首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The benzodiazepines (BZDs) chlordiazepoxide (CDE), diazepam (DZM), and flurazepam (FLM) inhibited receptor binding for thyrotropin-releasing hormone (TRH) with low micromolar potency. In contrast, numerous other categories of drugs were previously shown to be inactive. Scatchard analysis of competition data suggested that the BZDs reduced TRH receptor affinity, consistent with competitive inhibition. Receptors from amygdala, retina, and pituitary appeared more sensitive to inhibition by BZDs than those from hypothalamus, hippocampus, spinal cord, or cerebellum. The latter four regions also gave shallower inhibition curves. CDE revealed an apparently biphasic dissociation of [3-Me-His2]TRH([3H]MeTRH) from amygdala membranes at 4 degrees C, with kinetics similar to those with TRH. These results suggest that TRH receptors in the brain are heterogeneous and that certain BZDs in high therapeutic concentrations may exert central effects through actions at TRH receptors or coupled proteins.  相似文献   

2.
Gamma-aminobutyric acid type A (GABAA) receptors in brain adapt to chronic ethanol exposure via changes in receptor function and subunit expression. The present review summarizes currently available data regarding changes in GABAA receptor subunit mRNA and peptide expression. Data are presented from various different brain regions and the variations between specific brain regions used to draw conclusions about mechanisms that may underlie GABAA receptor adaptations during chronic ethanol exposure. In the whole cerebral cortex, chronic ethanol exposure leads to a reduction of GABAA receptor 1 subunit mRNA and peptide levels and a near equivalent increase in 4 subunit mRNA and peptide levels. This observation is the primary support for the hypothesis that altered receptor composition is a mechanism for GABAA receptor adaptation produced by chronic ethanol exposure. However, other brain regions do not display similar patterns of subunit changes. Moreover, subregions within cortex (prefrontal, cingulate, parietal, motor, and piriform) exhibit patterns of changes in subunit expression that differ from whole cortex. Therefore, regional differences in GABAA receptor subunit expression are evident following chronic ethanol administration, thus suggesting that multiple mechanisms contribute to the regulation of GABAA receptor expression. These mechanisms may include the involvement of other neurotransmitter systems, endogenous steroids and second or third messenger cross-talk.  相似文献   

3.
Gamma-aminobutyric acid type A (GABAA) receptors in brain adapt to chronic ethanol exposure via changes in receptor function and subunit expression. The present review summarizes currently available data regarding changes in GABAA receptor subunit mRNA and peptide expression. Data are presented from various different brain regions and the variations between specific brain regions used to draw conclusions about mechanisms that may underlie GABAA receptor adaptations during chronic ethanol exposure. In the whole cerebral cortex, chronic ethanol exposure leads to a reduction of GABAA receptor α1 subunit mRNA and peptide levels and a near equivalent increase in α4 subunit mRNA and peptide levels. This observation is the primary support for the hypothesis that altered receptor composition is a mechanism for GABAA receptor adaptation produced by chronic ethanol exposure. However, other brain regions do not display similar patterns of subunit changes. Moreover, subregions within cortex (prefrontal, cingulate, parietal, motor, and piriform) exhibit patterns of changes in subunit expression that differ from whole cortex. Therefore, regional differences in GABAA receptor subunit expression are evident following chronic ethanol administration, thus suggesting that multiple mechanisms contribute to the regulation of GABAA receptor expression. These mechanisms may include the involvement of other neurotransmitter systems, endogenous steroids and second or third messenger cross-talk.  相似文献   

