首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the question of whether inhibition of the Na(+)/H(+) exchanger (NHE) during ischemia is protective due to reduction of cytosolic Ca(2+) accumulation or enhanced acidosis in cardiomyocytes. Additionally, the role of the Na(+)-HCO(3)(-) symporter (NBS) was investigated. Adult rat cardiomyocytes were exposed to simulated ischemia and reoxygenation. Cytosolic pH [2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF)], Ca(2+) (fura 2), Na(+) [sodium-binding benzolfuran isophthatlate (SBFI)], and cell length were measured. NHE was inhibited with 3 micromol/l HOE 642 or 1 micromol/l 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), and NBS was inhibited with HEPES buffer. During anoxia in bicarbonate buffer, cells developed acidosis and intracellular Na and Ca (Na(i) and Ca(i), respectively) overload. During reoxygenation cells underwent hypercontracture (44.0 +/- 4.1% of the preanoxic length). During anoxia in bicarbonate buffer, inhibition of NHE had no effect on changes in intracellular pH (pH(i)), Na(i), and Ca(i), but it significantly reduced the reoxygenation-induced hypercontracture (HOE: 61.0 +/- 1.4%, EIPA: 68.2 +/- 1.8%). The sole inhibition of NBS during anoxia was not protective. We conclude that inhibition of NHE during anoxia protects cardiomyocytes against reoxygenation injury independently of cytosolic acidification and Ca(i) overload.  相似文献   

2.
In the myocardium, the Na(+)/H(+) exchanger isoform-1 (NHE1) activity is detrimental during ischemia-reperfusion (I/R) injury, causing increased intracellular Na(+) (Na(i)(+)) accumulation that results in subsequent Ca(2+) overload. We tested the hypothesis that increased expression of NHE1 would accentuate myocardial I/R injury. Transgenic mice were created that increased the Na(+)/H(+) exchanger activity specifically in the myocardium. Intact hearts from transgenic mice at 10-15 wk of age showed no change in heart performance, resting intracellular pH (pH(i)) or phosphocreatine/ATP levels. Transgenic and wild-type (WT) hearts were subjected to 20 min of ischemia followed by 40 min of reperfusion. Surprisingly, the percent recovery of rate-pressure product (%RPP) after I/R improved in NHE1-overexpressing hearts (64 +/- 5% vs. 41 +/- 5% in WT; P < 0.05). In addition, NMR spectroscopy revealed that NHE1 overexpressor hearts contained higher ATP during early reperfusion (levels P < 0.05), and there was no difference in Na(+) accumulation during I/R between transgenic and WT hearts. HOE642 (cariporide), an NHE1 inhibitor, equivalently protected both WT and NHE1-overexpressing hearts. When hearts were perfused with bicarbonate-free HEPES buffer to eliminate the contribution of HCO(3)(-) transporters to pH(i) regulation, there was no difference in contractile recovery after reperfusion between controls and transgenics, but NHE1-overexpressing hearts showed a greater decrease in ATP during ischemia. These results indicate that the basal activity of NHE1 is not rate limiting in causing damage during I/R, therefore, increasing the level of NHE1 does not enhance injury and can have some small protective effects.  相似文献   

3.
Application of fluid pressure (FP) using pressurized fluid flow suppresses the L-type Ca2+ current through both enhancement of Ca2+ release and intracellular acidosis in ventricular myocytes. As FP-induced intracellular acidosis is more severe during the inhibition of Na+–H+ exchange (NHE), we examined the possible role of NHE in the regulation of ICa during FP exposure using HOE642 (cariporide), a specific NHE inhibitor. A flow of pressurized (∼16 dyn/cm2) fluid was applied onto single rat ventricular myocytes, and the ICa was monitored using a whole-cell patch-clamp under HEPES-buffered conditions. In cells pre-exposed to FP, additional treatment with HOE642 dose-dependently suppressed the ICa (IC50 = 0.97 ± 0.12 μM) without altering current–voltage relationships and inactivation time constants. In contrast, the ICa in control cells was not altered by HOE642. The HOE642 induced a left shift in the steady-state inactivation curve. The suppressive effect of HOE642 on the ICa under FP was not altered by intracellular high Ca2+ buffering. Replacement of external Cl with aspartate to inhibit the Cl-dependent acid loader eliminated the inhibitory effect of HOE642 on ICa. These results suggest that NHE may attenuate FP-induced ICa suppression by preventing intracellular H+ accumulation in rat ventricular myocytes and that NHE activity may not be involved in the Ca2+-dependent inhibition of the ICa during FP exposure.  相似文献   

