首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
SARS冠状病毒的分离培养与鉴定   总被引:7,自引:0,他引:7  
采集急性期病人的咽拭子或漱口液,用Vero 、Vero E6、MDCK、Hela 、Hep-2等传代细胞,人胚肺二倍体细胞(HEL)和人胚肺(HP)细胞分离培养严重急性呼吸系统综合症(SARS)的病原体.结果用Vero、Vero E6、MDCK和HP细胞从标本中分离到一株病毒.间接免疫荧光试验发现,恢复期病人血清可与所分离的病毒起反应,在胞膜和胞浆中出现翠绿色荧光;中和试验结果表明,恢复期病人血清能中和病毒对细胞的致细胞病变作用;电镜下可观察到冠状病毒样颗粒;RT-PCR法可扩增到冠状病毒特异性基因片段,且其核苷酸序列与国内外发表的SARS冠状病毒(SARS-Cov)相应的基因序列相符,同源性达到100%.从传染性非典型肺炎病人的漱口液中分离到SARS冠状病毒,这种病毒与传染性非典型肺炎密切相关.  相似文献   

2.
采集急性期病人的咽拭子或漱口液,用Vero、Vero E6、MDCK、Hela、Hep-2等传代细胞,人胚肺二倍体细胞(HEL)和人胚肺(HP)细胞分离培养严重急性呼吸系统综合症(SARS)的病原体。结果用Vero、Vero E6、MDCK和HP细胞从标本中分离到一株病毒。间接免疫荧光试验发现,恢复期病人血清可与所分离的病毒起反应,在胞膜和胞浆中出现翠绿色荧光;中和试验结果表明,恢复期病人血清能中和病毒对细胞的致细胞病变作用;电镜下可观察到冠状病毒样颗粒;RT-PCR法可扩增到冠状病毒特异性基因片段,且其核苷酸序列与国内外发表的SARS冠状病毒(SARS-Cov)相应的基因序列相符,同源性达到100%。从传染性非典型肺炎病人的漱口液中分离到SARS冠状病毒,这种病毒与传染性非典型肺炎密切相关。  相似文献   

3.
【背景】蓝舌病病毒(Bluetongue virus,BTV)是一种严重危害反刍动物的虫媒病毒,我国存在12种血清型BTV (BTV-1、-2、-3、-4、-5、-7、-9、-12、-15、-16、-21和-24)的流行。【目的】建立12种血清型BTV的RT-qPCR定型方法,为BTV的诊断与流行病学研究提供技术保障。【方法】根据我国流行BTV基因节段2 (Seg-2)序列设计引物和TaqMan探针,对引物的特异性与敏感性进行评估;以12种血清型BTV毒株和核酸阳性血液样本验证建立的血清型RT-qPCR检测方法;将其应用于库蠓与动物血液样本中BTV的定型。【结果】建立的BTV血清型RT-qPCR检测方法具有良好的特异性与灵敏性,反应的扩增效率(E)值90.3%,相关系数(R2)值在0.991-0.999之间,对12种血清型BTV核酸的检测下限在25-48拷贝之间。对165株BTV的RT-qPCR定型结果与病毒的Seg-2测序鉴定结果一致;对194份采集于哨兵动物的BTV核酸阳性血液样本的RT-qPCR定型结果与感染动物上分离BTV的血清型一致。采用建立的方法,从2019年云南省师宗县与景洪市采集的库蠓与牛血液样本中鉴定出6种血清型的BTV(BTV-1、-2、-4、-5、-16和-24)。【结论】研究建立的12种BTV血清型RT-qPCR定型方法具有特异、敏感和省时的优点,可用于媒介与动物感染BTV的血清型定型,具有良好的应用与推广价值。  相似文献   

4.
采用C6/36细胞培养分离活病毒、间接免疫荧光染色检测病毒抗原、RT-PCR扩增病毒基因片段和PCR产物测序等方法,对实验感染的三带喙库蚊Culex tritaeniorhynchus和来亨鸡血液样本中的西尼罗病毒进行分离和鉴定。结果表明,接种实验感染蚊虫研磨液和来亨鸡血液样本的C6/36细胞出现细胞融合、空泡形成的病变效应; 用西尼罗病毒抗血清进行间接免疫荧光染色,感染病毒的细胞呈现黄绿色荧光,为阳性反应; 采用3对不同引物的RT- PCR体系扩增分别出现预期的408 bp、498 bp和559 bp的基因片段,序列测定证实扩增序列与实验所用毒株相应的基因序列基本相同。从而证实实验感染三带喙库蚊和来亨鸡体血液内的西尼罗病毒与实验感染所用的西尼罗病毒Chin-01株一致。  相似文献   

