首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matrix metalloproteinases (MMP) have specific spatial and temporal expression patterns in human endometrium and are critical for menstruation. Expression and activation mechanisms for proMMP-2 differ from other MMPs; in many cells proMMP-2 is specifically activated by membrane-type (MT)-MMPs. We examined the expression and localization of proMMP-2, MT1-MMP, and MT2-MMP in human endometrium across the menstrual cycle; and we examined the expression of MT1-MMP and activation of proMMP-2 in cultured endometrial stromal cells and their regulation by progesterone. MMP-2 was immunolocalized in 25 of 32 endometrial samples in all cellular compartments but with greatest intensity in degrading menstrual tissue. MT1-MMP mRNA was present throughout the cycle, and immunoreactive protein was detected in 24 of 32 samples, with the strongest staining in subsets of macrophages, neutrophils, and granular lymphocytes (but not mast cells or eosinophils) during the menstrual, mid-proliferative and mid-secretory phases. Patchy epithelial staining and staining of decidual cells, often periglandular in menstrual tissue, were also seen. MT2-MMP was more widespread than MT1-MMP without apparent cyclical variation and with maximal intensity in glandular epithelium. Cultured endometrial stromal cells released proMMP-2, and progesterone treatment significantly reduced the percentage level of its active (62 kDa) form (22.5 +/- 1.8% vs. 3.0 +/- 1.3%, without and with treatment, respectively, mean +/- SEM, P < 0.0001). This activation was blocked by a specific MMP inhibitor and restored following inhibitor removal. Progesterone also attenuated cell expression of MT1-MMP mRNA. We postulate that MT1-MMP activates proMMP-2 in endometrium, this activity being increased at the end of the cycle when progesterone levels fall, thus contributing to menstruation.  相似文献   

2.
Matrix metalloproteinase (MMP)-2 and MMP-9, also known as gelatinases or type IV collagenases, are recognized as major contributors to the proteolytic degradation of extracellular matrix during tumor invasion. Latent MMP-2 (proMMP-2) is activated by membrane type 1 MMP (MT1-MMP) on the cell surface of tumor cells. We previously reported that cell-bound proMMP-9 is activated by the MT1-MMP/MMP-2 axis in HT1080 cells treated with concanavalin A in the presence of exogenous proMMP-2. However, the regulatory mechanism of proMMP-9 activation remains largely unknown. Transforming growth factor (TGF)-β1 is frequently overexpressed in tumor tissues and is associated with tumor aggressiveness and poor prognosis. In this study, we examined the role of TGF-β1 on MT1-MMP-mediated proMMP-9 activation using human oral squamous cell carcinoma cells. TGF-β1 significantly increased the expression of MMP-9. By adding exogenous proMMP-2, TGF-β1-induced proMMP-9 was activated during collagen gel culture, which was suppressed by the inhibition of TGF-β1 signaling or MT1-MMP activity. This MT1-MMP-mediated proMMP-9 activation was needed to facilitate TGF-β1-induced cell invasion into collagen gel. Thus, TGF-β1 may facilitate MT1-MMP-mediated MMP-9 activation and thereby stimulate invasion of tumor cells in collaboration with MT1-MMP and MMP-2.  相似文献   