4.
The Na+/H+ exchanger isoforms NHE1, NHE2, and NHE3 were all found to be expressed in Ehrlich ascites tumor cells, as evaluated by Western blotting and confocal microscopy. Under unstimulated conditions, NHE1 was found predominantly in the plasma membrane, NHE3 intracellularly, and NHE2 in both compartments. Osmotic cell shrinkage elicited a rapid intracellular alkalinization, the sensitivity of which to EIPA (IC50 0.19 microM) and HOE 642 (IC50 0.85 microM) indicated that it predominantly reflected activation of NHE1. NHE activation by osmotic shrinkage was inhibited by the protein kinase C inhibitors chelerythrine (IC50 12.5 microM), G? 6850 (5 microM), and G? 6976 (1 microM), and by the p38 MAPK inhibitor SB 203580 (10 microM). Furthermore, hypertonic cell shrinkage elicited a biphasic increase in p38 MAPK phosphorylation, with the first significant increase detectable 2 minutes after the hypertonic challenge. Neither myosin light chain kinase-specific concentrations of ML-7 (IC50 40 microM) nor ERK1/2 inhibition by PD 98059 (50 microM) had any effect on NHE activation. Under isotonic conditions, the serine/threonine protein phosphatase inhibitor calyculin A elicited an EIPA- and HOE 642-inhibitable intracellular alkalinization, indicating NHE1 activation. Similarly, shrinkage-induced NHE activation was potentiated by calyculin A. The calyculin A-induced alkalinization was not associated with an increase in the free, intracellular calcium concentration, but was abolished by chelerythrine. It is concluded that shrinkage-induced NHE activation is dependent on PKC and p38 MAPK, but not on MLCK or ERK1/2. NHE activity under both iso- and hypertonic conditions is increased by inhibition of serine/threonine phosphatases, and this effect appears to be PKC-dependent.  相似文献   

5.
Potassium withdrawal is commonly used to induce caspase-mediated apoptosis in cerebellar granule neurons in vitro. However, the underlying and cell death-initiating mechanisms are unknown. We firstly investigated potassium efflux through the outward delayed rectifier K+ current (Ik) as a potential mediator. However, tetraethylammoniumchloride, an inhibitor of Ik, was ineffective to block apoptosis after potassium withdrawal. Since potassium withdrawal reduced intracellular pH (pHi) from 7.4 to 7.2, we secondly investigated the effects of intracellular acidosis. To study intracellular acidosis in cerebellar granule neurons, we inhibited the Na+/H+ exchanger (NHE) with 4-isopropyl-3-methylsulfonylbenzoyl-guanidine methanesulfonate (HOE 642) and 5-(N-ethyl-N-isopropyl)-amiloride. Both inhibitors concentration-dependently induced cell death and potentiated cell death after potassium withdrawal. Although inhibition of the NHE induced cell death with morphological criteria of apoptosis in light and electron microscopy including chromatin condensation, positive TUNEL staining and cell shrinkage, no internucleosomal DNA cleavage or activation of caspases was detected. In contrast to potassium withdrawal-induced apoptosis, cell death induced by intracellular acidification was not prevented by insulin-like growth factor-1, cyclo-adenosine-monophosphate, caspase inhibitors and transfection with an adenovirus expressing Bcl-XL. However, cycloheximide protected cerebellar granule neurons from death induced by potassium withdrawal as well as from death after treatment with HOE 642. Therefore, the molecular mechanisms leading to cell death after acidification appear to be different from the mechanisms after potassium withdrawal and resemble the biochemical but not the morphological characteristics of paraptosis.  相似文献   

