首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemerin is an adipocyte-secreted protein that regulates adipogenesis and the metabolic function of mature adipocytes via activation of chemokine-like receptor 1 (CMKLR1). Herein we report the interaction of peroxisome proliferator-activated receptor γ (PPARγ) and chemerin in the context of adipogenesis. Knockdown of chemerin or CMKLR1 expression or antibody neutralization of secreted chemerin protein arrested adipogenic clonal expansion of bone marrow mesenchymal stem cells (BMSCs) by inducing a loss of G(2)/M cyclins (cyclin A2/B2) but not the G(1)/S cyclin D2. Forced expression of PPARγ in BMSCs did not completely rescue this loss of clonal expansion and adipogenesis following chemerin or CMKLR1 knockdown. However, forced expression and/or activation of PPARγ in BMSCs as well as non-adipogenic cell types such as NIH-3T3 embryonic fibroblasts and MCA38 colon carcinoma cells significantly induced chemerin expression and secretion. Sequence analysis revealed a putative PPARγ response element (PPRE) sequence within the chemerin promoter. This PPRE was able to confer PPARγ responsiveness on a heterologous promoter, and mutation of this sequence abolished activation of the chemerin promoter by PPARγ. Chromatin immunoprecipitation confirmed the direct association of PPARγ with this PPRE. Treatment of mice with rosiglitazone elevated chemerin mRNA levels in adipose tissue and bone marrow coincident with an increase in circulating chemerin levels. Together, these findings support a fundamental role for chemerin/CMKLR1 signaling in clonal expansion during adipocyte differentiation as well as a role for PPARγ in regulating chemerin expression.  相似文献   

2.
To explore a novel adipokine, we screened adipocyte differentiation-related gene and found that TIG2/chemerin was strongly induced during the adipocyte differentiation. Chemerin was secreted by the mature 3T3-L1 adipocytes and expressed abundantly in adipose tissue in vivo as recently described. Intriguingly, the expression of chemerin was differently regulated in the liver and adipose tissue in db/db mice. In addition, serum chemerin concentration was decreased in db/db mice. Chemerin and its receptor/ChemR23 were expressed in mature adipocytes, suggesting its function in autocrine/paracrine fashion. Finally, chemerin potentiated insulin-stimulated glucose uptake concomitant with enhanced insulin signaling in the 3T3-L1 adipocytes. These data establish that chemerin is a novel adipokine that regulates adipocyte function.  相似文献   

3.
Chemerin--a new adipokine that modulates adipogenesis via its own receptor   总被引:5,自引:0,他引:5  
Chemerin, an 18 kDa protein secreted by adipose tissue, was reported to modulate immune system function through its binding to the chemerin receptor (chemerinR). We herein demonstrate that chemerin also influences adipose cell function. Our data showed that chemerin and chemerinR mRNA expressions were highly expressed in adipose tissues, and that their expression levels were up-regulated in mice fed a high-fat diet. Both chemerin and chemerinR mRNA expression dramatically increased during the differentiation of 3T3-L1 cells and human preadipocytes into adipocytes. Furthermore, recombinant chemerin induced the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK 1/2) and lipolysis in differentiated 3T3-L1 adipocytes. Thus, the adipokine chemerin likely regulates adipocyte function by autocrine/paracrine mechanisms.  相似文献   

4.
Chemerin is a leukocyte chemoattractant and adipokine with important immune and metabolic roles. Chemerin, secreted in an inactive form prochemerin, undergoes C-terminal proteolytic cleavage to generate active chemerin, a ligand for the chemokine-like receptor-1 (CMKLR1). We previously identified that adipocytes secrete and activate chemerin. Following treatment with the obesity-associated inflammatory mediator TNFα, unknown adipocyte mechanisms are altered resulting in an increased ratio of active to total chemerin production. Based on these findings we hypothesized adipocytes produce proteases capable of modifying chemerin and its ability to activate CMKRL1. 3T3-L1 adipocytes expressed mRNA of immunocyte and fibrinolytic proteases known to activate chemerin in vitro. Following treatment with a general protease inhibitor cocktail (PIC), the TNFα-stimulated increase in apparent active chemerin concentration in adipocyte media was amplified 10-fold, as measured by CMKLR1 activation. When the components of the PIC were investigated individually, aprotinin, a serine protease inhibitor, blocked 90% of the TNFα-associated increase in active chemerin. The serine proteases, elastase and tryptase were elevated in adipocyte media following treatment with TNFα and their targeted neutralization recapitulated the aprotinin-mediated effects. In contrast, bestatin, an aminopeptidase inhibitor, further elevated the TNFα-associated increase in active chemerin. Our results support that adipocytes regulate chemerin by serine protease-mediated activation pathways and aminopeptidase deactivation pathways. Following TNFα treatment, increased elastase and tryptase modify the balance between activation and deactivation, elevating active chemerin concentration in adipocyte media and subsequent CMKLR1 activation.  相似文献   

