首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The T-cell actin cytoskeleton mediates adaptive immune system responses to peptide antigens by physically directing the motion and clustering of T-cell receptors (TCRs) on the cell surface. When TCR movement is impeded by externally applied physical barriers, the actin network exhibits transient enrichment near the trapped receptors. The coordinated nature of the actin density fluctuations suggests that they are composed of filamentous actin, but it has not been possible to eliminate de novo polymerization at TCR-associated actin polymerizing factors as an alternative cause. Here, we use a dual-probe cytoskeleton labeling strategy to distinguish between stable and polymerizing pools of actin. Our results suggest that TCR-associated actin consists of a relatively high proportion of the stable cytoskeletal fraction and extends away from the cell membrane into the cell. This implies that actin enrichment at mechanically trapped TCRs results from three-dimensional bunching of the existing filamentous actin network.  相似文献   

2.
The T-cell actin cytoskeleton mediates adaptive immune system responses to peptide antigens by physically directing the motion and clustering of T-cell receptors (TCRs) on the cell surface. When TCR movement is impeded by externally applied physical barriers, the actin network exhibits transient enrichment near the trapped receptors. The coordinated nature of the actin density fluctuations suggests that they are composed of filamentous actin, but it has not been possible to eliminate de novo polymerization at TCR-associated actin polymerizing factors as an alternative cause. Here, we use a dual-probe cytoskeleton labeling strategy to distinguish between stable and polymerizing pools of actin. Our results suggest that TCR-associated actin consists of a relatively high proportion of the stable cytoskeletal fraction and extends away from the cell membrane into the cell. This implies that actin enrichment at mechanically trapped TCRs results from three-dimensional bunching of the existing filamentous actin network.The T-cell actin cytoskeleton is critical for proper antigen recognition by the mammalian adaptive immune system. During T-cell receptor (TCR) triggering by antigen peptides presented on major histocompatibility proteins (pMHCs) on the surfaces of antigen-presenting cells (APCs), the T-cell actin cytoskeleton adopts a pattern of centrosymmetric retrograde flow (1–3). This simultaneously promotes further TCR triggering (4) and rearranges various T-cell membrane proteins and their APC counterparts into an organized cell-cell interface termed the immunological synapse (IS) (5–7). During this process, TCRs form microclusters that move to the center of the IS in an actin-dependent manner (8,9). When engineered physical barriers interrupt the centripetal motion of TCR clusters, actin flow slows near the pinned microclusters, and the cytoskeletal network transiently accumulates and dissipates at the sites (10,11). The amplitude and duration of the induced cytoskeletal fluctuations are much greater than would be expected for a random distribution of independent objects, indicating that the actin in the local environment is coordinated. Whether this coordination arises from a rearrangement in the existing F-actin network or represents de novo polymerization of the cytoskeleton, as predicted by the association of TCRs with actin polymerizing factors (12), remains unclear. Here, we use a dual-probe cytoskeleton labeling approach that has previously been applied to distinguish between stable and dynamic populations of actin by exploiting the different relative affinities of monomeric actin and actin-binding proteins toward each population (13). This strategy reveals that TCR-associated actin is composed primarily of the stable cytoskeletal fraction and that local enrichment results from three-dimensional bunching of the existing filamentous actin network.Primary T cells from mice transgenic for the AND TCR were triggered using synthetic APCs consisting of supported lipid bilayers functionalized with pMHC and the integrin ligand intercellular adhesion molecule 1. Nanopatterned metal grids on the bilayer substrate acted as diffusion barriers that prevented lateral transport of TCR-pMHC complexes (14,15). Transient enrichment of actin at TCR clusters trapped at these barriers was visualized using fluorescent fusions of actin itself (mKate2-β-actin) and the F-actin binding domain of utrophin (EGFP-UtrCH). Such a dual-probe strategy theoretically allows for discrimination between different pools of actin: dynamic populations characterized