroplast fluorescence emission spectrum, and the existence of excitation energy transfer from proteins to bound NADPH in chloroplasts. In addition, we re-examined the use of chloroplast BGF as a quantitative measure of NADPH concentration, and confirmed that chloroplast BGF can be used for non-destructive, continuous and probably quantitative monitoring of light-induced changes in NADP redox state.  相似文献   

16.
Differences in the relative growth rules of the inherently slow-growing Deschampsia flexuosa L. and the inherently fast-growing Holcus lanatus L. were reflected in cell wall synthesis in the elongation zone of the leaves. Leaf elongation rates depended on the size of the plant and ranged from 6 to 14 mm d?1 in Deschampsia and from 12 to 42 mm d?1 in Holcus. Anatomical data showed that the epidermis and vascular tissue are the important tissues controlling leaf extension. The cell wall polysaccharides of fully expanded leaves of the two species were identical in sugar composition. Enzymatic hydrolysis of polymeric sugars in the cell walls of the sheath and the lamina gave glucose (85%), arabinose (3.5%), fucose (0.5%), xylose (5.0%), mannose (0.5%), galaclose (0.8%) and galacturonic acid (3–4%). This composition applied throughout the blade and the sheath and did not change with ageing. Polysaccharides in the meristems of the two species showed identical sugar compositions with 51–55% glucose, 13–15% galactoronic acid and 13–14% arabinose as the main components. The extension zone was marked by a gradual increase of driselase-digestable polymers (per mm tissue) and a concurrent shift in sugar composition. The massive increase of glucose in the cell wall polymers of the elongation zone is probably caused by cellulose synthesis. The rate of synthesis of cell wall polysaccharides in Holcus was twice as high as that in Deschampsia. The slower-growing Deschampsia has more ferulic acid esterified with cell walls, which might contribute to the slowing of leaf growth. Lignin is not significantly deposited until growth has essentially ceased and is not responsible for the difference in growth rate.  相似文献   

17.
Cell walls of tips and bases of laminae of flag leaves from 11 cultivars of winter wheat of varying susceptibility to Puccinia striiforntis yellow rust) were compared by examining their phenolic components released by treatment with a commercial cellulase. Isolated cell walls of both susceptible and resistant cultivars released water-soluble carbohydrate esters of phenolic acids, the major acid detected being trans-ferulic. There was no relationship between the amount of phenolic esters released by cellulase and susceptibility to yellow rust. The leaf lamina tips, which were much more susceptible to yellow rust than the corresponding bases, had lower cell wall contents than the bases and their walls were more degradable by cellulase. Examination of transverse sections of leaf laminae of cv. Little Joss showed that cells whose walls contained phenolic groups that gave a red colour reaction with p-nitrobenzene diazonium tetrafluoroborate, occupied a larger area of leaf lamina bases than of the tips. A greater percentage of the abaxial epidermal cells of the bases, compared with the tips, had walls that gave this red colour reaction. We suggest that the presence of phenolic groups in these walls may be related to the greater resistance of the bases to P. striiforntis.  相似文献   

18.
刺槐叶的亚显微结构与耐旱性的关系   总被引:1,自引:0,他引:1  
刺槐(RobiniapseudoacaciaLinn.)虽然引自北美,但现在已成为西北干旱半干旱地区的主要造林树种。叶片形状为羽状复叶,小叶呈椭圆形,叶面积与体积之比为5.6。叶表面具蜡质壳状、管状毛和鳞片状纹饰。叶片与叶柄被以毛状体;叶背面有浅内陷气孔,具大孔下室。上下表皮细胞外壁具明显的角质层加厚;上表皮细胞呈椭圆形,下表皮细胞呈乳头状;栅栏组织与海绵组织之间界限不明显,栅栏组织较为发达,排列紧密,约2—3层细胞,海绵组织有退化的趋势;中脉和叶柄维管束均有厚壁组织细胞组成的维管束鞘;薄壁组织细胞中含有大量的晶体和淀粉粒,叶片已具有许多旱生特征。  相似文献   

19.
The light microenvironment within leaves of Medicago sativa L. cv. Armor was related to the anatomy of the epidermis. Leaf epidermal cells had a convex shape and appeared to act as lenses that focussed light within the upper region of the palisade. In leaves irradiated with collimated light, epidermal focussing was demonstrated by ray tracing, photomicrography and fiber optic probe measurements, where lens signatures were observed. No relationship was observed between the location of focal spots within the palisade and chloroplast positioning. Epidermal focussing could be largely eliminated by irradiating leaves with diffuse light or by coating their surface with a thin layer of mineral oil that closely matched the refractive index of the cell walls. Measurement of variable chlorophyll fluorescence after elimination of epidermal focussing on the adaxial leaf surface caused a 19 and 11% decrease in the initial fluorescence level (F0) and maximum fluorescence (Fmax), respectively, whereas similar measurements from the abaxial surface were twice as large. These results suggest that some of the chloroplasts within the leaf may be adapted to local high-light conditions created by the epidermis.  相似文献   

20.
Epicuticular waxes were removed from the leaf surfaces of Oleaeuropaea and Prunus persica by washing with chloroform and theresulting rinses were analysed by high performance liquid chromatography(HPLC) for the presence of fluorescing compounds. Removal ofepicuticular waxes from leaves of some representative plantsby the same treatment resulted in a significant reduction inthe intensity of the blue fluorescence emitted from guard cells(Karabourniotis et al., 2001: Annals of Botany. doi:10.1006/anbo.2001.1386).Ferulic acid and p-coumaric acid, as well as a number of unidentifiedcompounds, were constituents of the rinses of both plants examinedbut only after alkaline hydrolysis of the samples. This indicatesthat both phenolic acids are tightly bound to the epicuticularwaxes of the leaves of these plants. HPLC chromatograms of rinsesderived either from the abaxial or adaxial surfaces of the hypostomaticleaves of O. europaea did not show significant qualitative differences.Nevertheless, ferulic acid (the main blue fluorescent component)was much more abundant in the abaxial than the adaxial surface.In P. persica, the composition of the sample derived from theabaxial surface was far more complex, and all constituents werepresent in much higher concentrations than in the sample derivedfrom the adaxial surface. Given the particular fluorescencecharacteristics of ferulic acid, the differences in its concentrationbetween abaxial and adaxial surfaces, and between the two species,and the fluorescence images of these surfaces under the microscope,we propose that this compound is probably the main epicuticularconstituent responsible for the blue fluorescence emitted byguard cells of the species examined. The functional significanceof the findings is discussed. Copyright 2001 Annals of BotanyCompany Cuticle, epicuticular waxes, ferulic acid, HPLC analysis, Olea europaea L., p-coumaric acid, phenolics,Prunus persica L., stomata  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号