3.
Tissue inhibitor of metalloproteinase 2 (TIMP-2) is required for the membrane type 1 matrix metalloproteinase (MT1-MMP)-dependent activation of pro-MMP-2 on the cell surface. MT1-MMP-bound TIMP-2 has been shown to function as a receptor for secreted pro-MMP-2, resulting in the formation of a trimolecular complex. In the presence of uncomplexed active MT1-MMP, the prodomain of cell surface-associated MMP-2 is cleaved, and activated MMP-2 is released. However, the behavior of MT1-MMP-bound TIMP-2 during MMP-2 activation is currently unknown. In this study, (125)I-labeled recombinant TIMP-2 ((125)I-rTIMP-2) was used to investigate the fate of TIMP-2 during pro-MMP-2 activation by HT1080 and transfected A2058 cells. HT1080 and A2058 cells transfected with MT1-MMP cDNA (but not vector-transfected A2058 cells) were able to bind (125)I-rTIMP-2, to activate pro-MMP-2, and to process MT1-MMP into an inactive 43-kDa form. Under these conditions, (125)I-rTIMP-2 bound to the cell surface was rapidly internalized and degraded in intracellular organelles through a bafilomycin A(1)-sensitive mechanism, and (125)I-bearing low molecular mass fragment(s) were released in the culture medium. These different processes were inhibited by hydroxamic acid-based synthetic MMP inhibitors and rTIMP-2, but not by rTIMP-1 or cysteine, serine, or aspartic proteinase inhibitors. These results support the concept that the MT1-MMP-dependent internalization and degradation of TIMP-2 by some tumor cells might be involved in the regulation of pericellular proteolysis.  相似文献   

4.
目的:研究基质金属蛋白酶2(Matrix Metalloproteinase-2,MMP-2),基质金属蛋白酶7(MMP-7),基质金属蛋白酶9(MMP-9),膜型基质金属蛋白酶(Membrane Type-1 Matrix Metalloproteinase,MT1-MMP),金属蛋白酶组织抑制剂1(Tissue Inhibitor of Metalloproteinase,TIMP-1),金属蛋白酶组织抑制剂2(TIMP-2)在乳腺癌组织中mRNA的表达,及与临床病理变量之间的关联。方法:采用150例乳腺癌患者的组织样本。使用半定量逆转录-聚合酶链反应(RT-PCR)法来测定肿瘤组织和正常乳腺组织中MMP-2,MMP-7,MMP-9,MT1-MMP,TIMP-1和TIMP-2的mRNA表达。结果:MMP-2,MMP-7,MMP-9,MT1-MMP,TIMP-1和TIMP-2在乳腺癌中的mRNA表达显著高于正常组织。结论:MMP-2,MMP-7,MMP-9,和MTI-MMP的表达增加和临床病理参数之间的关联,可以用来预测乳腺癌的侵害行为。  相似文献   

5.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) has been implicated as a physiological activator of progelatinase A (MMP-2). We previously reported that plasmin treatment of cells results in proMMP-2 activation and increased type IV collagen degradation. Here, we analyzed the role of MT1-MMP in plasmin activation of MMP-2 using HT-1080 cells transfected with MT1-MMP sense or antisense cDNA. Control, vector-transfected cells that expressed endogenous MT1-MMP, and antisense cDNA transfectants with very low levels of MT1-MMP did not activate proMMP-2. Conversely, cells transfected with sense MT1-MMP cDNA expressed high MT1-MMP levels and processed proMMP-2 to 68/66-kDa intermediate activation products. Control cells and MT1-MMP transfectants had much higher levels of cell-associated MMP-2 than antisense cDNA transfectants. Addition of plasmin(ogen) to control or MT1-MMP-transfected cells generated active, 62-kDa MMP-2, but was ineffective with antisense cDNA transfectants. The effect of plasmin(ogen) was prevented by inhibitors of plasmin, but not by metalloproteinase inhibitors, implicating plasmin as a mechanism for proMMP-2 activation independent of the activity of MT1-MMP or other MMPs. Plasmin-mediated activation of proMMP-2 did not result from processing of proMT1-MMP and did not correlate with alpha(v)beta(3) integrin or TIMP-2 levels. Thus, plasmin can activate proMMP-2 only in the presence of MT1-MMP; however, this process does not require the catalytic activity of MT1-MMP.  相似文献   