6.
The ubiquitously expressed Na(+)/H(+) exchanger isoform 1 (NHE1) functions as a major intracellular pH (pH(i)) regulatory mechanism in many cell types, and in some tissues its activity may contribute to ischemic injury. In the present study, cortical astrocyte cultures from wild-type (NHE1(+/+)) and NHE1-deficient (NHE1(-/-)) mice were used to investigate the role of NHE1 in pH(i) recovery and ischemic injury in astrocytes. In the absence of HCO(3)(-), the mean resting pH(i) levels were 6.86 +/- 0.03 in NHE1(+/+) astrocytes and 6.53 +/- 0.04 in NHE1(-/-) astrocytes. Removal of extracellular Na(+) or blocking of NHE1 activity by the potent NHE1 inhibitor HOE-642 significantly reduced the resting level of pH(i) in NHE1(+/+) astrocytes. NHE1(+/+) astrocytes exhibited a rapid pH(i) recovery (0.33 +/- 0.08 pH unit/min) after NH(4)Cl prepulse acid load. The pH(i) recovery in NHE1(+/+) astrocytes was reversibly inhibited by HOE-642 or removal of extracellular Na(+). In NHE1(-/-) astrocytes, the pH(i) recovery after acidification was impaired and not affected by either Na(+)-free conditions or HOE-642. Furthermore, 2 h of oxygen and glucose deprivation (OGD) led to an approximately 80% increase in pH(i) recovery rate in NHE1(+/+) astrocytes. OGD induced a 5-fold rise in intracellular [Na(+)] and 26% swelling in NHE1(+/+) astrocytes. HOE-642 or genetic ablation of NHE1 significantly reduced the Na(+) rise and swelling after OGD. These results suggest that NHE1 is the major pH(i) regulatory mechanism in cortical astrocytes and that ablation of NHE1 in astrocytes attenuates ischemia-induced disruption of ionic regulation and swelling.  相似文献   

7.
Activity of the Na+/H+ exchanger (NHE) isoform 1 (NHE1) is increased by intracellular acidosis through the interaction of intracellular H+ with an allosteric modifier site in the transport domain. Additional regulation is achieved via kinase-mediated modulation of the NHE1 regulatory domain. To determine if intracellular acidosis stimulates NHE1 activity solely by the allosteric mechanism, we subjected cultured neonatal rat ventricular myocytes (NRVM) with native NHE1 expression to intracellular acidosis (pHi approximately 6.6) for up to 6 min by transient exposure to NH4Cl and its washout in the presence of NHE inhibition (by zero [Na+]o or the NHE1 inhibitor cariporide) in HCO3- -free medium. After the desired duration of acidosis, NHE was reactivated (by reintroduction of [Na+]o or removal of cariporide), and the rate of recovery of pHi (dpHi/dt) was measured as the index of NHE activity. Regardless of the method used when intracellular acidosis was sustained for > or =3 min, subsequent NHE activity was significantly increased (>4-fold). Similar NHE stimulatory effects of sustained acidosis were observed in adult rat ventricular myocytes and COS-7 cells. Sustained (3 min) intracellular acidosis activated several NHE1 kinases in NRVM, in an in-gel kinase assay using as substrate a glutathione S-transferase fusion protein of the NHE1 regulatory domain. Detailed investigation of ERK and its downstream effector p90RSK, two putative NHE1 kinases, revealed time-dependent activation of both by intracellular acidosis in NRVM. Furthermore, inhibition of MEK1/2 by pretreatment of NRVM with two structurally distinct inhibitors, PD98059 (30 microM) or UO126 (3 microM), inhibited the activation of ERK and p90RSK and abolished the stimulation of NHE activity by sustained (3 min) intracellular acidosis. Our data show that not only the extent but also the duration of intracellular acidosis regulates NHE1 activity and suggest that the stimulatory effect of sustained intracellular acidosis occurs through a novel mechanism mediated by activation of the ERK pathway.  相似文献   