5.
6.
The APS adapter protein plays a pivotal role in coupling the insulin receptor to CAP and c-Cbl in the phosphatidylinositol 3-kinase-independent pathway of insulin-stimulated glucose transport. Yeast two-hybrid screening of a 3T3-L1 adipocyte library using APS as a bait identified a 418-amino acid ankyrin and SOCS (suppressor of cytokine signaling) box protein Asb6 as an interactor. Asb6 is an orphan member of a larger family of Asb proteins that are ubiquitously expressed. However, Asb6 expression appears to be restricted to adipose tissue. Asb6 was specifically expressed in 3T3-L1 adipocytes as a 50-kDa protein but not in fibroblasts. In Chinese hamster ovary-insulin receptor (CHO-IR) cells Myc epitope-tagged APS interacted constitutively with FLAG-tagged Asb6 in the presence or absence of insulin stimulation and insulin stimulation did not alter the interaction. In 3T3-L1 adipocytes, insulin receptor activation was accompanied by the APS-dependent recruitment of Asb6. Asb6 did not appear to undergo tyrosine phosphorylation. Immunofluorescence and confocal microscopy studies revealed that Asb6 colocalized with APS in CHO cells and in 3T3-L1 adipocytes. In immunoprecipitation studies in CHO cells or 3T3-L1 adipocytes, the Elongin BC complex was found to be bound to Asb6, and activation of the insulin receptor was required to facilitate Asb6 recruitment along with Elongins B/C. Prolonged insulin stimulation resulted in the degradation of APS when Asb6 was co-expressed but not in the absence of Asb6. We conclude that Asb6 functions to regulate components of the insulin signaling pathway in adipocytes by facilitating degradation by the APS-dependent recruitment of Asb6 and Elongins BC.  相似文献   

7.
In order to identify novel substrates involved in insulin receptor signaling, a yeast two-hybrid 3T3-L1 adipocyte cDNA library was screened with the cytoplasmic domain of the human insulin receptor as bait. Here we describe the isolation and characterization of an interacting protein, APS, which contains pleckstrin homology and Src homology 2 domains and several potential tyrosine phosphorylation sites. APS mRNA and protein are expressed primarily in skeletal muscle, heart, and adipose tissue, and in differentiated 3T3-L1 adipocytes. We show that APS associates with phosphotyrosines situated within the activation loop of the insulin receptor via the APS Src homology 2 domain. Insulin stimulation of 3T3-L1 adipocytes resulted in rapid tyrosine phosphorylation of endogenous APS on tyrosine 618, whereas platelet-derived growth factor treatment resulted in no APS phosphorylation. In summary, we have identified a new insulin receptor substrate that is primarily expressed in insulin-responsive tissues and in 3T3-L1 adipocytes whose phosphorylation shows insulin receptor specificity. These findings suggest a potential role for APS in insulin-regulated metabolic signaling pathways.  相似文献   

8.
The canonical Wnt/beta-catenin signaling pathway plays diverse roles in embryonic development and disease. Activation of this pathway, likely by Wnt-10b, has been shown to inhibit adipogenesis in cultured 3T3-L1 preadipocytes and in mice. Here, we report that the beta-catenin antagonist Chibby (Cby) is required for adipocyte differentiation. Cby is expressed in adipose tissue in mice, and Cby protein levels increase during adipogenic differentiation of 3T3-L1 cells. Ectopic expression of Cby induces spontaneous differentiation of these cells into mature adipocytes to an extent similar to that of dominant-negative Tcf-4. In contrast, depletion of Cby by RNA interference potently blocks adipogenesis of 3T3-L1 and mouse embryonic stem cells. In support of this, embryonic fibroblasts obtained from Cby-deficient embryos display attenuated differentiation to the adipogenic lineage. Mechanistically, Cby promotes adipocyte differentiation, in part by inhibiting beta-catenin, since gain or loss of function of Cby influences beta-catenin signaling in 3T3-L1 cells. Our results therefore establish Cby as a novel proadipogenic factor required for adipocyte differentiation.  相似文献   

