首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural gene for beta-lactamase in the Staphylococcus aureus plasmid pI258 was cloned into a Staphylococcus aureus-Bacillus subtilis-Escherichia coli shuttle vector, pWN101, and the nucleotide sequence of the gene was determined. pWN101 was structurally stable and the beta-lactamase gene was expressed efficiently from its native promoter and ribosome-binding site in all three hosts.  相似文献   

2.
With several different vectors, attempts were made to establish blaZ, a Staphylococcus aureus beta-lactamase gene, in Bacillus subtilis. Stable establishment of blaZ in B. subtilis was achieved by use of a vector that allowed the integration of a single copy of the gene into the chromosome of that host. blaZ was expressed in the heterologous host since B. subtilis strains carrying integrated blaZ produced beta-lactamase and were more resistant to ampicillin than was wild-type B. subtilis. blaZ was stably inherited in such strains, as no loss of the ability to produce beta-lactamase was observed after growth in nonselective liquid medium or on solid medium. In contrast, a blaZ-containing restriction fragment could not be established in B. subtilis with either pUB110- or pC194-based vectors. Similarly, a pC194-based shuttle vector (pGX318) containing the 5' end of blaZ (including the promoter and the coding region for the signal sequence and the first few amino acids of the mature protein) was unable to transform B. subtilis. Two derivatives of pGX318 that could be stably established in B. subtilis were isolated. The structures of these derivatives suggested that inactivation of the blaZ promoter was associated with the acquisition of the ability to be established.  相似文献   

3.
Crude lysates of Staphylococcus aureus can transform Bacillus subtilis   总被引:2,自引:0,他引:2  
Plasmids can be transferred from Staphylococcus aureus to Bacillus subtilis by crude lysates prepared with penicillin or lysostaphin. These lysates mediate drug-resistance plasmid transformation in competent B. subtilis at an efficiency paralleling that of purified DNA.  相似文献   

4.
5.
Covalently closed circular DNA from five Staphylococcus aureus plasmids has been introduced into Bacillus subtilis. Four of these plasmids (pUB110, pCM194, pSA2100, and pSA0501) have been selected for further study. These plasmids replicate as multicopy autonomous replicons in both Rec+ and Rec- B. subtilis strains. They may be transduced between B. subtilis strains or transformed at a frequency of 10(4) to 10(5) transformants per microgram of DNA. The molecular weights of these plasmids were estimated, and restriction endonuclease cleavage site maps are presented. Evidence is given that pSA2100, an in vivo recombinant of pSA0501 and pCM194 (S. Iord?nescu, J. Bacteriol. 124:597-601, 1975), arose by a fusion of the latter plasmids, possibly by insertion of one element into another as a translocatable element. Genetic information from three other S. aureus plasmids (pK545, pSH2, and pUB101) has also been introduced into B. subtilis, although no covalently closed circular plasmid DNA was recovered.  相似文献   

6.
The Staphylococcus aureus plasmid pUB110 was found to be enriched in deoxyribonucleic acid-membrane complexes isolated from Bacillus subtilis containing pUB110.  相似文献   

7.
The gene of microbial lysozyme (lyz) of S. aureus 118 and the gene of lysostaphin (lzf) of S. aureus RN 3239 were cloned and their expression in B. subtilis cells was shown. Lysozyme production in B. subtilis recombinant clone pLF14-Lyz, obtained as the result of cloning, was 2.5-fold greater than lysozyme production in S. aureus wild strain 118. Lysostaphin production in B. subtilis recombinant strain pLF14-Lzf which had inherited the cloned genes was approximately equal to lysostaphin production observed in S. aureus initial strain RN 3239. The production of lysozyme and lysostaphin in the cells of B. subtilis recombinant strains was observed at 30 degrees C and pH 5.5, while in S. aureus initial strains 118 and RN 3239 bacteria produced lysozyme and lysostaphin at 37 degrees C and pH 7.5 respectively.  相似文献   