5.
为研究本实验室制备的一株抗蓝舌病病毒8型(BTV-8)VP2蛋白的单克隆抗体(MAb)3G11识别的B细胞抗原表位,利用噬菌体肽库展示技术对3G11识别的抗原表位进行筛选并鉴定。经过4轮淘选后挑取蓝斑测序,测序结果经分析后获得KLLAT序列,与BTV-8 VP2蛋白氨基酸序列比对后获得共同的短肽序列为283LL284;合成4种短肽序列:KLLAA、KALAT、KLAAT和KLLAT,与3G11细胞上清和腹水分别进行间接ELISA鉴定,结果表明,短肽KLLAA和KLLAT与3G11细胞上清及腹水具有较强的结合能力;与24种BTV标准阳性血清反应结果表明,这两种短肽都可与BTV-8阳性血清发生特异性反应;序列分析结果可见,该表位的氨基酸序列283LL284在不同来源的BTV-8毒株间保守,确定283LL284为MAb3G11识别抗原表位的关键氨基酸。本研究为建立8型BTV特异性的免疫学检测方法和相关病毒蛋白的功能研究奠定了基础。  相似文献   

6.
三带喙库蚊体内猪繁殖与呼吸综合征病毒的分离与鉴定   总被引:1,自引:0,他引:1  
【目的】调查猪场蚊虫是否能携带猪繁殖与呼吸综合征(PRRS)病毒。【方法】采集发生PRRS疫情的3个养猪场蚊虫样本,采用RT-PCR方法检测PRRS病毒核酸,取阳性蚊虫样本接种Marc-145细胞进行病毒的分离培养,以间接免疫荧光抗体技术和分子克隆技术进行病毒的鉴定。【结果】 养猪场内的蚊虫主要有三带喙库蚊Culex tritaeniorhychus、凶小库蚊Culex modestus、中华按蚊Anopheles sinensis和骚扰阿蚊Armigeres obturbans,其中三带喙库蚊占86.76%;以PRRS病毒N基因引物进行扩增,三带喙库蚊样本呈现阳性反应,而其他蚊种均为阴性。在蚊虫接种的Marc-145细胞中可见细胞融合和空泡形成等细胞病变效应;用抗PRRS病毒N蛋白抗体和羊抗猪IgG(H+L)-FITC进行间接免疫荧光染色,感染细胞呈现黄绿色荧光;以NSP2基因引物进行RT-PCR扩增、克隆与测序,发现库蚊源病毒与相应猪场猪源病毒中相应基因的序列具有较高同源性。【结论】 三带喙库蚊为猪舍优势蚊种,并能携带猪繁殖与呼吸综合征病毒。  相似文献   

7.
非洲马瘟病毒群特异性RT-PCR检测方法的研究   总被引:2,自引:0,他引:2  
非洲马瘟病毒(African horse sickness virus,AHSV)为双股RNA病毒,感染所有马科动物.设计2对位于AHSV基因组S7片段的引物,经RT-PCR扩增,证实2对引物对6种血清型的AHSV RNA均有特异性扩增,且能对同属的蓝舌病病毒(BTV)、鹿出血热病毒(EHDV)进行区别诊断.经序列测定及Blast,证实所扩增的条带确为AHSV S7相应位置核苷酸序列,表明已初步建立AHSV群特异性RT-PCR检测方法.  相似文献   

8.
摘要:【目的】构建1型鸭肝炎病毒(DHV)的感染性克隆,用于研究其基因组的结构与功能。【方法】用RT-PCR方法扩增出覆盖整个1型鸭肝炎病毒CL株基因组3个忠实性片段,并按顺序组装进载体pBR322中,获得全长cDNA克隆(BR-CL)。将BR-CL在体外转录出的RNA转染鸭胚肾细胞,并传至第6代,利用RT-PCR方法和间接免疫荧光试验进行鉴定。将获得的子代病毒(CL-R)在SPF鸡胚上传代,观察鸡胚死亡及胚体病变情况。通过胶体金免疫电镜观察子代病毒粒子的形态。【结果】RT-PCR、间接免疫荧光和胶体金免  相似文献   

