共查询到20条相似文献,搜索用时 15 毫秒
1.
Issues of spatial scale and resolution are intrinsic to efforts aimed at protecting and improving environmental health. Deciding on an appropriate policy or selecting a suitable research design implies a decision, either implicit or explicit, about spatial scale and resolution. This article looks at issues in the context of environmental health, reviews crucial problems and questions, and examines examples of spatial effects on analytical results related to causal inference, disease clustering, and analysis and interpretation of census data. The discussion focuses on the need to consider spatial issues as a key component of informed, well- reasoned decisions about safeguarding environmental health. 相似文献
2.
于2005~2006年鸟类繁殖季节,通过悬挂人工巢箱,探讨了次生林破碎化对白眉姬鹟Ficedula zanthopygia繁殖的影响.结果 表明:次生林破碎化对白眉姬鹟繁殖产生很大的影响,斑块面积、形状指数、隔离度均在不同程度上影响着白眉姬鹟的繁殖参数,破碎化指数不同的斑块间白眉姬鹟的窝卵数、孵化率和出飞率差异均不显著(P>0.05);卵重变异很大,差异显著(P<0.05);卵体积变动更大,差异达到极显著水平(P<0.01).回归分析表明,斑块破碎化指数与白眉姬鹟繁殖参数间均存在一元二次方程关系:当窝卵数达到最大值时,卵质量降低,出雏率达到最低,雏鸟存活率反而增大,出飞率达到最大,从而提高繁殖功效;当窝卵数达到最小值时,卵质量最高,出雏率增大,出飞率也相应的增高,从而使繁殖功效增大.白眉姬鹟存在一个最优窝卵数,验证了Lack的窝卵数假说.另外,白眉姬鹟通过对自身繁殖参数的调节来适应生境破碎化,尽量提高自身的繁殖功效,从而弥补自身种群. 相似文献
3.
Host-parasite metacommunities are influenced by a myriad of factors, although little is known about which processes affect this relationship at different scales. Here, we tested how local habitat characteristics and host traits explained the parasite metacommunity of a migratory fish in a large Brazilian river floodplain. The parasite metacommunity structure showed a Clementsian pattern, which indicates a more deterministic assembly pattern, in accordance with partial Redundancy Analysis results. Results indicated that species filtering is the predominant mechanism driving community assembly. Patterns were clearer in the dry season of the floodplain. Environmental determinism seems to explain ectoparasite metacommunities in the dry season, in contrast with endoparasites that were more correlated to host traits. Overall, our results indicated that ectoparasitism is an interaction marked by opportunity, whereas endoparasitism is likely related to host features. Thus, we argue that metacommunity structuring of parasites depends on the infection strategy. Our results show that floodplain dynamics are central not only for free-living animal organizations but also for symbiotic interactions. Here, we highlight the importance of understanding the factors influencing the distribution of parasites to predict their transmission, as well as the importance of floodplain dynamics and its hydrological regime on the maintenance of ecological interactions. 相似文献
4.
Biogeography and metacommunity ecology provide two different perspectives on species diversity. Both are spatial in nature but their spatial scales do not necessarily match. With recent boom of metacommunity studies, we see an increasing need for clear discrimination of spatial scales relevant for both perspectives. This discrimination is a necessary prerequisite for improved understanding of ecological phenomena across scales. Here we provide a case study to illustrate some spatial scale-dependent concepts in recent metacommunity studies and identify potential pitfalls. We presented here the diversity patterns of Neotropical lepidopterans and spiders viewed both from metacommunity and biogeographical perspectives. Specifically, we investigated how the relative importance of niche- and dispersal-based processes for community assembly change at two spatial scales: metacommunity scale, i.e. within a locality, and biogeographical scale, i.e. among localities widely scattered along a macroclimatic gradient. As expected, niche-based processes dominated the community assembly at metacommunity scale, while dispersal-based processes played a major role at biogeographical scale for both taxonomical groups. However, we also observed small but significant spatial effects at metacommunity scale and environmental effects at biogeographical scale. We also observed differences in diversity patterns between the two taxonomical groups corresponding to differences in their dispersal modes. Our results thus support the idea of continuity of processes interactively shaping diversity patterns across scales and emphasize the necessity of integration of metacommunity and biogeographical perspectives. 相似文献
5.