8.
9.
10.
11.
Summary In order to obtain a large quantity of glutamic-acid-specific endopeptidase of Staphylococcus aureus ATCC12600 (SPase) without cultivating its pathogenic host bacterium, expression plasmids enabling secretion of SPase from Bacillus subtilis were constructed by inserting the SPase gene into B. subtilis-Escherichia coli shuttle vectors. B. subtilis harbouring a simple recombinant plasmid containing the coding and the 5-flanking regions of SPase in the shuttle vector pHY300PLK secreted 22 mg/l of SPase into the medium. As this level was lower than that of the natural strain (45 mg/l), we tried to increase the expression level by constructing a series of hybrid plasmids with the following features: (1) the terminator sequence of the alkaline protease gene from B. subtilis, (2) the promoter and the leader sequences of the -amylase gene or of alkaline protease gene from B. amyloliquefaciens, (3) the vector pHY300PLK and the fused vector of pHY300PLK and pUB110. By using a variety of hybrid plasmids, the resulting transformants secreted SPase at levels of 33–120 mg/l. The recombinant SPase isolated from the medium was indistinguishable from the natural one with respect to its behaviour on sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting as well as its enzyme activity.Correspondence to: S. Kakudo  相似文献   

12.
13.
14.
Upton H  Newton GL  Gushiken M  Lo K  Holden D  Fahey RC  Rawat M 《FEBS letters》2012,586(7):1004-1008
The first step during bacillithiol (BSH) biosynthesis involves the formation of N-acetylglucosaminylmalate from UDP-N-acetylglucosamine and l-malate and is catalyzed by a GT4 class glycosyltransferase enzyme (BshA). Recombinant Staphylococcus aureus and Bacillus subtilis BshA were highly specific and active with l-malate but the former showed low activity with d-glyceric acid and the latter with d-malate. We show that BshA is inhibited by BSH and similarly that MshA (first enzyme of mycothiol biosynthesis) is inhibited by the final product MSH.  相似文献   

15.
The interaction of clavulanic acid with beta-lactamase from Staphylococcus aureus was investigated, particularly with a view to determining whether conformational effects are involved. The inactivation at neutral pH is essentially stoichiometric, leading to an inactive species with an enamine chromophore. Two forms of the enamine were observed, the first-formed having a positive ellipticity with a maximum near 290 nm. This species slowly converted into the stable form of the inactivated enzyme that had a negative ellipticity with a minimum at 275 nm. This change in sign of the ellipticity of the enamine is consistent with the previously proposed cis-trans isomerization of the enamine [Cartwright & Coulson (1979) Nature (London) 278, 360-361). Both the far-u.v.c.d. and the intrinsic viscosity of the inactivated enzyme indicated that negligible change in conformation of the enzyme accompanied inactivation. The rates of inactivation and enamine formation were compared at low temperatures, where the initial rates were slow enough to be monitored. The rate of loss of 95% of the catalytic activity was almost 100-fold faster than the rate of formation of the first-formed enamine species. The remaining 5% activity was lost with a rate comparable with that for formation of the initial enamine. The simplest explanation of these results is that a relatively stable acyl-enzyme intermediate builds up initially and more slowly partitions between turnover (hydrolysis) and enamine formation. The initially formed enamine is in the cis conformation but slowly isomerizes to the more stable trans form.  相似文献   

16.
The chromosomal beta-lactamase (penicillinase, penP) gene from Bacillus licheniformis 749/C has been cloned in Escherichia coli. The locations of the target sites for various restriction enzymes on the 4.2-kilobase EcoRI fragment were determined. By matching the restriction mapping data with the potential nucleotide sequences of the penP gene deduced from known protein sequence, we established the exact position of the penP gene on the fragment. A bifunctional plasmid vector carrying the penP gene, plasmid pOG2165, was constructed which directs the synthesis of the heterologous beta-lactamase in both E. coli and Bacillus subtilis hosts. The protein synthesized in E. coli and B. subtilis is similar in size to the processed beta-lactamase made in B. licheniformis. Furthermore, the beta-lactamase made in B. subtilis is efficiently secreted by the host into the culture medium, indicating that B. subtilis is capable of carrying out the post-translational proteolytic cleavage(s) to convert the membrane-bound precursor enzyme into the soluble extracellular form.  相似文献   

