首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We purified lipoamide dehydrogenase from cells of Pseudomonas putida PpG2 grown on glucose (LPD-glu) and lipoamide dehydrogenase from cells grown on valine (LPD-val), which contained branched-chain keto acid dehydrogenase. LPD-glu had a molecular weight of 56,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and LPD-val had a molecular weight of 49,000. The pH optimum for LPD-glu for reduced nicotinamide adenine dinucleotide oxidation was 7.4, compared with pH 6.5 for LPD-val. When oxidized nicotinamide adenine dinucleotide was included in the assay mixture, the pH optima were 7.1 and 5.7, respectively. There was also a difference in pH optima between the two enzymes for oxidized nicotinamide adenine dinucleotide reduction, but the Michaelis constants and maximum velocities were similar. A purified preparation of branched-chain keto acid dehydrogenase, which was deficient in lipoamide dehydrogenase, was stimulated 10-fold by LPD-val but not by LPD-glu, which suggested that the branched-chain keto acid dehydrogenase of P. putida has a specific requirement for LPD-val. In contrast, a partially purified preparation of 2-ketoglutarate dehydrogenase that was deficient in lipoamide dehydrogenase was stimulated by LPD-glu but not by LPD-val, indicating that this complex has a specific requirement of LPD-glu.  相似文献   

2.
Nicotinamide adenine dinucleotide phosphate-specific isocitrate dehydrogenase was extracted from etiolated pea (Pisum sativum L.) seedlings and was purified 65-fold. The purified enzyme exhibits one predominant protein band by polyacrylamide gel electrophoresis, which corresponds to the dehydrogenase activity as measured by the nitro blue tetrazolium technique. The reaction is readily reversible, the pH optima for the forward (nicotinamide adenine dinucleotide phosphate reduction) and reverse reactions being 8.4 and 6.0, respectively. The enzyme has different cofactor and inhibitor characteristics in the two directions. Manganese ions can be used as a cofactor for the reaction in each direction but magnesium ions only act as a cofactor in the forward reaction. Zinc ions, and to a lesser extent calcium ions, inhibit the enzyme at low concentrations when magnesium but not manganese is the metal activator. It is suggested that there is a fundamental difference between magnesium and manganese in the activation of the enzyme. The enzyme shows normal kinetics and the Michaelis contant for each substrate was determined. The inhibition by nucleotides, nucleosides, reaction products, and related compounds was studied. The enzyme shows a linear response to the mole fraction of reduced nicotinamide adenine dinucleotide phosphate when total nicotinamide adenine dinucleotide phosphate (nicotinamide adenine dinucleotide phosphate plus reduced nicotinamide adenine dinucleotide phosphate) is kept constant. Isocitrate in the presence of divalent metal ions will protect the enzyme from inactivation by p-chloromercuribenzoate. Protection is also afforded by manganese ions alone but not by magnesium ions alone There is a concerted inhibition of the enzyme by oxalacetate and glyoxylate.  相似文献   

3.
D J McKay  K J Stevenson 《Biochemistry》1979,18(21):4702-4707
Lipoamide dehydrogenase (EC 1.6.4.3) has been isolated from a total homogenate of frozen mycelium of the thermophilic fungus Malbranchea pulchella var. sulfurea by a three-step procedure involving ammonium sulfate fractionation, Procion Brilliant Blue M-R--Sepharose 4B chromatography, and hydroxylapatite chromatography. The second step is the key purification step with the Procion Brilliant Blue M-R dye acting as an affinity ligand for the enzyme. The purified enzyme gave a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The enzyme is a dimer of molecular weight 102 000, and each monomer of 51 000 molecular weight binds one molecule of flavin adenine dinucleotide. Other properties determined include a pH optimum of 8.2, a strong specificity for the substrates dihydrolipoamide and nicotinamide adenine dinucleotide, the apparent lack of multiple enzymic forms, the presence of diaphorase activity, and resistance to temperature denaturation up to 60 degrees C. The amino acid composition and absorption spectrum of the enzyme were also determined. The properties of lipoamide dehydrogenase from this source are very similar to those reported for the enzyme from serveral other sources.  相似文献   