9.
Effects of cardiotrophin on adipocytes   总被引:2,自引:0,他引:2  
Cardiotrophin (CT-1) is a naturally occurring protein member of the interleukin (IL)-6 cytokine family and signals through the gp130/leukemia inhibitory factor receptor (LIFR) heterodimer. The formation of gp130/LIFR complex triggers the auto/trans-phosphorylation of associated Janus kinases, leading to the activation of Janus kinase/STAT and MAPK (ERK1 and -2) signaling pathways. Since adipocytes express both gp130 and LIFR proteins and are responsive to other IL-6 family cytokines, we examined the effects of CT-1 on 3T3-L1 adipocytes. Our studies have shown that CT-1 administration results in a dose- and time-dependent activation and nuclear translocation of STAT1, -3, -5A, and -5B as well as ERK1 and -2. We also confirmed the ability of CT-1 to induce signaling in fat cells in vivo. Our studies revealed that neither CT-1 nor ciliary neurotrophic factor treatment affected adipocyte differentiation. However, acute CT-1 treatment caused an increase in SOCS-3 mRNA in adipocytes and a transient decrease in peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA that was regulated by the binding of STAT1 to the PPARgamma2 promoter. The effects of CT-1 on SOCS-3 and PPARgamma mRNA were independent of MAPK activation. Chronic administration of CT-1 to 3T3-L1 adipocytes resulted in a decrease of both fatty acid synthase and insulin receptor substrate-1 protein expression yet did not effect the expression of a variety of other adipocyte proteins. Moreover, chronic CT-1 treatment resulted in the development of insulin resistance as judged by a decrease in insulin-stimulated glucose uptake. In summary, CT-1 is a potent regulator of signaling in adipocytes in vitro and in vivo, and our current efforts are focused on determining the role of this cardioprotective cytokine on adipocyte physiology.  相似文献   

10.
11.
12.
Conjugated linoleic acids (CLAs) are a group of dietary fatty acids that are widely marketed as weight loss supplements. The isomer responsible for this effect is the trans-10, cis-12 CLA (10E12Z-CLA) isomer. 10E12Z-CLA treatment during differentiation of 3T3-L1 adipocytes induces expression of prostaglandin-endoperoxide synthase-2 (Cyclooxygenase-2; COX-2). This work demonstrates that COX-2 is also induced in fully differentiated 3T3-L1 adipocytes after a single treatment of 10E12Z-CLA at both the mRNA (20-40 fold) and protein level (7 fold). Furthermore, prostaglandin (PG)F(2α), but not PGE(2), is significantly increased 10 fold. In female BALB/c mice fed 0.5% 10E12Z-CLA for 10 days, COX-2 was induced in uterine adipose (2 fold). In vitro, pharmacological COX-2 inhibition did not block the effect of 10E12Z-CLA on adipocyte-specific gene expression although PGF(2α) was dose-dependently decreased. These studies demonstrate that PGF(2α) was not by itself responsible for the reduction in adipocyte character due to 10E12Z-CLA treatment. However, PGF(2α), either exogenously or endogenously in response to 10E12Z-CLA, increased the expression of the potent mitogen and epidermal growth factor (EGF) receptor (EGFR) ligand epiregulin in 3T3-L1 adipocytes. Blocking PGF(2α) signaling with the PGF(2α) receptor (FP) antagonist AL-8810 returned epiregulin mRNA levels back to baseline. Although this pathway is not directly responsible for adipocyte dependent gene expression, these results suggest that this signaling pathway may still have broad effect on the adipocyte and surrounding cells.  相似文献   