Climate and habitat type are frequently related with the abundance of individual species and have been hypothesized to be primary drivers of the spatial variation in species abundances at the regional scale. Our aim is to evaluate the relative roles of those environmental factors in determining spatial variation in bird species abundance. We surveyed birds and habitat-cover variables and compiled climatic data along a 1700-km latitudinal gradient in the southern Neotropics. To identify the primary environmental variable explaining spatial changes in species abundances we performed simple regressions; a goodness of fit test identified the environmental factor that most frequently acted as the primary predictor. Mantel tests and partial regressions were performed to account for the spatial structure of abundance and environmental factors and collinearity between them. Of the 88 species included, 70% responded primarily to habitat cover and the remaining to climate. Forest cover and annual thermal amplitude were the main habitat-cover and climatic variables, respectively, explaining spatial variation in bird abundances. Our results indicated that the considered environmental factors accounted for latitudinal changes in species abundances; however, habitat cover and climate together explained a higher proportion of the variation than each factor independently of each other. There was a primacy of habitat-cover type over climate to predict spatial changes in bird species abundances across the neotropical biogeographic regions studied, but the underlying causes are likely related with the interaction of both factors. 相似文献
6.
Recently, community ecologists are focusing on the relative importance of local environmental factors and proxies to dispersal limitation to explain spatial variation in community structure. Albeit less explored, temporal processes may also be important in explaining species composition variation in metacommunities occupying dynamic systems. We aimed to evaluate the relative role of environmental, spatial and temporal variables on the metacommunity structure of different organism groups in the Upper Paraná River floodplain (Brazil). We used data on macrophytes, fish, benthic macroinvertebrates, zooplankton, periphyton, and phytoplankton collected in up to 36 habitats during a total of eight sampling campaigns over two years. According to variation partitioning results, the importance of predictors varied among biological groups. Spatial predictors were particularly important for organisms with comparatively lower dispersal ability, such as aquatic macrophytes and fish. On the other hand, environmental predictors were particularly important for organisms with high dispersal ability, such as microalgae, indicating the importance of species sorting processes in shaping the community structure of these organisms. The importance of watercourse distances increased when spatial variables were the main predictors of metacommunity structure. The contribution of temporal predictors was low. Our results emphasize the strength of a trait-based analysis and of better defining spatial variables. More importantly, they supported the view that “all-or- nothing” interpretations on the mechanisms structuring metacommunities are rather the exception than the rule. 相似文献
7.
Temporal changes and spatial variation of soil drainage and understory light availability in 2001 and 2002, small stem (5 ≤ dbh
(diameter at breast height) < 10 cm) density, forest successional phase and large stem (dbh ≥ 10 cm) spatial distribution
were investigated in 1 ha of tropical swamp forest in southeastern Brazil. Building patches and treefall gaps comprised, respectively,
69.75 and 7.5% of the area in 2002. Semivariograms indicated spatial segregation of successional phases, with mature areas
predominating in the North and gaps aggregated into the South. Exclusion of outliers showed large unpredictability of background
variation in canopy openness, but patches with high canopy openness values concentrated along the South and East plot borders.
Overall canopy openness increased from 2001 to 2002, and was locally autocorrelated between years. In 2001, well-drained and
flooded sites comprised 46.75 and 38.19% of the study area, respectively, and were not spatially autocorrelated. In the study
period, the number of flooded sites decreased by 40.4%. Canopy openness and small stem density were independent from drainage
and were not correlated. Large trees aggregated at scales larger than 40 m, while arborescent palms were aggregated at all
scales. Our findings suggest that tropical swamp forests have architectural characteristics similar to that of young, secondary
forests and treefall gaps in old-growth forests. Patterns at larger scales pointed to the occurrence of widespread forest
degradation, which seems to be particularly advanced in some forest sectors. 相似文献
8.