4.
Glucose-6-phosphate dehydrogenase was partially purified from both glucose-grown and iron-glucose-grown Thiobacillus ferrooxidans. The enzyme possesses a dual nucleotide specificity for either nicotinamide adenine dinucleotide phosphate (NADP) or nicotinamide adenine dinucleotide (NAD) and has a molecular weight of 110,000 as determined by gel electrophoresis. Evidence is presented that T. ferrooxidans glucose-6-phosphate dehydrogenase is identical when isolated from cells grown mixotrophically (iron-glucose grown) or cells grown heterotrophically (glucose-grown cells). The enzyme is activated by Mg(2+), and to a lesser extent by low concentrations of Mn(2+). Reduced NAD inhibits the enzyme from T. ferrooxidans. No deviation from normal Michaelis-Menten kinetics was observed in velocity versus substrate concentration experiments. Adenosine triphosphate exerted a profound inhibition of the enzyme; the effect was 10 times more pronounced in the presence of NAD as compared to NADP. The physiological significance of this inhibition is discussed.  相似文献   

5.
The enzyme utilizing metaphosphate for nicotinamide adenine dinucleotide phosphorylation was purified 500-fold from B. ammoniagenes and its properties were studied. The isolated enzyme appeared homogeneous on disc gel electrophoresis; its molecular weight was determined to be 9.0 × 104 by gel filtration. This enzyme specifically phosphorylated nicotinamide adenine dinucleotide at the optimum pH at 6.0. Of phosphoryl donors tested, metaphosphate was most effective for the reaction, and adenosine-5′-triphosphate was less effective. The activity was inhibited by adenosine-5′-monophosphate, adenosine-5′-diphosphate or reduced pyridine nucleotides. The enzyme did not exhibit catalytic activity in the absence of a divalent cation. We concluded that the enzyme phosphorylating nicotinamide adenine dinucleotide in the presence of metaphosphate is distinct from adenosine-5′-triphosphate-dependent nicotinamide adenine dinucleotide kinase, and tentatively designated it metaphosphate-dependent nicotinamide adenine dinucleotide kinase.  相似文献   

6.
Late during sporulation, Bacillus subtilis produces glucose dehydrogenase (GlcDH; EC 1.1.1.47), which can react with D-glucose or 2-deoxy-D-glucose and can use nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) as a cofactor. This enzyme is found mainly in the forespore compartment and is present in spores; it is probably made exclusively in the forespore. The properties of GlcDH were determined both in crude cell extracts and after purification. The enzyme is stable at pH 6.5 but labile at pH 8 or higher; the pH optimum of enzyme activity is 8. After inactivation at pH 8, the activity can be recovered in crude extracts, but not in solutions of the purified enzyme, by incubation with 3 M KCl and 5 mM NAD or NADP. As determined by gel filtration, enzymatically active GlcDH has a molecular weight of about 115,000 (if the enzyme is assumed to be globular). GlcDH is distinct from a catabolite-repressible inositol dehydrogenase (EC 1.1.1.18), which can also react with D-glucose, requires specifically NAD as a cofactor, and has an electrophoretic mobility different from that of GlcDH.  相似文献   

7.
The two species of 6-phosphogluconate dehydrogenase (EC 1.1.1.43) from Pseudomonas multivorans were resolved from extracts of gluconate-grown bacteria and purified to homogeneity. Each enzyme comprised between 0.1 and 0.2% of the total cellular protein. Separation of the two enzymes, one which is specific for nicotinamide adenine dinucleotide phosphate and the other which is active with nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate was facilitated by the marked difference in their respective isoelectric points, which were at pH 5.0 and 6.9. Comparison of the subunit compositions of the two enzymes indicated that they do not share common peptide chains. The enzyme active with nicotinamide adenine dinucleotide was composed of two subunits of about 40,000 molecular weight, and the nicotinamide adenine dinucleotide phosphate-specific enzyme was composed of two subunits of about 60,000 molecular weight. Immunological studies indicated that the two enzymes do not share common antigenic determinants. Reduced nicotinamide adenine dinucleotide phosphate strongly inhibited the 6-phosphogluconate dehydrogenase active with nicotinamide adenine dinucleotide by decreasing its affinity for 6-phosphogluconate. Guanosine-5'-triphosphate had a similar influence on the nicotinamide adenine dinucleotide phosphate-specific 6-phosphogluconate dehydrogenase. These results in conjunction with other data indicating that reduced nicotinamide adenine dinucleotide phosphate stimulates the conversion of 6-phosphogluconate to pyruvate by crude bacterial extracts suggest that in P. multivorans, the relative distribution of 6-phosphogluconate into the pentose phosphate and Entner-Doudoroff pathways might be determined by the intracellular concentrations of reduced nicotinamide adenine dinucleotide phosphate and purine nucleotides.  相似文献   