6.
Breast cancer (BC) is the most common neoplasm among women in most developed countries, including Egypt. Elevated levels of certain proteins in human BC are associated with unfavorable prognosis and progressive stages of the disease. The aim of our study was to evaluate the protein expression profile and prognostic significance of cyclooxygenase-2 (COX-2), matrix metalloproteinase-2 (MMP-2), MMP-9 and membrane type 1-MMP (MT1-MMP) and their interaction in operable BC patients. The protein expression of COX-2, MMP-2 and MT1-MMP were evaluated by western blot technique, whereas enzymatic activity of MMP-2 and MMP-9 was determined by zymography in 47 breast cancer patients as well as normal adjacent tissues. Also, the correlation between these proteins and age, tumor size, LN stage, TNM stage, estrogen receptor, progesterone receptor, disease-free survival, and overall survival (OS) has been investigated. As compared to adjacent normal tissues, COX-2, MMP-2 and MT1-MMP were over-expressed in 43, 64, and 60 % of tumor tissues, respectively. In the same pattern, the activity of MMP-2 (62 %) and MMP-9 (45 %) was elevated in BC tissues. Multivariate analysis showed a positive correlation between the protein expression of COX-2, MMP-2, and MT1-MMP and the activity of MMP-2 and MMP-9 in BC patients. However, the enzymatic activity showed no correlation with clinicopathological features. This study confirms the preclinical evidence that COX-2 increased the expression of MT1-MMP, which in turn activates MMP-2. The lack of correlation with clinicopathological features, OS or disease-free survival ascertains the complexity of tumor progression and metastasis with many pro- and counter regulatory factors.  相似文献   

7.
Matrix metalloproteinases (MMPs) MMP-2, MMP-9, and MT1-MMP are required for basement membrane degradation in cervical carcinoma. We evaluated the expression and activity of MMPs and their inhibitors RECK and TIMP-2 in 3 human invasive cervical carcinoma cell lines. Two HPV16-positive cell lines (SiHa and CaSki) and an HPV-negative cell line (C33A) were cultured either onto a type-I collagen gel, Matrigel, or plastic, to recreate their three-dimensional growth environment and evaluate the expression of these genes using quantitative real-time PCR. We also analyzed the gelatinolytic activity of MMP-2 and MMP-9 by zymography. We found that HPV (human papillomavirus)-positive cell lines express higher levels of MMP-2, MT1-MMP, and TIMP-2 than the HPV negative cell line. In addition, MMP-9 was expressed at very low levels in both HPV-negative and HPV-positive cell lines. We also observed that the expression of the RECK gene is higher in CaSki cells, being associated with higher pro-MMP-2 activity. Furthermore, Matrigel substrate influences MMP-2 expression in both SiHa and CaSki cells. On the other hand, we found that type-I collagen gel, but not Matrigel, can enhance pro-MMP-2 activity in all cell lines. Our results suggest that the presence of HPV is related to increased expression of MMP-2, MT1-MMP, and TIMP-2, and that pro-MMP-2 activity is higher in HPV-positive than in HPV-negative cells.  相似文献   

8.
9.
10.
Cervical cancer is the third most common cancer in women worldwide. Persistent infection with high-risk HPV types, principally HPV16 and 18 is the main risk factor for the development of this malignancy. However, the onset of invasive tumor occurs many years after initial exposure in a minority of infected women. This suggests that other factors beyond viral infection are necessary for tumor establishment and progression. Tumor progression is characterized by an increase in secretion and activation of matrix metalloproteinases (MMPs) produced by either the tumor cells themselves or tumor-associated fibroblasts or macrophages. Increased MMPs expression, including MMP-2, MMP-9 and MT1-MMP, has been observed during cervical carcinoma progression. These proteins have been associated with degradation of ECM components, tumor invasion, metastasis and recurrence. However, few studies have evaluated the interplay between HPV infection and the expression and activity of MMPs and their regulators in cervical cancer. We analyzed the effect of HPV16 oncoproteins on the expression and activity of MMP-2, MMP-9, MT1-MMP, and their inhibitors TIMP-2 and RECK in cultures of human keratinocytes. We observed that E7 expression is associated with increased pro-MMP-9 activity in the epithelial component of organotypic cultures, while E6 and E7 oncoproteins co-expression down-regulates RECK and TIMP-2 levels in organotypic and monolayers cultures. Finally, a study conducted in human cervical tissues showed a decrease in RECK expression levels in precancer and cancer lesions. Our results indicate that HPV oncoproteins promote MMPs/RECK-TIMP-2 imbalance which may be involved in HPV-associated lesions outcome.  相似文献   