4.
Abstract: There is evidence that dietary lipids and age both influence neuronal membrane composition and receptor G protein-linked signal transduction, but very little information is available on the interaction between these two factors. To investigate this, we obtained striata from 2, 12, and 22-month-old male F344 rats who were fed either a high-cholesterol, high-saturated fat or low-fat diet for 1 month. The striata were assayed for muscarinic agonist-stimulated low-Km GTPase activity using 10?3M carbachol and 10?5M oxotremorine and for KCl-evoked dopamine release enhancement by 10?5M oxotremorine. Membrane cholesterol and phospholipid content and phospholipid class composition were also determined. Mature animals showed significant but divergent changes in GTPase activity and dopamine release for high-cholesterol and low-fat diets: GTPase activity decreased, whereas dopamine release increased in these groups. Alterations in GTPase activity but not in dopamine release were inversely correlated with the cholesterol/phospholipid molar ratio. Old control animals showed reductions in both GTPase activity and oxotremorine-enhanced dopamine release compared with young animals. Whereas none of the experimental diets affected GTPase activity in old animals, the low-fat diet produced a marked decrease in dopamine release. In contrast to mature and old groups, young rats showed no significant change in either GTPase or dopamine release, suggesting a relative “resistance” to such dietary lipid modulation. The observed dissociation in GTPase and dopamine release responses to diet may reflect differing effects of these diets on discrete membrane lipid domains that preferentially influence different signal transduction components. The substantial age-related differences in striatal membrane response to dietary lipid modulation may represent the effects of underlying age differences in membrane lipid metabolism, structure, and/or dynamics. Our findings support the work of other groups that have shown that brain membranes are susceptible to modification by exogenous lipids. They also suggest the need for a more systematic examination of the influence of age on the response to other types of dietary lipid changes.  相似文献   

5.
Effect of Age on Human Brain Serotonin (S-1) Binding Sites   总被引:1,自引:1,他引:1  
The effect of age on the binding of [3H]5-hydroxytryptamine [( 3H]5-HT, serotonin) to postmortem human frontal cortex, hippocampus, and putamen from individuals between the ages of 19 and 100 years was studied. One high-affinity binding site was observed in adult brains, with a mean KD of 3.7 nM and 3.2 nM for frontal cortex and hippocampus, respectively, and 9.2 nM for putamen. Decreased binding capacities (Bmax) with age were detected in frontal cortex and hippocampus. In putamen a decrease in affinity was noted. Postmortem storage did not significantly contribute to the age-related changes. No significant sex differences were detected. [3H]5-HT binding was also studied in brains from human neonates. The specific binding was 1.5-3 times lower than in adult frontal cortex and putamen, and Scatchard analysis suggested more than one binding site. In infant hippocampus a single binding site was observed and except for a premature individual, the binding capacity approximated adult values.  相似文献   

6.
Regional Development of Glutamate Dehydrogenase in the at Brain   总被引:1,自引:0,他引:1  
The development of glutamate dehydrogenase enzyme activity in rat brain regions has been followed from the late foetal stage to the adult and through to the aged (greater than 2 years) adult. In the adult brain the enzyme activity was greatest in the medulla oblongata and pons greater than midbrain = hypothalamus greater than cerebellum = striatum = cortex. In the aged adult brain, glutamate dehydrogenase activity was significantly lower in the medulla oblongata and pons when compared to the 90-day-old adult value, but not in other regions. The enzyme-specific activity of nonsynaptic (free) mitochondria purified from the medulla oblongata and pons of 90-day-old animals was about twice that of mitochondria purified from the striatum and the cortex. The specific activity of the enzyme in synaptic mitochondria purified from the above three brain regions, however, remained almost constant.  相似文献   

7.
Phospholipase D (PLD) is emerging as a major player in many novel signaling pathways. Based on recent studies correlating membrane composition with enzyme function, we speculated that feeding of dietary lipids to the newborns has a major impact on brain PLD activity. To test this hypothesis, the rat dams were fed fat-free powder containing either safflower oil or fish oil, and a control powdered chow. The pups were weaned onto the diet and sacrificed at 30 days of age. PLD activity was measured by transphosphatidylation assays using rat brain membranes. This study shows that microsome GTPS-dependent PLD activity in rats fed safflower oil or fish oil was significantly reduced by 38% and 30% respectively compared to controls. Oleate-dependent PLD activity in the safflower oil group, however, was significantly increased by 38%. In contrast, synaptosome membrane (P2) GTPS-dependent PLD activity in rats consuming safflower oil was significantly increased by 29%, but there was no difference in oleate-dependent PLD activity. Likewise, no difference was observed in microsome oleate-dependent PLD and P2 GTPS-dependent PLD activity between the fish oil and the control groups. These results indicate that dietary lipid intake appears to modulate phospholipid metabolism and differential expression of PLD isozymes in the brain.  相似文献   

