首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
M Sioud  P Forterre 《Biochemistry》1989,28(9):3638-3641
The fluoroquinolone ciprofloxacin, an inhibitor of eubacterial DNA gyrase, induces single- and double-stranded DNA breaks in the plasmid pGRB-1 from the halophilic archaebacterium Halobacterium GRB when the cells are treated by this drug in a magnesium-depleted medium. This reaction is prevented by a dose of novobiocin known to specifically inhibit DNA gyrase. Cleavage of pGRB-1 DNA induced by either ciprofloxacin or the antitumoral drug etoposide (VP16) produces DNA fragments of identical lengths. These results indicate that ciprofloxacin, novobiocin, and etoposide have a common target in Halobacterium GRB: an archaebacterial type II DNA topoisomerase. The similarity of DNA cleavage patterns induced by ciprofloxacin and etoposide is a new and strong argument that quinolone and epipodophyllotoxins have the same mode of interaction with the DNA-DNA topoisomerase II complexes. The plasmid pGRB-1 could be used to prescreen in the same system both antibiotics that inhibit bacterial gyrase and antitumoral drugs that inhibit eukaryotic DNA topoisomerase II.  相似文献   

3.
The antibiotic sensitivity of the archaebacterial factors catalyzing the binding of aminoacyl-tRNA to ribosomes (elongation factor Tu [EF-Tu] for eubacteria and elongation factor 1 [EF1] for eucaryotes) and the translocation of peptidyl-tRNA (elongation factor G [EF-G] for eubacteria and elongation factor 2 [EF2] for eucaryotes) was investigated by using two EF-Tu and EF1 [EF-Tu(EF1)]-targeted drugs, kirromycin and pulvomycin, and the EF-G and EF2 [EF-G(EF2)]-targeted drug fusidic acid. The interaction of the inhibitors with the target factors was monitored by using polyphenylalanine-synthesizing cell-free systems. A survey of methanogenic, halophilic, and sulfur-dependent archaebacteria showed that elongation factors of organisms belonging to the methanogenic-halophilic and sulfur-dependent branches of the "third kingdom" exhibit different antibiotic sensitivity spectra. Namely, the methanobacterial-halobacterial EF-Tu(EF1)-equivalent protein was found to be sensitive to pulvomycin but insensitive to kirromycin, whereas the methanobacterial-halobacterial EF-G(EF2)-equivalent protein was found to be sensitive to fusidic acid. By contrast, sulfur-dependent thermophiles were unaffected by all three antibiotics, with two exceptions; Thermococcus celer, whose EF-Tu(EF1)-equivalent factor was blocked by pulvomycin, and Thermoproteus tenax, whose EF-G(EF2)-equivalent factor was sensitive to fusidic acid. On the whole, the results revealed a remarkable intralineage heterogeneity of elongation factors not encountered within each of the two reference (eubacterial and eucaryotic) kingdoms.  相似文献   

4.
The genes corresponding to the L11, L1, L10, and L12 equivalent ribosomal proteins (L11e, L1e, L10e, and L12e) of Escherichia coli have been cloned and sequenced from two widely divergent species of archaebacteria, Halobacterium cutirubrum and Sulfolobus solfataricus, and the L10 and four different L12 genes have been cloned and sequenced from the eucaryote Saccharomyces cerevisiae. Alignments between the deduced amino acid sequences of these proteins and to other available homologous proteins of eubacteria and eucaryotes have been made. The data suggest that the archaebacteria are a distinct coherent phylogenetic group. Alignment of the proline-rich L11e proteins reveals that the N-terminal region, believed to be responsible for interaction with release factor 1, is the most highly conserved region and that there is specific conservation of most of the proline residues, which may be important in maintaining the highly elongated structure of the molecule. Although L11 is the most highly methylated protein in the E. coli ribosome, the sites of methylation are not conserved in the archaebacterial L11e proteins. The L1e proteins of eubacteria and archaebacteria show two regions of very high similarity near the center and the carboxy termini of the proteins. The L10e proteins of all kingdoms are colinear and contain approximately three fourths of an L12e protein fused to their carboxy terminus, although much of this fusion has been lost in the truncated eubacterial protein. The archaebacterial and eucaryotic L12e proteins are colinear, whereas the eubacterial protein has suffered a rearrangement through what appear to be gene fusion events. Within the L12e derived region of the L10e proteins there exists a repeated module of 26 amino acids, present in two copies in eucaryotes, three in archaebacteria, and one in eubacteria. This modular sequence is apparently also present in the L12e proteins of all kingdoms and may play a role in L12e dimerization, L10e-L12e complex formation, and the function of the L10e-L12e complex in translation.  相似文献   