11.
12.
Membrane type-1 matrix metalloproteinase (MT1-MMP) is a key enzyme in the activation pathway of matrix prometalloproteinase-2 (pro-MMP-2). Both activation and autocatalytic maturation of pro-MMP-2 in trans suggest that MT1-MMP should exist as oligomers on the cell surface. To better understand the functions of MT1-MMP, we designed mutants with substitutions in the active site (E240A), the cytoplasmic tail (C574A), and the RRXR furin cleavage motifs (R89A, ARAA, and R89A/ARAA) of the enzyme. The mutants were expressed in MCF7 breast carcinoma cells that are deficient in both MMP-2 and MT1-MMP. Our results supported the existence of MT1-MMP oligomers and demonstrated that a disulfide bridge involving the Cys(574) of the enzyme's cytoplasmic tail covalently links MT1-MMP monomers on the MCF7 cell surface. The presence of MT1-MMP oligomers also was shown for the enzyme naturally expressed in HT1080 fibrosarcoma cells. The single (R89A and ARAA) and double (R89A/ARAA) furin cleavage site mutants of MT1-MMP were processed in MCF7 cells into the mature proteinase capable of activating pro-MMP-2 and stimulating cell locomotion. This suggested that furin cleavage is not a prerequisite for the conversion of pro-MT1-MMP into the functionally active enzyme. A hydroxamate class inhibitor (GM6001, or Ilomastat) blocked activation of MT1-MMP in MCF7 cells but not in HT1080 cells. This implied that a matrixin-like proteinase sensitive to hydroxamates could be involved in a furin-independent, alternative pathway of MT1-MMP activation in breast carcinoma cells. The expression of the wild type MT1-MMP enhanced cell invasion and migration, indicating a direct involvement of this enzyme in cell locomotion. In contrast, both the C574A and E240A mutations render MT1-MMP inefficient in stimulating cell migration and invasion. In addition, the C574A mutation negatively affected cell adhesion, thereby indicating critical interactions involving the cytosolic part of MT1-MMP and the intracellular milieu.  相似文献   

13.
During tissue-invasive events, migrating cells penetrate type I collagen-rich interstitial tissues by mobilizing undefined proteolytic enzymes. To screen for members of the matrix metalloproteinase (MMP) family that mediate collagen-invasive activity, an in vitro model system was developed wherein MDCK cells were stably transfected to overexpress each of ten different MMPs that have been linked to matrix remodeling states. MDCK cells were then stimulated with scatter factor/hepatocyte growth factor (SF/HGF) to initiate invasion and tubulogenesis atop either type I collagen or interstitial stroma to determine the ability of MMPs to accelerate, modify, or disrupt morphogenic responses. Neither secreted collagenases (MMP-1 and MMP-13), gelatinases (gelatinase A or B), stromelysins (MMP-3 and MMP-11), or matrilysin (MMP-7) affected SF/HGF-induced responses. By contrast, the membrane-anchored metalloproteinases, membrane-type 1 MMP, membrane-type 2 MMP, and membrane-type 3 MMP (MT1-, MT2-, and MT3-MMP) each modified the morphogenic program. Of the three MT-MMPs tested, only MT1-MMP and MT2-MMP were able to directly confer invasion-incompetent cells with the ability to penetrate type I collagen matrices. MT-MMP-dependent invasion proceeded independently of proMMP-2 activation, but required the enzymes to be membrane-anchored to the cell surface. These findings demonstrate that MT-MMP-expressing cells can penetrate and remodel type I collagen-rich tissues by using membrane-anchored metalloproteinases as pericellular collagenases.  相似文献   