8.
This work presents the purification and further characterization of the aldehyde dehydrogenase reconstitutively active in fatty alcohol oxidation, from rabbit intestinal microsomes. Microsomal aldehyde dehydrogenase was solubilized with cholate and purified by using chromatography on 6-amino-n-hexyl-Sepharose and 5'-AMP-Sepharose. The purified enzyme migrated as a single polypeptide band with molecular weight of 60,000 on SDS-polyacrylamide gel. By gel filtration in the presence of detergent, its apparent molecular weight was estimated to be 370,000. In the detergent-free solution, in contrast, it had a much higher molecular weight, indicating its association in forming large aggregates. The pH optimum was 9.0 when pyrophosphate buffer was used. The enzyme was active toward various aliphatic aldehydes with more than three carbons. The Km value for substrate seemed to decrease with increase in the chain length. The microsomal aldehyde dehydrogenase was not affected by disulfiram and MgCl2, which were, in contrast, highly inhibitory towards the activity of the cytosolic aldehyde dehydrogenase separated from intestinal mucosa.  相似文献   

9.
Escherichia coli are capable of growing anaerobically on L-rhamnose as a sole source of carbon and energy and without any exogenous hydrogen acceptor. When grown under such condition, synthesis of a nicotinamide adenine dinucleotide-linked L-lactaldehydepropanediol oxidoreductase is induced. The functioning of this enzyme results in the regeneration of nicotinamide adenine dinucleotide. The enzyme was purified to electrophoretic homogeneity. It has a molecular weight of 76,000, with two subunits that are indistinguishable by electrophoretic mobility. The enzyme reduces L-lactaldehyde to L-1,2-propanediol with reduced nicotinamide adenine dinucleotide as a cofactor. The Km were 0.035 mM L-lactaldehyde and 1.25 mM L-1,2-propanediol, at pH 7.0 and 9.5, respectively. The enzyme acts only on the L-isomers. Strong substrate inhibition was observed with L-1,2-propanediol (above 25 mM) in the dehydrogenase reaction. The enzyme has a pH optimum of 6.5 for the reduction of L-lactaldehyde and of 9.5 for the dehydrogenation of L-1,2-propanediol. The enzyme is, according to the parameters presented in this report, indistinguishable from the propanediol oxidoreductase induced by anaerobic growth on fucose.  相似文献   

10.
L-(+)-lactate dehydrogenase (LDH) from Staphylococcus epidermidis ATCC 14990 was purified by affinity chromatography. The purified enzyme was specifically activated by fructose-1,6-diphosphate (FDP). The concentration of FDP required for 50% maximal activity was about 0.15 mM. The enzyme activity was inhibited by adenosine diphosphate (ADP) and oxamate. The inhibition by ADP appeared to be competitive with respect to reduced nicotinamide adenine dinucleotide (NADH). The catalytic activity of the LDH for pyruvate reduction exhibited an optimum at pH 5.6. The enzyme is composed of four, probably identical, subunits. Sephadex gel filtration and sedimentation velocity at pH 5.6 Yielded molecular weights of about 130 000 and 126 000, respectively. The molecular weight at pH 6.5 and 7.0 was found to be only about 68 000. Polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate and sedimentation velocity at pH 2.0 or 8.5 revealed monomeric subunits with an approximate molecular weight of 36000. The thermostability of the heat labile enzyme was increased in the presence of FDP, NADH and pyruvate. The purified LDH exhibited an anomalous type of kinetic behavior. Plots of initial velocity vs. different concentrations of pyruvate, NADH or FDP led to saturation curves with intermediary plateau regions. As a consequence of these plateau regions the Hill coefficient alternated between lower and higher n-values. Some distinguishing properties of the S. epidermidis LDH and other LDHs activated by FDP are discussed.  相似文献   