9.
蓝舌病毒(BTV)有许多血清型(已报导24个)。血清学试验虽已广泛用于抗体检测,但常与其它环状病毒成员出现交叉反应,易与其它病毒感染混淆。因此,从病畜组织中分离病毒,仍是确证反刍动物蓝舌病的最好办法。多年来主要应用鸡胚接种,特别是静脉接种途径分离BTV。近年应用Vero-M细胞旋转培养法分离BTV获得成功,被认为是一种可以替代敏感动物和鸡胚的方法。作者应用BTV11和BTV 3  相似文献   

10.
目的了解广东地区小鼠诺如病毒(murine norovirus,MNV)的分子遗传特征和进化来源。方法采用小鼠巨噬细胞系RAW264.7细胞对RT-PCR检测为阳性的小鼠样本进行病毒分离,通过细胞病变、RT-PCR、间接免疫荧光试验、测序方法对病毒分离株进行鉴定。应用RT-PCR技术针对15株MNV分离株的VP1基因的1626个核苷酸片段进行基因扩增,将扩增产物连接在pMD18-T载体后转化到大肠杆菌中进行克隆。通过氨苄青霉素平皿筛选,将鉴定为阳性的克隆菌进行核苷酸序列测定及序列分析。将这15株MNV分离株与从GenBank获得的19株MNV参考株进行序列比较分析,基于VP1基因的1626核苷酸片段构建系统发生进化树,一起进行分子流行病学研究。结果从80个小鼠样本中分离到了15株MNV病毒,通过细胞病变试验、RT-PCR试验、间接免疫荧光试验和测序分析鉴定确认分离到的病毒为MNV。序列分析结果显示MNV分离株的VP1蛋白基因全长均为1626个核苷酸,广东地区15株MNV分离株的核苷酸和氨基酸同源性分别在89.7%~100%和94.8%~100%之间,15株MNV分离株与其他19株MNV参考毒株核苷酸和氨基酸同源性分别在87.5%~92.9%和92.4%~98.2%之间。进化树分析表明来自设施A和设施D的13株病毒之间的亲缘关系较近,同属一个进化分支。来自设施B的ZD-1毒株和设施C的ZYY-163毒株与来自广东(K162)、日本(S7-P2、S7-PP3)、韩国(K4)和德国(Berlin/04/06/DE、Berlin/05/06/DE)同属另一个进化分支。结论成功分离到15株MNV病毒。遗传进化分析表明广东地区的MNV分离株来源并不相同,来自设施B和设施C的MNV分离株与国外分离株的亲缘关系较近,而来自设施A和设施D的13株MNV分离株可能是本地固有的毒株。  相似文献   

11.
Bluetongue (BT) is an infectious disease of ruminants that has spread northwards in Europe during the last decade. The aetiological agent of the disease is an arbovirus [bluetongue virus (BTV)] that belongs to the genus Orbivirus (family Reoviridae). The virus is transmitted by certain species of biting midge within the genus Culicoides (Diptera: Ceratopogonidae). Information on the vector status of the Culicoides species in a specific area will be essential to predict the risk for BTV incursion. Field-collected Culicoides (Avaritia) imicola Kieffer from South Africa were fed on blood containing several Spanish isolates of BTV. Despite the high virus concentrations in the bloodmeal (5.1-6.4 log(10) TCID(50) /mL of blood), virus was recovered from <1% of midges assayed after incubation. Virus concentrations >2.5 log(10) TCID(50) /midge in individual infected C. imicola suggest virus replication with possible risk for transmission to susceptible vertebrate hosts in the field for at least two of the serotypes assayed (BTV-1 and BTV-2). A third serotype (BTV-4) was very close to the estimated threshold for transmission. The relatively low to near refractory status of C. imicola compared with other vector species such as Culicoides bolitinos supports previous results, indicating that Culicoides species other than C. imicola may play a more important role in the epidemiology of BTV.  相似文献   

12.
Field-collected South African Culicoides species (Diptera, Ceratopogonidae) were fed on sheep blood containing bluetongue virus (BTV) represented by 13 low-passage reference serotypes: -1, -2, -4, -6, -7, -8, -9, -10, -11, -12, -13, -16 and -19. After 10 days of extrinsic incubation at 23.5 degrees C, of the 13 serotypes used, seven were recovered from C. (Avaritia) imicola Kieffer and 11 from C. (A.) bolitinos Meiswinkel. Virus recovery rates and the mean titres for most serotypes were significantly higher in C. bolitinos than in C. imicola. In addition, BTV was recovered from three non-Avaritia Culicoides species, namely C. (Remmia) enderleini Cornet & Brunhes (BTV-9), C. (Hoffmania) milnei Austen (BTV-4) and C. (H.) zuluensis de Meillon (BTV-16). No virus could be recovered from 316 individuals representing a further 14 Culicoides species. In Culicoides species fed on blood containing similar or identical virus titres of distinct BTV serotypes, significant differences were found in virus recovery rates. The results of this study confirm the higher vector competence of C. bolitinos compared with C. imicola.  相似文献   