8.
Intracellular pH (pH(i)) exerts considerable influence on cardiac contractility and rhythm. Over the last few years, extensive progress has been made in understanding the system that controls pH(i) in animal cardiomyocytes. In addition to the housekeeping Na(+)-H(+) exchanger (NHE), the Na(+)-HCO(3)(-) symporter (NHS) has been demonstrated in animal cardiomyocytes as another acid extruder. However, whether the NHE and NHS functions exist in human atrial cardiomyocytes remains unclear. We therefore investigated the mechanism of pH(i) recovery from intracellular acidosis (induced by NH(4)Cl prepulse) using intracellular 2',7'-bis(2-carboxethyl)-5(6)-carboxy-fluorescein fluorescence in human atrial myocardium. In HEPES (nominally HCO(3)(-)-free) Tyrode solution, pH(i) recovery from induced intracellular acidosis could be blocked completely by 30 microM 3-methylsulfonyl-4-piperidinobenzoyl, guanidine hydrochloride (HOE 694), a specific NHE inhibitor, or by removing extracellular Na(+). In 3% CO(2)-HCO(3)(-) Tyrode solution, HOE 694 only slowed the pH(i) recovery, while addition of HOE 694 together with 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (an NHS inhibitor) or removal of extracellular Na(+) inhibited the acid extrusion entirely. Therefore, in the present study, we provided evidence that two acid extruders involved in acid extrusion in human atrial myocytes, one which is HCO(3)(-) independent and one which is HCO(3)(-) dependent, are mostly likely NHE and NHS, respectively. When we checked the percentage of contribution of these two carriers to pH(i) recovery following induced acidosis, we found that the activity of NHE increased steeply in the acid direction, while that of NHS did not change. Our present data indicate for the first time that two acid extruders, NHE and NHS, exist functionally and pH(i) dependently in human atrial cardiomyocytes.  相似文献   

9.
Hypoxia ischemia (HI)-related brain injury is the major cause of long-term morbidity in neonates. One characteristic hallmark of neonatal HI is the development of reactive astrogliosis in the hippocampus. However, the impact of reactive astrogliosis in hippocampal damage after neonatal HI is not fully understood. In the current study, we investigated the role of Na+/H+ exchanger isoform 1 (NHE1) protein in mouse reactive hippocampal astrocyte function in an in vitro ischemia model (oxygen/glucose deprivation and reoxygenation, OGD/REOX). 2 h OGD significantly increased NHE1 protein expression and NHE1-mediated H+ efflux in hippocampal astrocytes. NHE1 activity remained stimulated during 1–5 h REOX and returned to the basal level at 24 h REOX. NHE1 activation in hippocampal astrocytes resulted in intracellular Na+ and Ca2+ overload. The latter was mediated by reversal of Na+/Ca2+ exchange. Hippocampal astrocytes also exhibited a robust release of gliotransmitters (glutamate and pro-inflammatory cytokines IL-6 and TNFα) during 1–24 h REOX. Interestingly, inhibition of NHE1 activity with its potent inhibitor HOE 642 not only reduced Na+ overload but also gliotransmitter release from hippocampal astrocytes. The noncompetitive excitatory amino acid transporter inhibitor TBOA showed a similar effect on blocking the glutamate release. Taken together, we concluded that NHE1 plays an essential role in maintaining H+ homeostasis in hippocampal astrocytes. Over-stimulation of NHE1 activity following in vitro ischemia disrupts Na+ and Ca2+ homeostasis, which reduces Na+-dependent glutamate uptake and promotes release of glutamate and cytokines from reactive astrocytes. Therefore, blocking sustained NHE1 activation in reactive astrocytes may provide neuroprotection following HI.  相似文献   