8.
Aldrin, a chlorinated hydrocarbon group of pesticide, is a well known central nervous system (CNS) stimulant. The CNS stimulating effect of aldrin is manifested in the form of an increase in locomotor activity (LA) of animals. Maximum increase in LA was observed at 2 h following aldrin (2-10 mg/kg, p.o.) treatment and this aldrin-induced increase in LA attained a peak at a dose of 10 mg/kg, p.o. Administration of aldrin (2 or 5 mg/kg/day, p.o.) enhanced LA of rats and reached a maxima after 12 consecutive days of treatment following which aldrin-induced LA was gradually reduced and restored to control value after 20 consecutive days of aldrin treatment. A single administration of aldrin (2-10 mg/kg, p.o.) reduced the GABA system in cerebellum, hypothalamus and pons-medulla. The treatment with aldrin (2 mg/kg/day, p.o.) for 12 consecutive days produced more inhibition in those brain regional GABA system than that observed with a single dose of aldrin. These results, thus, suggest that aldrin-induced inhibition of central GABA may be a cause of stimulation of LA with aldrin either at a single dose or for 12 consecutive days.  相似文献   

9.
Abstract: The relations of plasma concentrations of substances claimed to influence brain tryptophan concentration (total tryptophan, free tryptophan, large neutral amino acids) with the concentrations of tryptophan, 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in the forebrain were investigated in rats of different ages (from 8 days to 16 months after birth). In brain, tryptophan fell by 46%, whereas 5-HT rose by 20% between 8 and 40/42 days after birth. Thereafter, the levels of both tryptophan and 5-HT remained essentially constant. Brain 5-HIAA showed a more complex pattern, rising by 63% between 8 and 19 days, falling between 19 and 40/42 days, and then gradually rising until values at 16 months were significantly higher than those at 40/42 days. In plasma, the concentrations of free fatty acids, free and total tryptophan, and large neutral amino acids all decreased between 8 and 19 days and thereafter either remained constant or increased slowly, the exception being total tryptophan values, which showed large increases between 28/30 and 60/70 days. Also, the unidirectional uptake of tryptophan from blood to brain was determined using a carotid artery injection technique. Uptake values obtained using a tracer concentration of tryptophan in the injection solution decreased progressively with age. Kinetic analysis of the data in terms of the Michaelis-Menten equation for carrier-mediated transport indicated significantly lower values for Vmax and KD (a component for nonsaturable transport) in 6-month-old rats as compared to 19-day-old suckling rats, whereas Km values were the same at both ages. Detailed analysis of these results indicated that the age-related changes in brain tryptophan were largely explicable in terms of plasma free tryptophan in association with blood-brain transport characteristics; moderate differences in concentration of amino acids competing for transport were without apparent effect between 19 days and 16 months. The larger differences between 8 and 19 days after birth could be important.  相似文献   

10.
(1) In the present study we determined the effects of glutaric (GA, 0.01–1 mM) and 3-hydroxyglutaric (3-OHGA, 1.0–100 μM) acids, the major metabolites accumulating in glutaric acidemia type I (GA I), on Na+-independent and Na+-dependent [3H]glutamate binding to synaptic plasma membranes from cerebral cortex and striatum of rats aged 7, 15 and 60 days. (2) GA selectively inhibited Na+-independent [3H]glutamate binding (binding to receptors) in cerebral cortex and striatum of rats aged 7 and 15 days, but not aged 60 days. In contrast, GA did not alter Na+-dependent glutamate binding (binding to transporters) to synaptic membranes from brain structures of rats at all studied ages. Furthermore, experiments using the glutamatergic antagonist CNQX indicated that GA probably binds to non-NMDA receptors. In addition, GA markedly inhibited [3H]kainate binding to synaptic plasma membranes in cerebral cortex of 15-day-old rats, indicating that this effect was probably directed towards kainate receptors. On the other hand, experiments performed with 3-OHGA revealed that this organic acid did not change Na+-independent [3H]glutamate binding to synaptic membranes from cerebral cortex and striatum of rats from all ages, but inhibited Na+-dependent [3H]glutamate binding to membranes in striatum of 7-day-old rats, but not in striatum of 15- and 60-day-old rats and in cerebral cortex of rats from all studied ages. We also provided some evidence that 3-OHGA competes with the glutamate transporter inhibitor L-trans-pyrrolidine-2,4-dicarboxylate, suggesting a possible interaction of 3-OHGA with glutamate transporters on synaptic membranes. (3) These results indicate that glutamate binding to receptors and transporters can be inhibited by GA and 3-OHGA in cerebral cortex and striatum in a developmentally regulated manner. It is postulated that a disturbance of glutamatergic neurotransmission caused by the major metabolites accumulating in GA I at early development may possibly explain, at least in part, the window of vulnerability of striatum and cerebral cortex to injury in patients affected by this disorder.  相似文献   