11.
The noncharacterized gene previously proposed as the D-tagatose 3-epimerase gene from Agrobacterium tumefaciens was cloned and expressed in Escherichia coli. The expressed enzyme was purified by three-step chromatography with a final specific activity of 8.89 U/mg. The molecular mass of the purified protein was estimated to be 132 kDa of four identical subunits. Mn2+ significantly increased the epimerization rate from D-fructose to D-psicose. The enzyme exhibited maximal activity at 50 degrees C and pH 8.0 with Mn2+. The turnover number (k(cat)) and catalytic efficiency (k(cat)/Km) of the enzyme for D-psicose were markedly higher than those for d-tagatose, suggesting that the enzyme is not D-tagatose 3-epimerase but D-psicose 3-epimerase. The equilibrium ratio between D-psicose and D-fructose was 32:68 at 30 degrees C. D-Psicose was produced at 230 g/liter from 700-g/liter D-fructose at 50 degrees C after 100 min, corresponding to a conversion yield of 32.9%.  相似文献   

12.
D A Nealon  R A Cook 《Biochemistry》1979,18(16):3616-3622
Neurospora crassa nicotinamide adenine dinucleotide specific isocitrate dehydrogenase (EC 1.1.1.41) has been purified to homogeneity by the criteria of disc gel electrophoresis and sedimentation equilibrium. Purification of the enzyme is facilitated by the presence of phenylmethanesulfonyl fluoride and by the use of a ribose-linked adenosine 5'-monophosphate affinity column. The enzyme appears to be composed of nonidentical subunits of molecular weights 42 800 and 38 300 as estimated by polyacrylamide gel electrophoresis in 0.1% sodium dodecyl sulfate. From the intensity of each band and the native molecular weight, it is concluded that the enzyme is composed of either six or eight subunits, three or four of each type, respectively. The availability of pure enzyme will allow clarification of the structure of the enzyme by ligand binding studies.  相似文献   

13.
An improved method was developed to sequentially fractionate succinate-cytochrome c reductase into three reconstitutive active enzyme systems with good yield: pure succinate dehydrogenase, ubiquinone-binding protein fraction and a highly purified ubiquinol-cytochrome c reductase (cytochrome b-c1 III complex). An extensively dialyzed succinate-cytochrome c reductase was first separated into a succinae dehydrogenase fraction and the cytochrome b-c1 complex by alkali treatment. The resulting succinate dehydrogenase fraction was further purified to homogeneity by the treatment of butanol, calcium phosphate gel adsorption and ammonium sulfate fractionation under anaerobic condition in the presence of succinate and dithiothreitol. The cytochrome b-c1 complex was separated into chtochrome b-c1 III complex and ubiquinone-binding protein fractions by careful ammonium acetate fractionation in the presence of deoxycholate. The purified succinate dehydrogenase contained only two polypeptides with molecular weights of 70 000 anbd 27 000 as revealed by the sodium dodecyl sulfate polyacrylamide gel electrophoretic pattern. The enzyme has the reconstitutive activity and a low Km ferricyanide reductase activity of 85 mumol succinate oxidized per min per mg protein at 38 degrees C. Chemical composition analysis of cytochrome b-c1 III complex showed that the preparation was completely free of contamination of succinate dehydrogenase and ubiquinone-binding protein and was 30% more pure than the available preparation. When these three components were mixed in a proper ratio, a thenoyltrifluoroacetone- and antimycin A-sensitive succinate-cytochrome c reductase was reconstituted.  相似文献   

14.
The antifungal antibiotic flavensomycin inhibited the oxidation of amino acids and of glucose by Penicillium oxalicum. The compound inhibited l-amino acid oxidase (EC 1.4.3.2) activity for l-leucine and l-phenylalanine, and also d-amino acid oxidase (EC 1.4.3.3) in the oxidation for dl-alanine. The addition of flavin adenine dinucleotide, which is a cofactor for this enzyme, antagonized the action of the antibiotic. Glucose oxidase (EC 1.1.3.4) was also inhibited. The antibiotic inhibited the reduced nicotinamide adenine dinucleotide (NADH(2)) cytochrome c reductase (EC 1.6.2.1) as well as the much slower nonenzymatic reduction of this cytochrome by the nucleotide. Reduced cytochrome c was also oxidized nonenzymatically by flavensomycin. The antibiotic completely inhibited the action of rabbit muscle lactic dehydrogenase (EC 1.1.1.27) in promoting the reduction of pyruvate by NADH(2) but only slightly affected the reverse reaction. Alcohol dehydrogenase (EC 1.1.1.1) was also similarly inhibited. Flavensomycin prevented the reduction of nicotinamide adenine dinucleotide phosphate by isocitrate in the presence of isocitrate dehydrogenase (EC 1.1.1.42). The hexokinase (EC 2.7.1.1)-catalyzed phosphorylation of glucose, in which the adenosine triphosphate acts as a phosphate donor, was only slightly affected. Flavensomycin also inhibited the action of yeast lactate dehydrogenase (EC 1.1.2.3) on the reduction of cytochrome c. High concentrations of cytochrome c were antagonistic to this reaction. The results point to an interference with enzymatically controlled hydrogen or electron transfer as the mechanism of the antifungal activity of flavensomycin.  相似文献   