10.
Zhang LP  Wei Y  Song SL  Cheng M  Zhang Y 《生理学报》2011,63(1):48-54
有研究表明白藜芦醇甙(polydatin)具有抗缺血性心律失常作用,但其电生理学机制尚未明了。本研究旨在应用细胞内记录和全细胞膜片钳方法,探讨白藜芦醇甙对大鼠心室乳头状肌动作电位的影响及其离子机制。结果显示:(1)白藜芦醇甙(50和100μmol/L)可剂量依赖性地缩短正常乳头状肌动作电位复极化50%时间(APD50)和90%时间(APD90)(P<0.01)。白藜芦醇甙对正常乳头状肌静息电位(resting potential,RP)、动作电位幅值(amplitude of action potential,APA)、超射值(overshoot,OS)和0期最大上升速度(Vmax)无影响(P>0.05)。(2)对部分去极化的乳头状肌,白藜芦醇甙(50μmol/L)不但缩短APD50和APD90,而且还降低动作电位OS、APA和Vmax(P<0.05)。(3)ATP敏感钾通道阻断剂格列本脲(10μmol/L)可部分阻断白藜芦醇甙(50μmol/L)的电生理效应。(4)一氧化氮合酶抑制剂L-NAME(1 mmol/L)对白藜芦醇甙的上述效应无影响。(5)白藜芦醇甙(25、50、75、100μmol/L)可浓度依...  相似文献   

11.
The mechanism of apical Na(+)-dependent H(+) extrusion in colonic crypts is controversial. With the use of confocal microscopy of the living mouse distal colon loaded with BCECF or SNARF-5F (fluorescent pH sensors), measurements of intracellular pH (pH(i)) in epithelial cells at either the crypt base or colonic surface were reported. After cellular acidification, the addition of luminal Na(+) stimulated similar rates of pH(i) recovery in cells at the base of distal colonic crypts of wild-type or Na(+)/H(+) exchanger isoform 2 (NHE2)-null mice. In wild-type crypts, 20 microM HOE694 (NHE2 inhibitor) blocked 68-75% of the pH(i) recovery rate, whereas NHE2-null crypts were insensitive to HOE694, the NHE3-specific inhibitor S-1611 (20 microM), or the bicarbonate transport inhibitor 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS; 1 mM). A general NHE inhibitor, 5-(N-ethyl-N-isopropyl)amiloride (EIPA; 20 microM), inhibited pH(i) recovery in NHE2-null mice (46%) but less strongly than in wild-type mice (74%), suggesting both EIPA-sensitive and -insensitive compensatory mechanisms. Transepithelial Na(+) leakage followed by activation of basolateral NHE1 could confound the outcomes; however, the rates of Na(+)-dependent pH(i) recovery were independent of transepithelial leakiness to lucifer yellow and were unchanged in NHE1-null mice. NHE2 was immunolocalized on apical membranes of wild-type crypts but not NHE2-null tissue. NHE3 immunoreactivity was near the colonic surface but not at the crypt base in NHE2-null mice. Colonic surface cells from wild-type mice demonstrated S1611- and HOE694-sensitive pH(i) recovery in response to luminal sodium, confirming a functional role for both NHE3 and NHE2 at this site. We conclude that constitutive absence of NHE2 results in a compensatory increase in a Na(+)-dependent, EIPA-sensitive acid extruder distinct from NHE1, NHE3, or SITS-sensitive transporters.  相似文献   