11.
Abstract: Glutathione- S -transferase activity in the brain of male mammals (rat and mouse) was found to be relatively lower than in that of females. In contrast, the male aves (pigeon, kite, vulture, and crow) exhibited comparatively higher activity of brain glutathione- S -transferase than the corresponding females. Postnatal development of cytosolic glutathione-S-transferase activity in the rat brain was also investigated. The day-7 rats showed a low activity of 48 nmol/min/mg protein that gradually increased 3.2-fold over the age of 28 days. No striking differences in brain enzyme activities were observed between the 35- and 90-day-old rats. Discrete brain regions of immature rats were found to possess considerable but lower quantities of glutathione- S -transferase activity than those of the adults. The activity increased with the onset of development and attained a steady state after 21 days of age.  相似文献   

12.
The expression and distribution of mRNA encoding preproatrial natriuretic peptide (ppANP) in rat brain has been investigated by in situ hybridization of two 35S-labeled synthetic DNA oligonucleotides, based on a cDNA clone sequence that encodes rat ppANP. The highest relative concentrations of ppANP mRNA were detected in the medial preoptic hypothalamic nucleus ("anteroventral/third ventricle region") and the medial habenula. Moderate concentrations of ppANP mRNA were observed in the CA1 pyramidal cells of the hippocampus, the endopiriform nucleus, the arcuate nucleus, the zona incerta, and cells of the pontine tegmental and peduculopontine nuclei. Several of these regions, including the habenula and the hypothalamic areas, have previously been reported to contain atrial natriuretic peptide (ANP)-like immunoreactivity, but the expression of ppANP mRNA in CA1 pyramidal cells suggests the occurrence of differential translation of ppANP mRNA into protein product in different brain regions, or the existence of different immunological forms of the peptide. The abundance of ppANP mRNA in brain was relatively low in comparison with that previously reported for many other mRNA species encoding other brain neuropeptides. These results demonstrate that ANP gene expression occurs in discrete neuronal populations of the CNS and that studies of the regulation of this expression should now be possible using quantitative in situ hybridization.  相似文献   

13.
In order to elucidate the regulation of the levels of free choline in the brain, we investigated the influence of chronic and acute choline administration on choline levels in blood, CSF, and brain of the rat and on net movements of choline into and out of the brain as calculated from the arteriovenous differences of choline across the brain. Dietary choline supplementation led to an increase in plasma choline levels of 50% and to an increase in the net release of choline from the brain as compared to a matched group of animals which were kept on a standard diet and exhibited identical arterial plasma levels. Moreover, the choline concentration in the CSF and brain tissue was doubled. In the same rats, the injection of 60 mg/kg choline chloride did not lead to an additional increase of the brain choline levels, whereas in control animals choline injection caused a significant increase; however, this increase in no case surpassed the levels caused by chronic choline supplementation. The net uptake of choline after acute choline administration was strongly reduced in the high-choline group (from 418 to 158 nmol/g). Both diet groups metabolized the bulk (greater than 96%) of newly taken up choline rapidly. The results indicate that choline supplementation markedly attenuates the rise of free choline in the brain that is observed after acute choline administration. The rapid metabolic choline clearance was not reduced by dietary choline load. We conclude that the brain is protected from excess choline by rapid metabolism, as well as by adaptive, diet-induced changes of the net uptake and release of choline.  相似文献   