13.
Bluetongue virus (BTV) is the etiological agent of bluetongue (BT), a hemorrhagic disease of ruminants that can cause high levels of morbidity and mortality. BTV is an arbovirus transmitted between its ruminant hosts by Culicoides biting midges (Diptera: Ceratopogonidae). Recently, Europe has experienced some of the largest BT outbreaks ever recorded, including areas with no known history of the disease, leading to unprecedented economic and animal welfare issues. The current lack of genomic resources and genetic tools for Culicoides restricts any detailed study of the mechanisms involved in the virus-insect interactions. In contrast, the genome of the fruit fly (Drosophila melanogaster) has been successfully sequenced, and it is used extensively as a model of molecular pathways due to the existence of powerful genetic technology. In this study, D. melanogaster is investigated as a model for the replication and tropism of BTV. Using reverse genetics, a modified BTV-1 that expresses the fluorescent mCherry protein fused to the viral nonstructural protein NS3 (BTV-1/NS3mCherry) was generated. We demonstrate that BTV-1/NS3mCherry is not only replication competent as it retains many characteristics of the wild-type virus but also replicates efficiently in D. melanogaster after removal of the bacterial endosymbiont Wolbachia pipientis by antibiotic treatment. Furthermore, confocal microscopy shows that the tissue tropism of BTV-1/NS3mCherry in D. melanogaster resembles that described previously for BTV in Culicoides. Overall, the data presented in this study demonstrate the feasibility of using D. melanogaster as a genetic model to investigate BTV-insect interactions that cannot be otherwise addressed in vector species.  相似文献   

14.
Bluetongue virus (BTV) can infect most ruminant species and is usually transmitted by adult, vector-competent biting midges (Culicoides spp.). Infection with BTV can cause severe clinical signs and can be fatal, particularly in naïve sheep and some deer species. Although 24 distinct BTV serotypes were recognized for several decades, additional ‘types’ have recently been identified, including BTV-25 (from Switzerland), BTV-26 (from Kuwait) and BTV-27 from France (Corsica). Although BTV-25 has failed to grow in either insect or mammalian cell cultures, BTV-26 (isolate KUW2010/02), which can be transmitted horizontally between goats in the absence of vector insects, does not replicate in a Culicoides sonorensis cell line (KC cells) but can be propagated in mammalian cells (BSR cells). The BTV genome consists of ten segments of linear dsRNA. Mono-reassortant viruses were generated by reverse-genetics, each one containing a single BTV-26 genome segment in a BTV-1 genetic-background. However, attempts to recover a mono-reassortant containing genome-segment 2 (Seg-2) of BTV-26 (encoding VP2), were unsuccessful but a triple-reassortant was successfully generated containing Seg-2, Seg-6 and Seg-7 (encoding VP5 and VP7 respectively) of BTV-26. Reassortants were recovered and most replicated well in mammalian cells (BSR cells). However, mono-reassortants containing Seg-1 or Seg-3 of BTV-26 (encoding VP1, or VP3 respectively) and the triple reassortant failed to replicate, while a mono-reassortant containing Seg-7 of BTV-26 only replicated slowly in KC cells.  相似文献   

15.
In 2006, a strain of bluetongue virus serotype 8 (BTV-8) of sub-Saharan origin was responsible for the first outbreaks in recorded history of clinical bluetongue disease (BT) in northern Europe. In this study, we examine the oral susceptibility of Culicoides (Avaritia) imicola Kieffer (Diptera: Ceratopogonidae) and other livestock-associated Culicoides species from southern Africa to infection with several strains of BTV-8. Following feeding using an artificial membrane-based method and incubation, virus was found in <1% of C. imicola individuals tested. Higher rates of susceptibility were found, however, for a variety of other South African species, including Culicoides (Avaritia) bolitinos Meiswinkel. Although these results do not preclude the role of C. imicola as a vector of BTV-8, its low susceptibility to BTV indicates that other less abundant Culicoides species may have the potential to play decisive roles in the epidemiology of this virus and should not be excluded from risk assessment studies.  相似文献   