14.
MT6-MMP/MMP-25 is the latest member of the membrane-type matrix metalloproteinase (MT-MMP) subgroup in the MMP family and is expressed in neutrophils and some brain tumors. The proteolytic activity of MT6-MMP has been studied using recombinant catalytic fragments and shown to degrade several components of the extracellular matrix. However, the activity is possibly modulated further by the C-terminal hemopexin-like domain, because some MMPs are known to interact with other proteins through this domain. To explore the possible function of this domain, we purified a recombinant MT6-MMP with the hemopexin-like domain as a soluble form using a Madin-Darby canine kidney cell line as a producer. Mature and soluble MT6-MMP processed at the furin motif was purified as a 45-kDa protein together with a 46-kDa protein having a single cleavage in the hemopexin-like domain. Interestingly, 73- and 70-kDa proteins were co-purified with the soluble MT6-MMP by forming stable complexes. They were identified as clusterin, a major component of serum, by N-terminal amino acid sequencing. MT1-MMP that also has a hemopexin-like domain did not form a complex with clusterin. MT6-MMP forming a complex with clusterin was detected in human neutrophils as well. The enzyme activity of the soluble MT6-MMP was inactive in the clusterin complex. Purified clusterin was inhibitory against the activity of soluble MT6-MMP. On the other hand, it had no effect on the activities of MMP-2 and soluble MT1-MMP. Because clusterin is an abundant protein in the body fluid in tissues, it may act as a negative regulator of MT6-MMP in vivo.  相似文献   

15.
During arterial aneurysm formation, levels of the membrane-anchored matrix metalloproteinase, MT1-MMP, are elevated dramatically. Although MT1-MMP is expressed predominately by infiltrating macrophages, the roles played by the proteinase in abdominal aortic aneurysm (AAA) formation in vivo remain undefined. Using a newly developed chimeric mouse model of AAA, we now demonstrate that macrophage-derived MT1-MMP plays a dominant role in disease progression. In wild-type mice transplanted with MT1-MMP-null marrow, aneurysm formation induced by the application of CaCl2 to the aortic surface was almost completely ablated. Macrophage infiltration into the aortic media was unaffected by MT1-MMP deletion, and AAA formation could be reconstituted when MT1-MMP+/+ macrophages, but not MT1-MMP+/+ lymphocytes, were infused into MT1-MMP-null marrow recipients. In vitro studies using macrophages isolated from either WT/MT1-MMP-/- chimeric mice, MMP-2-null mice, or MMP-9-null mice demonstrate that MT1-MMP alone plays a dominant role in macrophage-mediated elastolysis. These studies demonstrate that destruction of the elastin fiber network during AAA formation is dependent on macrophage-derived MT1-MMP, which unexpectedly serves as a direct-acting regulator of macrophage proteolytic activity.Development and progression of abdominal aortic aneurysm (AAA)2 is a complex process that, untreated, can lead to tissue failure, hemorrhage, and death (1). Destruction of the orderly elastin lamellae of the vessel wall is considered the sine qui non of arterial aneurysm formation (2) as adult tissues cannot regenerate normal elastin fibers (3). Moreover, the elastin degradation products are chemotactic for inflammatory cells and serve to amplify the local injury (4). Although several types of elastolytic proteases are elevated in AAA tissue (5-9), studies using murine models of AAA and targeted protease deletion suggest that matrix metalloproteinases (MMPs), particularly the secreted proteases, MMP-2 and MMP-9, play key roles in the pathologic remodeling of the elastin lamellae that lead to AAA (7, 8).Membrane-type 1 MMP (MT1-MMP) is the prototypical member of a family of membrane-tethered MMPs (10). Recent studies indicate that MT1-MMP expression is elevated in human AAA tissues and that infiltrating macrophages are the primary source of the proteinase in aortic lesions (11-13). Although indirect evidence suggests that MT1-MMP may participate in the control of monocyte/macrophage motile responses as well as interactions with the vessel wall during transmigration (14, 15), the role(s) played by MT1-MMP in regulating macrophage proteolytic activity or AAA formation in vivo remains undefined.Using a murine model of AAA and mice with a targeted deletion of MT1-MMP in myelogenous cell populations, we now demonstrate that macrophage-derived MT1-MMP is required for elastin degradation and aneurysm formation. Importantly, macrophages are not dependent on MT1-MMP for infiltrating aortic tissues but instead use the protease to directly regulate their elastolytic potential in an MMP-2- and MMP-9-independent fashion. These studies define a new and unexpected role for MT1-MMP in controlling macrophage elastolytic activity in the in vitro and in vivo settings.  相似文献   