14.
Abstract: Agmatinase, the enzyme that hydrolyzes agmatine to form putrescine and urea in lower organisms, was found in rat brain. Agmatinase activity was maximal at pH 8–8.5 and had an apparent K m of 5.3 ± 0.99 m M and a V max of 530 ± 116 nmol/mg of protein/h. After subcellular fractionation, most of the enzyme activity was localized in the mitochondrial matrix (333 ± 5 nmol/mg of protein/h), where it was enriched compared with the whole-brain homogenate (7.6–11.8 nmol/mg of protein/h). Within the CNS, the highest activity was found in hypothalamus, a region rich in imidazoline receptors, and the lowest in striatum and cortex. It is interesting that other agmatine-related molecules such as arginine decarboxylase, which synthesizes agmatine, and I2 imidazoline receptors, for which agmatine is an endogenous ligand, are also located in mitochondria. The results show the existence of rat brain agmatinase, mainly located in mitochondria, indicating possible degradation of agmatine by hydrolysis at its sites of action.  相似文献   

15.
Abstract: The activities of the enzymes of the GABA system, glutamate decarboxylase (GAD) and GABA-transaminase, were measured in discrete regions of the rabbit brain before the onset and during the course of sustained epileptiform seizures induced by the vitamin B6, analogue methoxypyridoxine (MP). GAD activities were measured in a reaction mixture alternatively containing the cofactor pyridoxal-5′-phosphate (PLP) in excess or containing no PLP (holoenzyme of GAD). A comparison between these two estimations showed that the apoenzyme of GAD is only partially saturated with cofactor and that the degree of saturation varied from brain area to brain area, being highest in cerebellar cortex and lowest in substantia nigra. Holoenzyme activity fell steeply after administration of 100 mg/kg MP. The regional degree of enzyme inhibition by MP was a function of the saturation of the apoenzyme with cofactor; i.e., a low rate of saturation resulted in a high degree of inhibition, and vice versa. That GAD from the regio inferior of the hippocampus did not fit into the scheme (strong inhibition is present although the degree of saturation is high) is discussed in view of the role of the hippocampus in seizure genesis and generalization. Inhibition of GAD activity by MP was completely reversible in vitro by excess PLP. Before the onset of seizures but not during their course, apoenzyme activity surpassed control levels. This preictal activation is significant in regio inferior of hippocampus, in superior colliculus, and in cerebellar cortex. GABA-transaminase activities were not significantly altered. The present study demonstrates that only investigation during the preictal period and in regional brain areas can reveal changes specific for the drug and perhaps representing the cause for seizure development, without being masked by additional alterations resulting from the severe functional and metabolic derangement during the ictal events. Thereby, it was disclosed that a decrease in vivo in the level of the enzyme product, GABA, is able to activate GAD.  相似文献   

16.
Abstract: The concentrations of tocopherols in selected areas of the brains and a few peripheral tissues of 3-, 14-, and 30-month-old male Fischer 344 rats were determined by a high-performance liquid chromatographic method. Throughout the time period studied, α-tocopherol was the only tocopherol detected in the brain. Concentrations of α-tocopherol increased significantly with age in medulla and spinal cord whereas no such change was seen in other brain areas. Among the peripheral tisues, total tocopherol concentrations increased with age in the liver and adipose tissue while no significant changes were observed in the heart. The pattern of uptake of radioactive α-tocopherol from the serum by the various areas of the brain was similar for the 3-and 14-month-old animals even though the brains from the 14-month-old animals took up less of the radioactive compound. Measurable amounts of tocopherol esters were not present in the tissues of the 30-month-old animals.  相似文献   