16.
1. Culicoides variipennis midges were fed on a blood meal containing bluetongue virus (BTV) serotype 11 (BTV-11) and on four subsequent non-infective blood meals at 4-day intervals. 2. Eggs were collected before each blood-feeding and reared to adults. 3. Progeny from each egg batch were incubated for 14 days (20 degrees C, 40-60% RH) before plaque assay. 4. Oocytes from several parent flies were sectioned for immunoelectron microscopy. 5. Thirty-two percent of the parent females tested by plaque assay were positive for BTV. 6. All 993 progeny flies were negative for BTV. 7. BTV antigen was dense in proteid yolk bodies and in the vitelline membrane of the developing oocytes.  相似文献   

17.
Full Genome Sequence of Bluetongue Virus Serotype 4 from China   总被引:1,自引:0,他引:1  
The complete genomic sequence of a bluetongue virus serotype 4 (BTV-4) strain (strain YTS-4), isolated from sentinel cattle in Yunnan Province, China, is reported here. This work is the first to document the complete genomic sequence of a BTV-4 strain from China. The sequence information will help determine the geographic origin of Chinese BTV-4 and provide data to facilitate future analyses of the genetic diversity and phylogenetic relationships of BTV strains.  相似文献   

18.
[背景]蓝舌病病毒(Bluetongue Virus,BTV)是一种侵染反刍动物的虫媒病毒,基因重配可引起病毒的快速变异.[目的]通过我国强致病性BTV-16型毒株与弱致病性BTV-4型毒株间Seg-2与Seg-6基因节段的重配,探讨病毒基因重配与表型变异之间的关系.[方法]采用全长cDNA扩增与高通量测序获取BTV-...  相似文献   

19.
Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) play important roles in the transmission of viral diseases affecting wild and domestic ruminants and horses, including Bluetongue (BT) and African horse sickness (AHS) respectively. In southern Europe, BT has been largely transmitted by the classical Afro-Asian vector Culicoides imicola Kieffer. However, other species such as C. obsoletus Meigen, C. scoticus Downs & Kettle and C. pulicaris Linné may also be involved in BTV transmission. As a consequence of the discovery of C. imicola followed by BTV-2 outbreaks on the island of Corsica in October 2000, further studies on these biting midges have been carried out. To better characterize the evolution and phylogenetic relations of Culicoides, molecular analysis in parallel with a morphology-based taxonomic approach were performed. Phylogenetic analyses of French Culicoides species were undertaken using the ribosomal DNA (rDNA) internal transcribed spacer 1 (ITS1) as a molecular target. This region was shown to be useful in understanding evolutionary and genetic relationships between species. Construction of several trees showed that molecular phylogeny within the genus Culicoides correlates not only with morphological-based taxonomy but also with ecological patterns.  相似文献   

20.
The aim of this study was to assess the mechanisms of transmission of bluetongue virus serotype 26 (BTV-26) in goats. A previous study, which investigated the pathogenicity and infection kinetics of BTV-26 in goats, unexpectedly revealed that one control goat may have been infected through a direct contact transmission route. To investigate the transmission mechanisms of BTV-26 in more detail an experimental infection study was carried out in which three goats were infected with BTV-26, three goats were kept uninfected, but were housed in direct contact with the infected goats, and an additional four goats were kept in indirect contact separated from infected goats by metal gates. This barrier allowed the goats to have occasional face-to-face contact in the same airspace, but feeding, watering, sampling and environmental cleaning was carried out separately. The three experimentally infected goats did not show clinical signs of BTV, however high levels of viral RNA were detected and virus was isolated from their blood. At 21 dpi viral RNA was detected in, and virus was isolated from the blood of the three direct contact goats, which also seroconverted. The four indirect barrier contact goats remained uninfected throughout the duration of the experiment. In order to assess replication in a laboratory model species of Culicoides biting midge, more than 300 Culicoides sonorensis were fed a BTV-26 spiked blood meal and incubated for 7 days. The dissemination of BTV-26 in individual C. sonorensis was inferred from the quantity of virus RNA and indicated that none of the insects processed at day 7 possessed transmissible infections. This study shows that BTV-26 is easily transmitted through direct contact transmission between goats, and the strain does not seem to replicate in C. sonorensis midges using standard incubation conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号