Stream assemblages are structured by a combination of local (environmental filtering and biotic interactions) and regional factors (e.g., dispersal related processes). The relative importance of environmental and spatial (i.e., regional) factors structuring stream assemblages has been frequently assessed in previous large-scale studies, but biotic predictors (potentially reflecting local biotic interactions) have rarely been included. Diatoms may be useful for studying the effect of trophic interactions on community structure since: (1) a majority of experimental studies shows significant grazing effects on diatom species composition, and (2) assemblages can be divided into guilds that have different susceptibility to grazing. We used a dataset from boreal headwater streams in south-central Sweden (covering a spatial extent of ∼14000 km 2), which included information about diatom taxonomic composition, abundance of invertebrate grazers (biotic factor), environmental (physicochemical) and spatial factors (obtained through spatial eigenfunction analyses). We assessed the relative importance of environmental, biotic, and spatial factors structuring diatom assemblages, and performed separate analyses on different diatom guilds. Our results showed that the diatom assemblages were mainly structured by environmental factors. However, unique spatial and biological gradients, specific to different guilds and unrelated to each other, were also evident. We conclude that biological predictors, in combination with environmental and spatial variables, can reveal a more complete picture of the local vs. regional control of species assemblages in lotic environments. Biotic factors should therefore not be overlooked in applied research since they can capture additional local control and therefore increase accuracy and performance of predictive models. The inclusion of biotic predictors did, however, not significantly influence the unique fraction explained by spatial factors, which suggests low bias in previous assessments of unique regional control of stream assemblages. 相似文献
9.
Microbes are key components of aquatic ecosystems and play crucial roles in global biogeochemical cycles. However, the spatiotemporal dynamics of planktonic microbial community composition in riverine ecosystems are still poorly understood. In this study, we used denaturing gradient gel electrophoresis of PCR-amplified 16S and 18S rRNA gene fragments and multivariate statistical methods to explore the spatiotemporal patterns and driving factors of planktonic bacterial and microbial eukaryotic communities in the subtropical Jiulong River, southeast China. Both bacterial and microbial eukaryotic communities varied significantly in time and were spatially structured according to upper stream, middle-lower stream and estuary. Among all the environmental factors measured, water temperature, conductivity, PO 4-P and TN/TP were best related to the spatiotemporal distribution of bacterial community, while water temperature, conductivity, NO x-N and transparency were closest related to the variation of eukaryotic community. Variation partitioning, based on partial RDA, revealed that environmental factors played the most important roles in structuring the microbial assemblages by explaining 11.3% of bacterial variation and 17.5% of eukaryotic variation. However, pure spatial factors (6.5% for bacteria and 9.6% for eukaryotes) and temporal factors (3.3% for bacteria and 5.5% for eukaryotes) also explained some variation in microbial distribution, thus inherent spatial and temporal variation of microbial assemblages should be considered when assessing the impact of environmental factors on microbial communities. 相似文献
10.
We examined the impact of soil stress (low water and nutrient availabilities) and two keystone insect herbivores on pinyon pine ( Pinus edulis) needle litterfall. We compared trees growing on two distinct soil types: volcanic cinders, which exhibit pronounced water and nutrient limitation, and sandy-loam soils, which have higher water-storage capacity and nutrient availability. Using two long-term herbivore removal experiments (15 and 18 years, respectively), we also examined the effects of the pinyon needle scale ( Matsucoccus acalyptus, which attacks juvenile trees) and the stem-boring moth ( Dioryctria albovittella, which attacks mature trees) on pinyon litterfall. These herbivores reach high densities on cinder soils but are absent or occur at much lower levels on sandy-loam soils. Four years of litterfall measurements showed four major patterns. First, independent of herbivory, needle litterfall was 20% lower under trees on high-stress cinder soils than on sandy-loam soils. Second, in agreement with the negative impact of scales on tree growth (that is, a 30% decline in stem growth), trees with scale infestations had 25% lower litterfall rates than trees resistant to scale; however, 15 years of scale-insect removal did not significantly increase needle litterfall. This implies possible intrinsic differences in litter production between scale-resistant and scale-susceptible trees. Third, in contrast with significant negative effects of moth herbivory on tree growth (that is, a 27% decline in stem growth), moth herbivory had no effect on needle litterfall. This, along with increased stem density in moth-susceptible trees, may be evidence of compensatory production. Fourth, there were strong year by soil type and year by scale herbivory interactions, such that in some years the effect on litterfall can be obscured or reversed by some other factor. In summary, soil stress has a strong and predictable effect on needle litterfall, whereas the relationship between insect herbivory and needle litterfall is weaker and depends on the individual herbivore. These effects, however, are mediated by other environmental factors that have considerable annual variation. 相似文献
11.