12.
The effect of changes in PCO2 upon induction of arrhythmias in cat papillary muscles was studied. The average norepinephrine (NE) dose necessary to produce spontaneous contractions in muscles stimulated at rates of 10/min was higher at high PCO2. Whereas 2 100 +/- 295 X 10(-8) mol/litre of NE was necessary during acidosis, only 824 +/- 295 X 10(-8) mol/litre was necessary to produce spontaneous contractions in alkalosis. In quiescent muscles, the necessary doses in acidosis and alkalosis were 2 209 +/- 531 X 10(-8) and 518 +/- 159 X 10(-8) mol/litre respectively. With isoproterenol 458 +/- 84 X 10(-8) mol/litre was necessary to reach the end point at high PCO2, whereas only 131 +/- 52 X 10(-8) mol/litre was required at low PCO2. The lower sensitivity to catecholamine-induced arrhythmias with hypercapnic acidosis does not appear to be related to the re-uptake of the neurotransmitter by the nerve ending since it is also present with isoproterenol.  相似文献   

13.
Brief ischemia or hypoxia has been found to protect the heart against susbsequent long-lasting ischemia and to improve contractile dysfunction as well to reduce cell necrosis and the incidence of lethal arrhythmias. This phenomenon, termed preconditioning (PC) has been demonstrated in different species. However, little is known about PC in guinea pigs. Moreover, electrophysiological changes underlying protection have not been studied so far in conjuntion with force recovery in a setting of PC. The aim of the study was to study PC in a guinea pig papillary muscle, using recovery of contractility after long hypoxic challenge as the main end-point of protection, and to investigate concominant electrophysiological alterations. In guinea pig papillary muscle preparations contracting isometrically (paced at 2 Hz), transmembrane action potentials (AP) and developed force (DF) were recorded by conventional microelectrode technique and a force tranducer. In addition, effective refractory periods (ERP) were determined. Hypoxia was induced by superfusion with 100% N2 (pO2 < 5 kPa) and pacing at 3,3 Hz. In the control group, long hypoxia lasted for 45 min and was followed by 30 min reoxygenation. In the PC group, muscles were subjected to 5 min hypoxia followed by 10 min recovery prior to sustained hypoxia/reoxygenation. Results: Long hypoxia induced a similar depression of DF in both, PC and control groups. However, a loss of contractile activity occured earlier in the PC group. AP duration and ERP decreased faster and were significantly shorter after PC. Upon reoxygenation, preconditioned muscles showed significantly better recovery of function (DF 86% of prehypoxic value vs. 36% in controls; p < 0,05). AP and ERP were completely restored in both, PC and control groups. Guinea pig papillary muscle can be preconditioned with a brief hypoxic challenge against contractile dysfunction upon long-lasting hypoxia/reoxygenation. Shortening of AP and loss of contractility occured more quickly during hypoxia and may participate in the protective effect of preconditioning. Possible mechanisms might involve facilitated opening of KATP-dependent channels.  相似文献   

14.
Na absorption across the cornified, multilayered, and squamous rumen epithelium is mediated by electrogenic amiloride-insensitive transport and by electroneutral Na transport. High concentrations of amiloride (>100 μM) inhibit Na transport, indicating Na(+)/H(+) exchange (NHE) activity. The underlying NHE isoform for transepithelial Na absorption was characterized by mucosal application of the specific inhibitor HOE642 for NHE1 and S3226 for NHE3 in Ussing chamber studies with isolated epithelia from bovine and sheep forestomach. S3226 (1 μM; NHE3 inhibitor) abolished electroneutral Na transport under control conditions and also the short-chain fatty acid-induced increase of Na transport via NHE. However, HOE642 (30 μM; NHE1 inhibitor) did not change Na transport rates. NHE3 was immunohistochemically localized in membranes of the upper layers toward the lumen. Expression of NHE1 and NHE3 has been previously demonstrated by RT-PCR, and earlier experiments with isolated rumen epithelial cells have shown the activity of both NHE1 and NHE3. Obviously, both isoforms are involved in the regulation of intracellular pH, pH(i). However, transepithelial Na transport is only mediated by apical uptake via NHE3 in connection with extrusion of Na by the basolaterally located Na-K-ATPase. The missing involvement of NHE1 in transepithelial Na transport suggests that the proposed "job sharing" in epithelia between these two isoforms probably also applies to forestomach epithelia: NHE3 for transepithelial transport and NHE1 for, among others, pH(i) and volume regulation.  相似文献   