16.
The important and distinct contribution that membrane type 2 (MT2)-matrix metalloproteinase (MMP) makes to physiological and pathological processes is now being recognized. This contribution may be mediated in part through MMP-2 activation by MT2-MMP. Using Timp2-/- cells, we previously demonstrated that MT2-MMP activates MMP-2 to the fully active form in a pathway that is TIMP-2-independent but MMP-2 hemopexin carboxyl (C) domain-dependent. In this study cells expressing MT2-MMP as well as chimera proteins in which the C-terminal half of MT2-MMP and MT1-MMP were exchanged showed that the MT2-MMP catalytic domain has a higher propensity than that of MT1-MMP to initiate cleavage of the MMP-2 prodomain in the absence of TIMP-2. Although we demonstrate that MT2-MMP is a weak collagenase, this first activation cleavage was enhanced by growing the cells in type I collagen gels. The second activation cleavage to generate fully active MMP-2 was specifically enhanced by a soluble factor expressed by Timp2-/- cells and was MT2-MMP hemopexin C domain-dependent; however, the RGD sequence within this domain was not involved. Interestingly, in the presence of TIMP-2, a MT2-MMP.MMP-2 trimolecular complex formed, but activation was not enhanced. Similarly, TIMP-3 did not promote MT2-MMP-mediated MMP-2 activation but inhibited activation at higher concentrations. This study demonstrates the influence that both the catalytic and hemopexin C domains of MT2-MMP exert in determining TIMP independence in MMP-2 activation. In tissues or pathologies characterized by low TIMP-2 expression, this pathway may represent an alternative means of rapidly generating low levels of active MMP-2.  相似文献   

17.
Gelatinase A (MMP-2), a matrix metalloproteinase (MMP) involved in tumor invasion and angiogenesis, is secreted as an inactive zymogen (proMMP-2) and activated by proteolytic cleavage. Here we report that polymorphonuclear neutrophil (PMN)-derived elastase, cathepsin G, and proteinase-3 activate proMMP-2 through a mechanism that requires membrane-type 1 matrix metalloproteinase (MT1-MMP) expression. Immunoprecipitation of human PMN-conditioned medium with a mixture of antibodies to elastase, cathepsin G, and proteinase-3 abolished proMMP-2 activation, whereas individual antibodies were ineffective. Incubation of HT1080 cells with either purified PMN elastase or cathepsin G or proteinase-3 resulted in dose-and time-dependent proMMP-2 activation. Addition of PMN-conditioned medium to MT1-MMP expressing cells resulted in increased proMMP-2 activation and in vitro invasion of extracellular matrix (ECM), but had no effect with cells that express no MT1-MMP. MMP-2 activation by PMN-conditioned medium or purified elastase was blocked by the elastase inhibitor alpha(1)-antitrypsin but not by Batimastat, an MMP inhibitor, showing that elastase activation of MMP-2 is not mediated by MMP activities. The PMN-conditioned medium-induced increase in cell invasion was blocked by Batimastat as well as by alpha(1)-antitrypsin, showing that PMN serine proteinases trigger a proteinase cascade that entails proMMP-2 activation: this gelatinase is the downstream effector of the proinvasive activity of PMN proteinases. These findings indicate a novel role for PMN-mediated inflammation in a variety of tissue remodeling processes including tumor invasion and angiogenesis.  相似文献   