Because of the magnitude of land use currently occurring in tropical regions, the local loss of animal species due to habitat fragmentation has been widely studied, particularly in the case of vertebrates. Many invertebrate groups and the ichneumonid wasps in particular, however, have been poorly studied in this context, despite the fact that they are one of the most species-rich groups and play an important role as regulators of other insect populations. Here, we recorded the taxonomic composition of ichneumonid parasitoids and assessed their species richness, abundance, similarity, and dominance in the Los Tuxtlas tropical rain forest, Mexico. We compared two forest types: a continuous forest (640 ha) and a forest fragment (19 ha). We sampled ichneumonids using four malaise traps in both forest types during the dry (September–October) and rainy (March–April) seasons. A total of 104 individuals of Ichneumonidae belonging to 11 subfamilies, 18 genera, and 42 species were collected in the continuous forest and 11 subfamilies, 15 genera, and 24 species were collected in the forest fragment. Species richness, abundance, and diversity of ichneumonids were greater in the continuous forest than in the forest fragment. We did not detect differences between seasons. Species rank/abundance curves showed that the ichneumonid community between the forest types was different. Species similarity between forest types was low. The most dominant species in continuous forest was Neotheronia sp., whereas in the forest fragment, it was Orthocentrus sp. Changes in the ichneumonid wasp community may compromise important tropical ecosystem processes. 相似文献
12.
We recorded stingless bee colony abundance and nesting habits in three sites with different anthropogenic activities in the Soconusco region of Chiapas, Mexico: (1) agroforestry (7 hacacao crop), (2) grassland (12?ha), and (3) urban area (3?ha). A total of 67 nests were found, representing five stingless bee species, Tetragonisca angustula angustula (Lepeletier), Trigona fulviventris (Guérin), Scaptotrigona mexicana (Guérin), Scaptotrigona pectoralis (Dalla Torre), and Oxytrigona mediorufa (Cockerell). The most abundant stingless bee in each site was T. angustula angustula (>50%). The primary tree species used by the bees were Ficus spp. (Moraceae, 37.8%) and Cordia alliodora (Boraginaceae, 13.5%). The nest entrance height of T. angustula angustula (96?±?19?cm) was different than the other species, and this bee was the only one that used all different nesting sites. Volatiles analyzed by gas chromatography from pollen collected by the stingless bees differed between bee species, but were highly similar in respect to the fragrances of the pollen collected by the same species at any site. Our data indicate that T. angustula angustula experienced low heterospecific and high intraspecific foraging overlap especially in the urban site. We observed cluster spatial distribution in grassland and in agroforestry sites. In the urban site, T. angustula angustula presented random distribution tended to disperse. Trigona fulviventris was the only overdispersed and solitary species. 相似文献
13.