17.
The activity of transglutaminase was characterized in the rat brain. In adults, comparable levels of transglutaminase activity are present in all brain regions examined. The activity is present in all subcellular fractions, as studied by differential centrifugation, but the soluble fraction contains the highest specific activity. The endogenous activity (enzyme activity assayed in the absence of the exogenous substrate casein) is very low in all subcellular fractions, except in the synaptosomal fraction where its highest levels are about 40-60% of the activity assayed in the presence of casein. Furthermore, enzyme activity is present on the external surface of synaptosomes. In the soluble fraction, maximal activity can be detected between pH values of 9 and 10 when assayed in the presence of 5 mM CaCl2 (with half-maximal activity requiring 0.75 mM CaCl2) and 0.4 mM putrescine (with an apparent Km for putrescine of 0.1 mM). The activity can be partially inhibited by ZnCl2 (with an IC50 of 4.5 mM) and by AlCl3 (with an IC50 of 5.1 mM). In the cerebellum, where the full span of neuronal development can be studied after birth, the highest specific activity is observed just after birth, thereafter the activity starts to decline and by 14 days, after a reduction of about 65%, it reaches levels observed throughout life.  相似文献   

18.
为了探讨围生期双酚A (bisphenol A,BPA) 暴露对雄性子代大鼠海马和前皮层谷氨酸N- 甲基-D- 天冬氨酸受体(N-methyl-D-aspartate Receptor, NMDAR) 表达的影响,作者通过对妊娠第7 天至仔鼠出生后21 天的母鼠灌胃染毒BPA (200, 50, 5, 0.5 mg/(kg·d)),用Western-blot法分别检测出生后4、7、14、21、56 天的雄性仔鼠海马和前皮层NMDA 受体NR1、NR2A、2B 亚基的表达。结果显示,在海马区,较低剂量(0.5~50 mg/(kg·d))BPA 剂量依赖性地下调NMDA 受体各亚基表达,而高剂量(200 mg/(kg·d)) BPA 最显著下调NR1 表达,却对
NR2A、2B的影响最小;但所有BPA剂量组的NMDA受体亚基表达均显著低于对照组。在前皮层,NMDAR 亚基表达对BPA 的敏感性相对较低,只有较高剂量(50~200 mg/(kg·d)) BPA 可明显下调NR2A、2B 亚基表达。此外,BPA 明显改变NMDAR 的亚基组成,NR2A/NR1 和NR2B/NR1 比值在海马区被200 mg/(kg·d) BPA 上调,在前皮层却被0.5 mg/(kg·d) BPA 上调;其它剂量BPA 均下调两脑区的该比值。以上结果提示,母体围生期双酚A 暴露下调NMDA 受体表达和亚基组成,这可能是BPA 影响雄性子代脑发育的机制之一。  相似文献   

19.
The object of this study was to assess the influence of high levels of dietary vitamin E on vitamin E concentrations in specific areas of the brain. Four-week-old male rats were fed vitamin E-deficient, control, and high-vitamin E (1,000 IU/kg) diets for 4 months. Concentrations of alpha-tocopherol in serum, adipose tissue, liver, cerebrum, cerebellum, and striatum were determined by liquid chromatography with fluorescence detection. In the high-vitamin E group, alpha-tocopherol concentrations in cerebrum, cerebellum, and striatum increased uniformly to 1.4-fold of values in controls; serum, adipose tissue, and liver attained even higher concentrations: 2.2-, 2.2-, and 4.6-fold, respectively, of control values. As observed before, brain levels of alpha-tocopherol were somewhat resistant to vitamin E deficiency, in contrast to the peripheral tissues.  相似文献   

20.
Sensory processing sensitivity (SPS) is an intrinsic personality trait whose genetic and neural bases have recently been studied. The current study used a neural mediation model to explore whether resting-state brain functions mediated the effects of dopamine-related genes on SPS. 298 healthy Chinese college students (96 males, mean age = 20.42 years, SD = 0.89) were scanned with magnetic resonance imaging during resting state, genotyped for 98 loci within the dopamine system, and administered the Highly Sensitive Person Scale. We extracted a “gene score” that summarized the genetic variations representing the 10 loci that were significantly linked to SPS, and then used path analysis to search for brain regions whose resting-state data would help explain the gene-behavior association. Mediation analysis revealed that temporal homogeneity of regional spontaneous activity (ReHo) in the precuneus actually suppressed the effect of dopamine-related genes on SPS. The path model explained 16% of the variance of SPS. This study represents the first attempt at using a multi-gene voxel-based neural mediation model to explore the complex relations among genes, brain, and personality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号