18.
19.
Acquisition of matrix metalloproteinase-2 (MMP-2) activity is temporally associated with increased migration and invasiveness of cancer cells. ProMMP-2 activation requires multimolecular complex assembly involving proMMP-2, membrane type 1-MMP (MT1-MMP, MMP-14), and tissue inhibitor of metalloproteinases-2 (TIMP-2). Because transforming growth factor-beta1 (TGF-beta1) promotes tumor invasion in advanced squamous cell carcinomas, the role of TGF-beta1 in the regulation of MMP activity in a cellular model of invasive oral squamous cell carcinoma was examined. Treatment of oral squamous cell carcinoma cells with TGF-beta1 promoted MMP-dependent cell scattering and collagen invasion, increased expression of MMP-2 and MT1-MMP, and enhanced MMP-2 activation. TGF-beta1 induced concomitant activation of ERK1/2 and p38 MAPK, and kinase inhibition studies revealed a negative regulatory role for ERK1/2 in modulating acquisition of MMP-2 activity. Thus, a reciprocal effect on proMMP-2 activation was observed whereupon blocking ERK1/2 phosphorylation promoted proMMP-2 activation and MT1-MMP activity, whereas inhibiting p38 MAPK activity decreased proteolytic potential. The cellular mechanism for the control of MT1-MMP catalytic activity involved concurrent reciprocal modulation of TIMP-2 expression by ERK1/2 and p38 MAPKs, such that inhibition of ERK1/2 phosphorylation decreased TIMP-2 production, and down-regulation of p38 MAPK activity enhanced TIMP-2 synthesis. Further, p38 MAPK inhibition promoted ERK1/2 phosphorylation, providing additional evidence for cross-talk between MAPK pathways. These observations demonstrate the complex reciprocal effects of ERK1/2 and p38 MAPK in the regulation of MMP activity, which could complicate the use of MAPK-specific inhibitors as therapeutic agents to down-regulate the biologic effects of TGF-beta1 on pericellular collagen degradation and tumor invasion.  相似文献   

20.
The role of membrane-type (MT) 2-matrix metalloproteinase (MMP) in the cellular activation of MMP-2 and the tissue inhibitor of matrix metalloproteinase (TIMP) requirements for this process have not been clearly established. To address these issues a TIMP-2-free cell line derived from a Timp2-/- mouse was transfected for stable cell surface expression of hMT2-MMP. Untransfected cells did not activate endogenous or exogenous TIMP-2-free MMP-2 unless both TIMP-2 and concanavalin A (ConA) were added. Transfected cells expressing hMT2-MMP efficiently activated both endogenous and exogenous MMP-2 (within 4 h) via the 68-kDa intermediate in the absence of TIMP-2 and ConA. In contrast, activation of MMP-2 by Timp2-/- cells expressing recombinant hMT1-MMP occurred more slowly (12 h) and required the addition of 0.3-27 nm TIMP-2. Addition of TIMP-2 or TIMP-4 did not enhance MMP-2 activation by MT2-MMP at any concentration tested; furthermore, activation was inhibited by both TIMPs at concentrations >9 nm, consistent with the similar association rate constants (k(on)) calculated for the binding of TIMP-4 and TIMP-2 to MT2-MMP (3.56 x 10(5) m(-1) s(-1) and 6.52 x 10(5) m(-1) s(-1), respectively). MT2-MMP-mediated activation involved cell surface association of the MMP-2 in a hemopexin carboxyl-terminal domain (C domain)-dependent manner: Exogenous MMP-2 hemopexin C domain blocked activation, and cells expressing hMT2-MMP did not bind or activate a truncated form of MMP-2 lacking the hemopexin C domain. These studies demonstrate the existence of an alternative TIMP-2-independent pathway for MMP-2 activation involving MT2-MMP, which may be important in mediating MMP-2 activation in specific tissues or pathologies where MT2-MMP is expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号