Both habitat filters and spatial processes can influence community structure. Space alone affects species immigration from the regional species pool, whereas habitat filters affect species distribution and inter-specific interactions. This study aimed to understand how the interplay between environmental and geographical processes influenced the structure of Neotropical snake communities in different habitat types. We selected six studies that sampled snakes in forests, four conducted in savannas and two in grasslands (the latter two are grouped in a non-forest category). We used the net relatedness and nearest taxon indices to assess phylogenetic structure within forest and non-forest areas. We also used the phylogenetic fuzzy-weighting algorithm to characterize phylogenetic structure across communities and the relation of phylogenetic composition patterns to habitat type, structure, and latitude. Finally, we tested for morphological trait convergence and phylogenetic niche conservatism using four forest and four non-forest areas for which morphological data were available. Community phylogenetic composition changed across forest and non-forest areas suggesting that environmental filtering influences community structure. Species traits were affected by habitat type, indicating convergence at the metacommunity level. Tail length, robustness, and number of ventral scales maximized community convergence among forest and non-forest areas. The observed patterns suggested environmental filtering, indicating that less vertically structured habitats represent a strong filter. Despite the fact that phylogenetic structure was not detected individually for each community, we observed a trend towards communities composed by more closely related species in higher latitudes and more overdispersed compositions in lower latitudes. Such pattern suggests that the limited distribution of major snake lineages constrained species distributions. Structure indices for each community were also related to habitat type, showing that communities from non-forest areas tend to be more clustered. Our study showed that both environmental filtering and spatial gradients play important roles in shaping the composition of Neotropical snake communities. 相似文献
14.
In western Uganda, the landscape surrounding Kibale National Park (KNP) contains households, trading centers, roads, fields, and forest fragments. The mosaic arrangement of these landscape features is thought to enhance human–primate interaction, leading to primate population declines and increased bi-directional disease transmission. Using a social–ecological systems research framework that captures the complexity of interaction among people, wildlife, and environment, we studied five forest fragments near KNP and conducted intensive on-the-ground mapping to identify locations of human–primate spatial overlap. Primate locations and human activities were distributed within, on the edges, and far beyond fragment borders. Analysis of shared spaces indicated that 5.5% of human space overlapped with primate spaces, while 69.5% of primate spaces overlapped with human spaces. Nearest neighbor analysis indicated that human activities were significantly spatially clustered within and around individual fragments, as were primate locations. Getis–Ord statistics revealed statistically significant “hotspots” of human activity and primate activity, but only one location where spatial overlap between humans and primates was statistically significant. Human activities associated with collecting fuelwood and other forest products were the primary drivers of human–primate overlap; however, primates also spent time outside of forest fragments in agricultural spaces. These results demonstrate that fragmented landscapes are not uniform with respect to human–primate overlap, and that the implications of human–primate interaction, such as primate population declines and possible cross-species disease transmission, are spatially aggregated. 相似文献
15.
1. Lotic ecosystems can be studied on several spatial scales, and usually show high heterogeneity at all of them in terms of biological and environmental characteristics. Understanding and predicting the taxonomic composition of biological communities is challenging and compounded by the problem of scale. Additive diversity partitioning is a tool that can show the diversity that occurs at different scales. 2. We evaluated the spatial distribution of benthic macroinvertebrates in a tropical headwater catchment (S.E. Brazil) during the dry season and compared alpha and beta diversities at the scales of stream segments, reaches, riffles and microhabitats (substratum types: gravels, stones and leaf litter). We used family richness as our estimate of diversity. Sampling was hierarchical, and included three stream segments, two stream reaches per segment, three riffles per reach, three microhabitats per riffle and three Surber sample units per microhabitat. 3. Classification analysis of the 53 families found revealed groups formed in terms of stream segment and microhabitat, but not in terms of stream reaches and riffles. Separate partition analyses for each microhabitat showed that litter supported lower alpha diversity (28%) than did stones (36%) or gravel (42%). In all cases, alpha diversity at the microhabitat scale was lower than expected under a null model that assumed no aggregation of the fauna. 4. Beta diversity among patches of the microhabitats in riffles depended on substratum type. It was lower than expected in litter, similar in stone and higher in gravel. Beta diversities among riffles and among reaches were as expected under the null model. On the other hand, beta diversity observed was higher than expected at the scale of stream segments for all microhabitat types. 5. We conclude that efficient diversity inventories should concentrate sampling in different microhabitats and stream sites. In the present study, sampling restricted to stream segments and substratum types (i.e. excluding riffles and stream reaches) would produce around 75% of all observed families using 17% of the sampling effort employed. This finding indicates that intensive sampling (many riffles and reaches) in few stream segments does not result in efficient assessment of diversity in a region. 相似文献
16.