5.
Studies on DNA polymerases and topoisomerases in archaebacteria   总被引:1,自引:0,他引:1  
We have isolated DNA polymerases and topoisomerases from two thermoacidophilic archaebacteria: Sulfolobus acidocaldarius and Thermoplasma acidophilum. The DNA polymerases are composed of a single polypeptide with molecular masses of 100 and 85 kDa, respectively. Antibodies against Sulfolobus DNA polymerase did not cross react with Thermoplasma DNA polymerase. Whereas the major DNA topoisomerase activity in S. acidocaldarius is an ATP-dependent type I DNA topoisomerase with a reverse gyrase activity, the major DNA topoisomerase activity in T. acidophilum is a ATP-independent relaxing activity. Both enzymes resemble more the eubacterial than the eukaryotic type I DNA topoisomerase. We have found that small plasmids from halobacteria are negatively supercoiled and that DNA topoisomerase II inhibitors modify their topology. This suggests the existence of an archaebacterial type II DNA topoisomerase related to its eubacterial and eukaryotic counterparts. As in eubacteria, novobiocin induces positive supercoiling of halobacterial plasmids, indicating the absence of a eukaryotic-like type I DNA topoisomerase that relaxes positive superturns.  相似文献   

6.
A number of eubacterial species contain methyl-accepting taxis proteins that are antigenically and thus structurally related to the well-characterized methyl-accepting chemotaxis proteins of Escherichia coli. Recent studies of the archaebacterium Halobacterium halobium have characterized methyl-accepting taxis proteins that in some ways resemble and in other ways differ from the analogous eubacterial proteins. We used immunoblotting with antisera raised to E. coli transducers to probe shared structural features of methyl-accepting proteins from archaebacteria and eubacteria and found substantial antigenic relationships. This implies that the genes for the contemporary methyl-accepting proteins are related through an ancestral gene that existed before the divergence of arachaebacteria and eubacteria. Analysis by immunoblot of mutants of H. halobium defective in taxis revealed that some strains were deficient in covalent modification of methyl-accepting proteins although the proteins themselves were present, while other strains appeared to be missing specific methyl-accepting proteins.  相似文献   

7.
Glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) from the extremely halophilic archaebacterium Haloarcula vallismortis has been purified in a four step procedure to electrophoretic homogeneity. The enzyme is a tetramer with a relative molecular mass of 160000. It is strictly NAD+-dependent and exhibits its highest activity in 2 mol/l KCl at 45°C. Amino acid analysis and isoelectric focusing indicate an excess of acidic amino acids. Two parts of the primary sequence are reported. These peptides have been compared with glyceraldehyde 3-phosphate dehydrogenases from other archaebacteria, eubacteria and eucaryotes. The peptides show a high grade of similarity to glyceraldehyde 3-phosphate dehydrogenase from eucaryotes.Abbreviations BCA bicinchoninic acid - CTAB cetyltrimethyl ammonium bromide - DTE dithioerythritol - DTT dithiothreitol - GAP glyccraldehyde 3-phosphate - GAPDH glyceraldehyde 3-phosphate dehydrogenase  相似文献   

8.
Many intercalative antitumor drugs have been shown to induce reversible protein-linked DNA breaks in cultured mammalian cells. Using purified mammalian DNA topoisomerase II, we have demonstrated that the antitumor drugs ellipticine and 2-methyl-9-hydroxyellipticine (2-Me-9-OH-E+) can produce reversible protein-linked DNA breaks in vitro. 2-Me-9-OH-E+ which is more cytotoxic toward L1210 cells and more active against experimental tumors than ellipticine is also more effective in stimulating DNA cleavage in vitro. Similar to the effect of 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA) on topoisomerase II in vitro, the mechanism of DNA breakage induced by ellipticines is most likely due to the drug stabilization of a cleavable complex formed between topoisomerase II and DNA. Protein denaturant treatment of the cleavable complex results in DNA breakage and covalent linking of one topoisomerase II subunit to each 5'-end of the cleaved DNA. Cleavage sites on pBR322 DNA produced by ellipticine or 2-Me-9-OH-E+ treatment mapped at the same positions. However, many of these cleavage sites are distinctly different from those produced by the antitumor drug m-AMSA which also targets at topoisomerase II. Our results thus suggest that although mammalian DNA topoisomerase II may be a common target of these antitumor drugs, drug-DNA-topoisomerase interactions for different antitumor drugs may be different.  相似文献   