15.
Intracellular myocardial Na+ overload during ischemia is an important cause of reperfusion injury via reversed Na+/Ca2+ exchange. Prevention of this Na+ overload can be accomplished by blocking the different Na+ influx routes. In this study the effect of ischemic inhibition of the Na+/H+ exchanger (NHE) on [Na+]i, pHi and post-ischemic contractile recovery was tested, using three different NHE-blockers: EIPA, cariporide and eniporide. pHi and [Na+]i were measured using simultaneous 31P and 23Na NMR spectroscopy, respectively, in paced (5 Hz) isolated, Langendorff perfused rat hearts while contractility was assessed by an intraventricular balloon. NHE-blockers (3 M) were administered during 5 min prior to 30 min of global ischemia followed by 30 min drug-free reperfusion. NHE blockade markedly reduced ischemic Na+ overload; after 30 min of ischemia [Na+]i had increased to 293 ± 26, 212 ± 6, 157 ± 5 and 146 ± 6% of baseline values in untreated and EIPA (p < 0.01 vs. untreated), cariporide (p < 0.01 vs. untreated) and eniporide (p < 0.01 vs. untreated) treated hearts, respectively. Ischemic acidosis did not differ significantly between groups. During reperfusion, however, recovery of pHi was significantly delayed in treated hearts. The rate pressure product recovered to 12.0 ± 1.9, 12.1 ± 2.1, 19.5 ± 2.8 and 20.4 ± 2.5 × 103 mmHg/min in untreated and EIPA, cariporide (p < 0.01 vs. untreated) and eniporide (p < 0.01 vs. untreated) treated hearts, respectively. In conclusion, blocking the NHE reduced ischemic Na+ overload and improved post-ischemic contractile recovery. EIPA, however, was less effective and exhibited more side effects than cariporide and eniporide in the concentrations used.  相似文献   

16.
17.
Isolated cardiomyocytes from adult rats were incubated in anoxic bicarbonate-buffered media at extracellular pH (pH(o)) 6.4 until a cytosolic Ca(2+) overload and intracellular pH (pH(i)) of 6.4 were reached. On reoxygenation, the pH of the medium was changed to 7.4 to activate the Na(+)/H(+)exchanger (NHE) and the Na(+)-HCO(-)(3) symporter (NBS). The reoxygenation was performed in the absence or presence of the NHE inhibitor HOE-642 (3 micromol/l) and/or the NBS inhibitor DIDS (0.5 mmol/l), as in bicarbonate-free media. In reoxygenated control cells pH(i) rapidly recovered to the preanoxic level, and a burst of spontaneous oscillations of cytosolic Ca(2+) occurred, accompanied by the development of hypercontracture. When NBS and NHE were simultaneously inhibited during reoxygenation, pH(i) recovery was prevented, Ca(2+) oscillations were attenuated, and hypercontracture was abolished. Sole inhibition of NBS or NHE showed no protection against hypercontracture. In the absence of cytosolic acidosis, HOE-642 or DIDS did not prevent hypercontracture induced by Ca(2+) overload. The results demonstrate that simultaneous inhibition of NHE and NBS is needed to protect myocardial cells against reoxygenation-induced hypercontracture.  相似文献   