Whether or not subdivided populations persist in fragmented landscapes primarily depends on how well individuals can survive within discrete habitat patches. Using data from six capture–recapture sessions, survival probabilities of the white-starred robin were estimated in seven indigenous forest patches in the highly fragmented Taita Hills forests, SE Kenya. We found no significant differences in survival probability either among fragment-size categories (large 135 ha, medium 95 ha, and small 2–8 ha) or between adult and first-year birds. However, males had a higher probability of survival from one year to the next than females. Turnover rates of adult birds were higher for females than males, but also higher in the medium and small patches than in the large one within each sex. That survival probability was similar among fragments, but turnover rates differed denoted that different processes caused extirpation from the patches. We suggest that mortality associated with dispersal was probably a more important cause of extirpation than within-patch mortality in the largest habitat, which had the lowest turnover rates. Conversely, high within-patch mortality, for instance due to predation during incubation, could have been more important in the smaller, more disturbed habitats. These results lend support to the proposition that avian conservation efforts should be focussed both at the landscape level to improve connectivity between fragments and reduce mortality during dispersal, and at the patch level to exclude other mortality sources such as nest predation. 相似文献
17.
Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C 20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms, cryptophytes and dinoflagellates as key sources of LCEFA. Moreover, the analyses indicate that future shifts towards cyanobacteria-dominated communities will result in lower LCEFA content in aquatic ecosystems. 相似文献
18.
Wetlands Ecology and Management - Despite the ecological importance of wetland forests, their classification is still unsatisfactory, partly due to insufficient knowledge about the environmental... 相似文献
19.
For 26 tree species in very dry tropical forest in Mexico, the developmental trends of relationships among trunk diameter, tree height, and crown diameter were inferred from a one‐time measurement of dispersed individuals across the size range from saplings to large, mature trees. On hillside sites in this high diversity forest, maximum dimensions were usually <10‐m height, 4‐m crown diameter, and 0.3‐m trunk diameter. The relationship of height to trunk diameter was characterized by an asymptotic, three‐parameter model. Crown diameter was a linear function of trunk diameter. The parameter values for both models varied widely among the species. In general, the dispersion among species of the height–crown diameter relationship increased linearly with trunk diameter (up to 0.2 m). Arborescent cacti were distant from other species at all sizes, although they were well modeled using the same equations. Empirical and theoretical features and limitations of the present and previous models, including mechanical buckling and water‐stress theories, are considered. 相似文献
20.
Studies of the effects of patch size and isolation on plant species density have yielded contrasting results. However, much of the available evidence comes from relatively recent anthropogenic forest fragments which have not reached equilibrium between extinction and immigration. This is a critical issue because the theory clearly states that only when equilibrium has been reached can the number of species be accurately predicted by habitat size and isolation. Therefore, species density could be better predicted by patch size and isolation in an ecosystem that has been fragmented for a very long time. We tested whether patch area, isolation and other spatial variables explain variation among forest patches in plant species density in an ecosystem where the forest has been naturally fragmented for long periods of time on a geological scale. Our main predictions were that plant species density will be positively correlated with patch size, and negatively correlated with isolation (distance to the nearest patch, connectivity, and distance to the continuous forest). We surveyed the vascular flora (except lianas and epiphytes) of 19 forest patches using five belt transects (50×4 m each) per patch (area sampled per patch = 0.1 ha). As predicted, plant species density was positively associated (logarithmically) with patch size and negatively associated (linearly) with patch isolation (distance to the nearest patch). Other spatial variables such as patch elevation and perimeter, did not explain among-patch variability in plant species density. The power of patch area and isolation as predictors of plant species density was moderate (together they explain 43% of the variation), however, a larger sample size may improve the explanatory power of these variables. Patch size and isolation may be suitable predictors of long-term plant species density in terrestrial ecosystems that are naturally and anthropogenically fragmented. 相似文献
|