9.
Aphidicolin, a specific inhibitor of eucaryotic alpha DNA polymerase, inhibits the growth of halophilic arachaebacteria. In Halobacterium halobium, aphidicolin prevents cell division and DNA synthesis. These results suggest that arachaebacterial replicases are of the eucaryotic type.  相似文献   

10.
11.
12.
Summary The existence of two families of genes coding for hexameric glutamate dehydrogenases has been deduced from the alignment of 21 primary sequences and the determination of the percentages of similarity between each pair of proteins. Each family could also be characterized by specific motifs. One family (Family 1) was composed of gdh genes from six eubacteria and six lower eukaryotes (the primitive protozoan Giardia lamblia, the green alga Chlorella sorokiniana, and several fungi and yeasts). The other one (Family 11) was composed of gdh genes from two eubacteria, two archaebacteria, and five higher eukaryotes (vertebrates). Reconstruction of phylogenetic trees using several parsimony and distance methods confirmed the existence of these two families. Therefore, these results reinforced our previously proposed hypothesis that two close but already different gdh genes were present in the last common ancestor to the three Ur-kingdoms (eubacteria, archaebacteria, and eukaryotes). The branching order of the different species of Family I was found to be the same whatever the method of tree reconstruction although it varied slightly according the region analyzed. Similarly, the topological positions of eubacteria and eukaryotes of Family II were independent of the method used. However, the branching of the two archaebacteria in Family II appeared to be unexpected: (1) the thermoacidophilic Sulfolobus solfataricus was found clustered with the two eubacteria of this family both in parsimony and distance trees, a situation not predicted by either one of the contradictory trees recently proposed; and (2) the branching of the halophilic Halobacterium salinarium varied according to the method of tree construction: it was closer to the eubacteria in the maximum parsimony tree and to eukaryotesin distance trees. Therefore, whatever the actual position of the halophilic species, archaebacteria did not appear to be monophyletic in these gdh gene trees. This result questions the firmness of the presently accepted interpretation of previous protein trees which were supposed to root unambiguously the universal tree of life and place the archaebacteria in this tree. Offprint requests to: B. Labedan  相似文献   

13.
Abstract A review is presented of the special properties and behaviour of enzymes, ribosomes, metabolic systems, protein turnover and active transport systems that are associated with the ability of halophilic archaebacteria and eubacteria to grow in different salt concentrations.  相似文献   

14.
Conserved N-terminal sequences in the flagellins of archaebacteria   总被引:6,自引:0,他引:6  
Methanococcus voltae produces two flagellins of molecular weight 31,000 and 33,000. Amino acid analysis as well as peptide mapping with cyanogen bromide, chymotrypsin and Staphylococcus aureus V-8 protease indicates that the two flagellins are distinct. N-terminal sequencing of the 31,000 Mc. voltae flagellin as well as the 24,000 and 25,000 molecular weight flagellins of Methanospirillum hungatei GP1 shows an extensive homology with the reported N-terminus of the flagellins from Halobacterium halobium, deduced from the nucleotide sequence of the cloned genes. However, the N-termini of all three sequenced methanogen flagellins lack a terminal methionine and start at position 13 from the N-terminus of H. halobium flagellins. This initial 12 amino acid stretch may be a leader peptide which is subsequently cleaved to generate the mature flagellin, which could suggest flagellar assembly in archaebacteria occurs by a mechanism distinct from that in eubacteria. The high degree of conservation of the N-terminus of the flagellins from Mc. voltae, Msp. hungatei and H. halobium suggests an important role for this sequence, and that the archaebacteria share a common mechanism for flagellar biosynthesis.  相似文献   

15.
The discovery of new topoisomerase I inhibitors is necessary since most of the antitumor drugs are targeted against type II and only a very few can specifically affect type I. Topoisomerase poisons generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some have therapeutic efficacy in human cancer. Two iridoids, aucubin and geniposide, have shown antitumoral activities, but their activity against topoisomerase enzymes has not been tested. Here it was found that both compounds are able to stabilize covalent attachments of the topoisomerase I subunits to DNA at sites of DNA strand breaks, generating cleavage complexes intermediates so being active as poisons of topoisomerase I, but not topoisomerase II. This result points to DNA damage induced by topoisomerase I poisoning as one of the possible mechanisms by which these two iridoids have shown antitumoral activity, increasing interest in their possible use in cancer chemoprevention and therapy.  相似文献   