13.
14.
The protein product of the c-Cbl proto-oncogene is prominently tyrosine phosphorylated in response to insulin in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. After insulin-dependent tyrosine phosphorylation, c-Cbl specifically associates with endogenous c-Crk and Fyn. These results suggest a role for tyrosine-phosphorylated c-Cbl in 3T3-L1 adipocyte activation by insulin. A yeast two-hybrid cDNA library prepared from fully differentiated 3T3-L1 adipocytes was screened with full-length c-Cbl as the target protein in an attempt to identify adipose-specific signaling proteins that interact with c-Cbl and potentially are involved in its tyrosine phosphorylation in 3T3-L1 adipocytes. Here we describe the isolation and the characterization of a novel protein that we termed CAP for c-Cbl-associated protein. CAP contains a unique structure with three adjacent Src homology 3 (SH3) domains in the C terminus and a region showing significant sequence similarity with the peptide hormone sorbin. Both CAP mRNA and proteins are expressed predominately in 3T3-L1 adipocytes and not in 3T3-L1 fibroblasts. CAP associates with c-Cbl in 3T3-L1 adipocytes independently of insulin stimulation in vivo and in vitro in an SH3-domain-mediated manner. Furthermore, we detected the association of CAP with the insulin receptor. Insulin stimulation resulted in the dissociation of CAP from the insulin receptor. Taken together, these data suggest that CAP represents a novel c-Cbl binding protein in 3T3-L1 adipocytes likely to participate in insulin signaling.  相似文献   

15.
16.
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone that exerts insulinotropic and growth and survival effects on pancreatic β-cells. Additionally, there is increasing evidence supporting an important role for GIP in the regulation of adipocyte metabolism. In the current study we examined the molecular mechanisms involved in the regulation of GIP receptor (GIPR) expression in 3T3-L1 cells. GIP acted synergistically with insulin to increase neutral lipid accumulation during progression of 3T3-L1 preadipocytes to the adipocyte phenotype. Both GIPR protein and mRNA expression increased during 3T3-L1 cell differentiation, and this increase was associated with upregulation of nuclear levels of sterol response element binding protein 1c (SREBP-1c) and peroxisome proliferator-activated receptor γ (PPARγ), as well as acetylation of histones H3/H4. The PPARγ receptor agonists LY171883 and rosiglitazone increased GIPR expression in differentiated 3T3-L1 adipocytes, whereas the antagonist GW9662 ablated expression. Additionally, both PPARγ and acetylated histones H3/H4 were shown to bind to a region of the GIPR promoter containing the peroxisome proliferator response element (PPRE). Knockdown of PPARγ in differentiated 3T3-L1 adipocytes, using RNA interference, reduced GIPR expression, supporting a functional regulatory role. Taken together, these studies show that GIP and insulin act in a synergistic manner on 3T3-L1 cell development and that adipocyte GIPR expression is upregulated through a mechanism involving interactions between PPARγ and a GIPR promoter region containing an acetylated histone region.  相似文献   

17.
18.
Within the first 24 h of hormonally stimulated adipocyte differentiation, murine 3T3-L1 preadipocytes undergo a mitotic expansion phase prior to terminal differentiation. During this time, the cell cycle regulatory proteins, p130 and p107 undergo dramatic differential expression and the transient increase in expression of p107 appears to be required for terminal differentiation. Recently, human adipose-derived human stem cells (hASC) of mesenchymal origin have been used as a model of human adipocyte differentiation and we sought to determine if differentiating hASC undergo clonal expansion and if the regulated expression of p130/p107 was similar to that observed during 3T3-L1 adipogenesis. Results indicate that differentiating hASC, unlike 3T3-L1 cells do not undergo clonal expansion and p130 expression gradually diminishes across differentiation. However, p107 expression is transiently increased during hASC differentiation in a manner analogous to 3T3-L1 cells suggesting a similar role for p107 in terminal differentiation in human adipocytes.  相似文献   

19.
Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer–binding protein δ expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activator of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator–activator receptor γ expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-α did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.  相似文献   

20.
tub encodes a protein of poorly understood function, but one implicated strongly in the control of energy balance and insulin sensitivity. Whilst tub expression is particularly prominent in neurones it is also detectable in extraneuronal tissues. We show here, for the first time, expression of TUB protein in rat adipocytes and the murine adipocyte model 3T3-L1 and demonstrate that insulin induces its tyrosine phosphorylation and association with the insulin receptor. TUB expression is regulated developmentally during adipogenic differentiation of 3T3-L1 cells and in response to cell treatment with thyroid hormone or induction of insulin resistance. TUB was upregulated 5- to 10-fold in adipocytes from obese Zucker rats and 3T3-L1 adipocytes that had been rendered insulin resistant, a response that could be antagonised by rosiglitasone, an insulin-sensitising drug. Our data are consistent with a previously unforeseen role for TUB in insulin signalling and fuel homeostasis in adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号