18.
Although hypercholesterolemia is a strong risk factor for cardiovascular disease, it has in some instances paradoxically been associated with reduced infarct size and preserved contractile function in isolated hearts after ischemia and reperfusion. To elucidate potential cellular protective mechanisms, myocytes of hypercholesterolemic apolipoprotein E-deficient (ApoE-/-) and wild-type mice were subjected to hypoxic metabolic inhibition (I) with subsequent reoxygenation (R). Intracellular Ca2+ concentration ([Ca2+]i) and pH (pHi) were monitored as well as cell length and arrhythmic events. Force measurements in papillary muscles were also recorded, and myocardial expression of Na+/H+ exchanger 1 (NHE1) and three Ca2+ handling proteins [sarco(endo)plasmic reticulum Ca2+-ATPase, Na+/Ca2+ exchanger, and plasma membrane Ca2+-ATPase] was quantified. After 30 min of I and 35 min of R, Ca2+ overload was more pronounced in wild-type cells (P < 0.05). In these myocytes, pHi also dropped faster and remained below those values determined in ApoE-/- cells (P < 0.05). Furthermore, more wild-type myocytes remained in a contracted state (P < 0.05). This group also showed a higher incidence of arrhythmic events during R (P < 0.05). No group difference was found in the expression of the Ca2+ handling proteins. However, NHE1 protein was downregulated in hearts of ApoE-/- mice (P < 0.05). Histological results depict hyperplasia in ApoE-/- hearts without atherosclerosis of the coronaries. Contractile dysfunction was not observed in papillary muscles from ApoE-/- hearts. Our results suggest that downregulated myocardial NHE1 expression in hypercholesterolemic ApoE-/- mice could have contributed to increased tolerance to I/R. It remains to be elucidated whether NHE1 downregulation is a unique feature of these genetically altered animals.  相似文献   

19.
Chronic hypoxia (CH), caused by many lung diseases, results in pulmonary hypertension due, in part, to increased muscularity of small pulmonary vessels. Pulmonary arterial smooth muscle cell (PASMC) proliferation in response to growth factors requires increased intracellular pH (pHi) mediated by activation of Na+/H+ exchange (NHE); however, the effect of CH on PASMC pHi homeostasis is unknown. Thus we measured basal pHi and NHE activity and expression in PASMCs isolated from mice exposed to normoxia or CH (3 wk/10% O2). pHi was measured using the pH-sensitive fluorescent dye BCECF-AM. NHE activity was determined from Na+-dependent recovery from NH4-induced acidosis, and NHE expression was determined by RT-PCR and immunoblot. PASMCs from chronically hypoxic mice exhibited elevated basal pHi and increased NHE activity. NHE1 was the predominate isoform present in mouse PASMCs, and both gene and protein expression of NHE1 was increased following exposure to CH. Our findings indicate that exposure to CH caused increased pHi, NHE activity, and NHE1 expression, changes that may contribute to the development of pulmonary hypertension, in part, via pH-dependent induction of PASMC proliferation.  相似文献   

20.
Noël J  Germain D  Vadnais J 《Biochemistry》2003,42(51):15361-15368
A NHE1 variant that exhibits very high resistance to (3-methyl sulfonyl-4-piperidinobenzoyl) guanidine methane sulfonate (HOE694), a potent inhibitor of Na(+)-H(+) exchangers, was selected and characterized. Sequencing of the coding region corresponding to the N-terminal domain of this variant revealed the presence of only one mutation located within membrane-spanning segment 9 (M9). This base pair change replaces a glutamate (Glu) with an aspartate (Asp). We reproduced this amino acid change in wild-type NHE1 and found that this mutation alone is responsible for the huge decrease in sensitivity to the HOE694 compound and to ethylisopropylamiloride (EIPA). We found that the NHE1-Glu(346)Asp mutant was more than 2000-fold more resistant to HOE694 and up to 300-fold more resistant to EIPA than wild-type NHE1, with the size, rather than the charge, of the amino acid in position 346 having the greatest effect. Interestingly, its affinity for Na(+) was at least 4-fold lower than that of wild-type NHE1. Mutation of amino acids in the vicinity of Glu(346) did not change the sensitivity of mutated NHE1 proteins to inhibitors. We suggest there is a direct interaction of Glu(346) or involvement of Glu(346) in a coordination site with NHE inhibitors and with Na(+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号