17.
18.
19.
The development of a biofilm constitutes a survival strategy by providing bacteria a protective environment safe from stresses such as microbicide action and can thus lead to important health-care problems. In this study, biofilm resistance of a Bacillus subtilis strain (called hereafter ND(medical)) recently isolated from endoscope washer-disinfectors to peracetic acid was investigated and its ability to protect the pathogen Staphylococcus aureus in mixed biofilms was evaluated. Biocide action within Bacillus subtilis biofilms was visualised in real time using a non-invasive 4D confocal imaging method. The resistance of single species and mixed biofilms to peracetic acid was quantified using standard plate counting methods and their architecture was explored using confocal imaging and electronic microscopy. The results showed that the ND(medical) strain demonstrates the ability to make very large amount of biofilm together with hyper-resistance to the concentration of PAA used in many formulations (3500 ppm). Evidences strongly suggest that the enhanced resistance of the ND(medical) strain was related to the specific three-dimensional structure of the biofilm and the large amount of the extracellular matrix produced which can hinder the penetration of peracetic acid. When grown in mixed biofilm with Staphylococcus aureus, the ND(medical) strain demonstrated the ability to protect the pathogen from PAA action, thus enabling its persistence in the environment. This work points out the ability of bacteria to adapt to an extremely hostile environment, and the necessity of considering multi-organism ecosystems instead of single species model to decipher the mechanisms of biofilm resistance to antimicrobials agents.  相似文献   