16.
Characterization of the 7S RNA and its gene from halobacteria.   总被引:13,自引:3,他引:13       下载免费PDF全文
The 7S RNA is an abundant nonribosomal RNA in H. halobium and other halobacteria. A specific 7S RNA gene probe shows high homology to genomic DNA of all halobacteria tested but not to those of several other archaebacteria, eubacteria and eukaryotes. All halobacterial genomes seem to carry a single copy of the 7S RNA gene. The coding region of the 7S RNA gene is highly G+C rich whereas the 5'- and 3'-noncoding regions possess a rather low G+C content. An extended double stranded structure for the 7S RNA is deduced from its nucleotide sequence. The 7S RNA of H. halobium (304 nucleotides) resembles in size and structure the 7S-L RNA from mammalian cells and shares with it a sequence homology of about 50% when arranged in a colinear fashion. The similarities in sequence are found particularly at the 3'- and 5'-termini. No similarity was detected between the 7S RNA from H. halobium and the nonribosomal 6S RNA from Escherichia coli.  相似文献   

17.
The discovery of new topoisomerase I inhibitors is necessary since most of the antitumor drugs are targeted against type II and only a very few can specifically affect type I. Topoisomerase poisons generate toxic DNA damage by stabilization of the covalent DNA-topoisomerase cleavage complex and some have therapeutic efficacy in human cancer. Two iridoids, aucubin and geniposide, have shown antitumoral activities, but their activity against topoisomerase enzymes has not been tested. Here it was found that both compounds are able to stabilize covalent attachments of the topoisomerase I subunits to DNA at sites of DNA strand breaks, generating cleavage complexes intermediates so being active as poisons of topoisomerase I, but not topoisomerase II. This result points to DNA damage induced by topoisomerase I poisoning as one of the possible mechanisms by which these two iridoids have shown antitumoral activity, increasing interest in their possible use in cancer chemoprevention and therapy.  相似文献   

18.
Both, class I (Schiff-base forming) and class II (metal requiring) fructose biphosphate aldolases were found to be distributed among halophilic archaebacteria. The aldolase activity fromHalobacterium halobium, H. salinarium, H. cutirubrum, H. mediterranei andH. volcanii exhibited properties of a bacterial class II aldolase as it was metal-dependent for activity and therefore inhibited by EDTA. In contrast, aldolase fromH. saccharovorum, Halobacterium R-113, H. vallismortis andHalobacterium CH-1 formed a Schiff-base intermediate with the substrate and therefore resembled to eukaryotic class I type. The type of aldolase did not vary by changes in the growth medium.  相似文献   

19.
Thermoplasma acidophilum and Sulfolobus acidocaldarius contain coenzyme A-acylating 2-oxoacid:ferredoxin oxidoreductases similar to those found in halophilic archaebacteria. A common feature of these enzymes is the formation of a free radical intermediate in the course of the catalytic cycle. The electron-accepting ferredoxins and a similar protein from Desulfurococcus mobilis have been purified and characterized. In contrast to the [2Fe-2S] ferredoxin of Halobacterium halobium, the ferredoxins of thermoacidophilic archaebacteria most likely contain two [4Fe-4S]2 + (2 + .1 +) clusters per molecule. Properties of these proteins are compared with respect to the evolution of archaebacteria.  相似文献   

20.
Lysis of Halobacteria in Bacto-Peptone by Bile Acids   总被引:3,自引:0,他引:3       下载免费PDF全文
All tested strains of halophilic archaebacteria of the genera Halobacterium, Haloarcula, Haloferax, and Natronobacterium lysed in 1% Bacto-Peptone (Difco) containing 25% NaCl, whereas no lysis was observed with other strains belonging to archaebacteria of the genera Halococcus, Natronococcus, and Sulfolobus, methanogenic bacteria, and moderately halophilic eubacteria. Substances in Bacto-Peptone which caused lysis of halobacteria were purified and identified as taurocholic acid and glycocholic acid. High-performance liquid chromatography analyses of peptones revealed that Bacto-Peptone contained nine different bile acids, with a total content of 9.53 mg/g, whereas much lower amounts were found in Peptone Bacteriological Technical (Difco) and Oxoid Peptone. Different kinds of peptones can be used to distinguish halophilic eubacteria and archaebacteria in mixed cultures from hypersaline environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号