15.
Soluble formate dehydrogenase from Methanobacterium formicicum was purified 71-fold with a yield of 35%. Purification was performed anaerobically in the presence of 10 mM sodium azide which stabilized the enzyme. The purified enzyme reduced, with formate, 50 mumol of methyl viologen per min per mg of protein and 8.2 mumol of coenzyme F420 per min per mg of protein. The apparent Km for 7,8-didemethyl-8-hydroxy-5-deazariboflavin, a hydrolytic derivative of coenzyme F420, was 10-fold greater (63 microM) than for coenzyme F420 (6 microM). The purified enzyme also reduced flavin mononucleotide (Km = 13 microM) and flavin adenine dinucleotide (Km = 25 microM) with formate, but did not reduce NAD+ or NADP+. The reduction of NADP+ with formate required formate dehydrogenase, coenzyme F420, and coenzyme F420:NADP+ oxidoreductase. The formate dehydrogenase had an optimal pH of 7.9 when assayed with the physiological electron acceptor coenzyme F420. The optimal reaction rate occurred at 55 degrees C. The molecular weight was 288,000 as determined by gel filtration. The purified formate dehydrogenase was strongly inhibited by cyanide (Ki = 6 microM), azide (Ki = 39 microM), alpha,alpha-dipyridyl, and 1,10-phenanthroline. Denaturation of the purified formate dehydrogenase with sodium dodecyl sulfate under aerobic conditions revealed a fluorescent compound. Maximal excitation occurred at 385 nm, with minor peaks at 277 and 302 nm. Maximal fluorescence emission occurred at 455 nm.  相似文献   

16.
Glutaryl-coenzyme A (CoA) dehydrogenase and the electron transfer flavoprotein (ETF) of Paracoccus denitrificans were purified to homogeneity from cells grown with glutaric acid as the carbon source. Glutaryl-CoA dehydrogenase had a molecular weight of 180,000 and was made up of four identical subunits with molecular weights of about 43,000 each of which contained one flavin adenine dinucleotide molecule. The enzyme catalyzed an oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA, was maximally stable at pH 5.0, and lost activity readily at pH values above 7.0. The enzyme had a pH optimum in the range of 8.0 to 8.5, a catalytic center activity of about 960 min-1, and apparent Michaelis constants for glutaryl-CoA and pig liver ETF of about 1.2 and 2.5 microM, respectively. P. denitrificans ETF had a visible spectrum identical to that of pig liver ETF and was made up of two subunits, only one of which contained a flavin adenine dinucleotide molecule. The isoelectric point of P. denitrificans ETF was 4.45 compared with 6.8 for pig liver ETF. P. denitrificans ETF accepted electrons not only from P. denitrificans glutaryl-CoA dehydrogenase, but also from the pig liver butyryl-CoA and octanoyl-CoA dehydrogenases. The apparent Vmax was of similar magnitude with either pig liver or P. denitrificans ETF as an electron acceptor for these dehydrogenases. P. denitrificans glutaryl-CoA dehydrogenase and ETF were used to assay for the reduction of ubiquinone 1 by ETF-Q oxidoreductase in cholate extracts of P. denitrificans membranes. The ETF-Q oxidoreductase from P. denitrificans could accept electrons from either the bacterial or the pig liver ETF. In either case, the apparent Km for ETF was infinitely high. P. denitrificans ETF-Q oxidoreductase was purified from contaminating paramagnets, and the resultant preparation had electron paramagnetic resonance signals at 2.081, 1.938, and 1.879 G, similar to those of the mitochondrial enzyme.  相似文献   