20.
Glutathione constitutes a key player in the thiol redox buffer in many organisms. However, the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus lack this low-molecular-weight thiol. Recently, we identified S-cysteinylated proteins in B. subtilis after treatment of cells with the disulfide-generating electrophile diamide. S cysteinylation is thought to protect protein thiols against irreversible oxidation to sulfinic and sulfonic acids. Here we show that S thiolation occurs also in S. aureus proteins after exposure to diamide. We further analyzed the formation of inter- and intramolecular disulfide bonds in cytoplasmic proteins using diagonal nonreducing/reducing sodium dodecyl sulfate gel electrophoresis. However, only a few proteins were identified that form inter- or intramolecular disulfide bonds under control and diamide stress conditions in B. subtilis and S. aureus. Depletion of the cysteine pool was concomitantly measured in B. subtilis using a metabolomics approach. Thus, the majority of reversible thiol modifications that were previously detected by two-dimensional gel fluorescence-based thiol modification assay are most likely based on S thiolations. Finally, we found that a glutathione-producing B. subtilis strain which expresses the Listeria monocytogenes gshF gene did not show enhanced oxidative stress resistance compared to the wild type.Cysteine thiols in proteins fulfill an important and diverse set of cellular functions. In particular, they participate in enzymatic catalysis; in metal coordination, such as in the generation of Fe-S-clusters; and in determining the spatial structure of proteins via disulfide bond formation (3, 22, 23, 38). Cysteines are strong nucleophiles amenable to posttranslational modifications by reactive oxygen species (ROS) and reactive nitrogen species, leading to disulfides; to sulfenic, sulfinic, or sulfonic acids; mixed disulfides with low-molecular-weight (LMW) thiols (S thiolations); and S nitrosylations (7, 16, 17, 27).The redox status of the cytoplasm is under physiological conditions in a reduced state. Thus, most cysteines are present as free thiols (6). Because aerobic organisms have to cope with oxidative stress caused by ROS, such as superoxide anions, hydrogen peroxide, or hydroxyl radicals, they need to employ effective mechanisms that maintain the reduced state. In gram-negative bacteria, the thiol-disulfide balance is accomplished by the glutathione (GSH) system, a thiol-based redox buffer. The GSH system consists of glutaredoxin (Grx), GSH (γ-glutamylcysteinyl glycine), GSH reductase, and GSH peroxidase (34). Reduction of disulfides occurs via sequential electron transfer from glutaredoxin and reduced GSH; oxidized GSH (GSSG) is reduced by the NADPH-dependent GSH reductase. GSH peroxidase enables the direct detoxification of ROS by GSH oxidation.However, many gram-positive bacteria lack genes for GSH biosynthesis. Actinomycetes instead use a thiol redox buffer based on mycothiol (50). Bacillus subtilis, Staphylococcus aureus, and other gram-positive bacteria rely on different thiol redox buffers based on cysteine, the novel 398-Da bacillithiol (BSH), or coenzyme A (CoA) (15, 52). To maintain the reduced state of the cytoplasm, most bacteria use enzymatic systems for disulfide bond reduction such as the thioredoxin (Trx) system, which is highly conserved in gram-negative bacteria (3, 10). The Trx system consists of thioredoxin (TrxA) and the NADPH-dependent thioredoxin reductase (TrxB).Any imbalance in the cellular redox state caused by ROS elicits expression of a repertoire of different proteins, commonly under the control of a redox-sensing regulator: for example, OxyR in Escherichia coli and PerR, OhrR, SarZ, and Spx in B. subtilis and S. aureus, respectively (11, 12, 41, 55, 58, 64-66). The subsequently induced proteins detoxify ROS and restore and protect the normal physiological redox state in the cell.Besides ROS and reactive nitrogen species, so-called “reactive electrophilic species” (RES) affect the thiol redox balance. RES include different chemical compounds such as aldehydes, quinones, and the azo compound diamide (2, 43, 45, 46, 53, 66). Quinones and aldehydes have electron-deficient centers that result in thiol-(S) alkylation of cysteine. Exposure of cells to diamide induces the oxidative as well as the electrophile stress response in B. subtilis (43, 45, 53). The toxicity of diamide is based on disulfide bond formation (40), which was recently visualized in B. subtilis and S. aureus by the fluorescence alkylation of oxidized thiols (FALKO) assay (32, 64). It was thought that the formation of nonnative inter- and intramolecular disulfide bonds results in damage of proteins.However, more recent findings demonstrate that diamide stress leads also to S thiolations: formation of disulfide bonds between proteins and LMW thiols (8, 13, 33). S thiolations prevent protein thiols from irreversible oxidation to sulfinic and sulfonic acids, but also affect enzyme activity (35, 47) and signal transduction (39, 42). In B. subtilis, we have identified a few cytoplasmic proteins that are S cysteinylated (33). In addition, the organic peroxide sensor OhrR was inactivated by an S bacillithiolation in B. subtilis (42).Cysteine, BSH, and CoA are also dominant LMW thiols in S. aureus (52). In this study, we have investigated in more detail the extents of S thiolations and inter- and intramolecular disulfide bond formation of B. subtilis and S. aureus in response to disulfide stress. The results showed that exposure to diamide leads to S thiolations in S. aureus. Using a nonreducing/reducing sodium dodecyl sulfate (SDS) diagonal electrophoresis approach, proteins with intermolecular disulfide bonds could be distinguished from proteins with intramolecular disulfide bonds (57). The results support that the majority of reversible thiol oxidations are based on S thiolations rather than disulfide bonds between proteins. Depletion of the free cysteine pool in B. subtilis after exposure to diamide supports this finding. To assess if GSH may have a bearing on the thiol redox buffer of B. subtilis, the gshF gene of Listeria monocytogenes (gshFLm) was expressed in B. subtilis, enabling GSH biosynthesis (29). Although GSH production does not enhance the resistance to oxidative stress in B. subtilis, it participates in the formation of S thiolations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号