17.
A novel oxidation of D-pentonates to 4-keto-D-pentonates was analyzed with Gluconobacter thailandicus NBRC 3258. D-Pentonate 4-dehydrogenase activity in the membrane fraction was readily inactivated by EDTA and it was reactivated by the addition of PQQ and Ca2+. D-Pentonate 4-dehydrogenase was purified to two different subunits, 80 and 14 kDa. The absorption spectrum of the purified enzyme showed no typical absorbance over the visible regions. The enzyme oxidized D-pentonates to 4-keto-D-pentonates at the optimum pH of 4.0. In addition, the enzyme oxidized D-fructose to 5-keto-D-fructose, D-psicose to 5-keto-D-psicose, including the other polyols such as, glycerol, D-ribitol, D-arabitol, and D-sorbitol. Thus, D-pentonate 4-dehydrogenase was found to be identical with glycerol dehydrogenase (GLDH), a major polyol dehydrogenase in Gluconobacter species. The reaction versatility of quinoprotein GLDH was notified in this study.  相似文献   

18.
NADPH-cytochrome c (P-450) reductase (EC 1.6.2.4) was purified to apparent homogeneity from microsomes of house flies, Musca domestica L. The purification procedure involves column chromatography on three different resins. The key step in the purification scheme is the chromatography of the enzyme mixture on an affinity column of agarose-hexane-nicotinamide adenine dinucleotide phosphate. The enzyme has an estimated molecular weight of 83,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and contains 1 mol each of FAD and FMN per mol of enzyme. The enzyme exhibited a Bi Bi ping-pong kinetic mechanism with NADPH and cytochrome c. The Vmax and Km for cytochrome c were 42.3 mumol min-1 mg-1 and 12.7 muM, respectively. Turnover numbers based on micromoles of enzyme were 2,600 min-1. NADP+ and 2'-AMP both inhibited the reductases with apparent Ki values of 6.9 and 187 muM, respectively. These preparations of NADPH-cytochrome c reductase were found to reduce purified house fly cytochrome P-450 in the presence of NADPH.  相似文献   

19.
Particulate alcohol dehydrogenase of acetic acid bacteria that is mainly participated in vinegar fermentation was purified to homogeneous state from Gluconobacter suboxydans IFO 12528. Solubilization of enzyme from the bacterial membrane fraction by Triton X-100 and subsequent fractionation on DEAE-Sephadex A-50 and hydroxylapatite was successful in enzyme purification. A cytochrome c-like component was tightly bound to the dehydrogenase protein and existed as an enzyme-cytochrome complex. It was also confirmed that the alcohol dehydrogenase is not a cytochrome component itself. The molecular weight of the enzyme was determined to be 150,000, and gel electrophoresis showed the presence of three subunits having a molecular weight of 85,000, 49,000 and 14,400. The smallest subunit was corresponded to the cytochrome c-like component. Ethanol was oxidized in the presence of dyes in vitro but NAD or NADP were not required as hydrogen acceptor. Unlike NAD- linked alcohol dehydrogenase in yeast or liver and other primary alcohol dehydrogenases in methanol utilizing bacteria, the enzyme from the acetic acid bacteria showed its optimum pH at fairly acidic pH.  相似文献   

20.
We have purified an NADH-dependent ferredoxin reductase from crude extracts of Streptomyces griseus cells grown in soybean flour-enriched medium. The purified protein has a molecular weight of 60,000 as determined by sodium dodecyl sulfate gel electrophoresis. The enzyme requires Mg2+ ion for catalytic activity in reconstituted assays, and its spectral properties resemble those of many other flavin adenine dinucleotide-containing flavoproteins. A relatively large number of hydrophobic amino acid residues are found by amino acid analysis, and beginning with residue 7, a consensus flavin adenine dinucleotide binding sequence, GXGXXGXXXA, is revealed in this protein. In the presence of NADH, the ferredoxin reductase reduces various electron acceptors such as cytochrome c, potassium ferricyanide, dichlorophenolindophenol, and nitroblue tetrazolium. However, only cytochrome c reduction by the ferredoxin reductase is enhanced by the addition of ferredoxin. In the presence of NADH, S. griseus ferredoxin and cytochrome P-450soy, the ferredoxin reductase mediates O dealkylation of 7-ethoxycoumarin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号