by high polymerization and/or short filament fragments tend to be relatively better labeled by direct actin fusions whereas stable populations composed of longer filaments can support higher labeling by fluorescent fusions of F-actin binding proteins. This visualization method has been validated in Xenopus oocytes, where it distinguishes actin populations during wound healing (13). It has not been explicitly applied to T cells; however, simultaneous labeling of the Jurkat cell cytoskeleton using EGFP-actin and Alexa 568-phalloidin reveals distinct populations of actin consistent with the results expected from Xenopus (13,16).Our results show that the T-cell periphery is relatively enriched in mKate2-β-actin (Fig. 1 C, box 1), while EGFP-UtrCH dominates toward the center of the IS (Fig. 1 C, box 2). We infer from this probe distribution that the cytoskeleton at the T-cell periphery is composed of short fragments and is a site of active polymerization, whereas at the center of the IS, actin filaments are longer and predominantly stable. This is consistent with previous models of the T-cell actin network (3,16). An effective way to highlight each of these cytoskeletal regions is to consider the relative ratios of the two probes at each location. In this case, a high UtrCH/actin ratio corresponds to stable actin, and a high actin/UtrCH ratio corresponds to dynamic actin (Fig. 1 D). When T cells are treated with cytochalasin D, an inhibitor of actin polymerization, the overall UtrCH/actin ratio of the cell decreases as would be expected from a general decrease in polymerized actin (see Movie S7 and Movie S8 in the Supporting Material). However, it should be noted that photobleaching can also shift the UtrCH/actin ratio over time. We limit quantitative analysis of the ratio to its spatial gradients at a single time point, but such analysis is possible in systems that permit rigorous calibration for probe expression and photobleaching.Open in a separate windowFigure 1Ratiometric imaging of the cytoskeleton in live T cells distinguishes between dynamic and stable actin populations. (A) mKate2-β-actin, (B) EGFP-UtrCH, and (C) merged images of a triggered T cell show different actin pools. The cutouts in panel C correspond to (1) a region high in dynamic actin featuring short, polymerizing filaments and/or actin monomers and (2) a region with a stable actin population featuring longer filaments to which UtrCH can bind. (D) The UtrCH/actin ratio image highlights pools of relatively high UtrCH (red) or actin (blue). (Scale bars: 5 μm.)Actin enrichment at trapped TCR clusters incorporates both mKate2-β-actin (Fig. 2, A and C) and EGFP-UtrCH (Fig. 2, B and C). The relative UtrCH/actin ratio at these sites (Fig. 2 D, box 2) is quite high relative to nearby background areas (Fig. 2 D, box 1), indicating that the actin is derived primarily from the stable actin population.Open in a separate windowFigure 2Receptor-induced cytoskeletal enrichment at sites of pinned TCRs corresponds to a primarily stable actin fraction. (A) mKate2-β-actin, (B) EGFP-UtrCH, and (C) merged images of a triggered T cell interacting with a nanopatterned supported lipid bilayer show actin enrichment corresponding to putative sites of pinned TCRs. (D) The UtrCH/actin ratio is high at sites displaying actin enrichment, indicating a primarily stable actin fraction in (1) these regions compared to (2) nearby background areas. (Scale bars: 5 μm.)The three-dimensional distribution of TCR-associated actin was analyzed in dual-labeled live T cells using a spinning disk confocal microscope. The recordings show actin extending away from the cell membrane in the vicinity of trapped TCRs, while the rest of the actin cytoskeleton remains relatively flat (Fig. 3 and see Fig. S1 in the Supporting Material). These protrusions of actin away from the membrane surface are predominantly composed of stable, filamentous actin, as indicated by their relatively high UtrCH/actin ratio (Fig. 3 B).Open in a separate windowFigure 3Three-dimensional ratiometric imaging shows that actin enrichment extends away from the cell membrane. Single planes from (A) merged mKate2-β-actin and EGFP-UtrCH and (B) UtrCH/actin ratio three-dimensional stacks show actin enrichment at the cell membrane. Cutouts represent Z projections passing through sites of (1) enrichment and (2) nearby background regions. The color distribution in panel B is analogous to that in Figs. 1D and and22D, and is omitted for clarity. (Scale bar: 5 μm in the x axis only. Scale box: 1 μm.)Our interpretation of these results is that the filamentous actin network is relatively dense at sites of pinned TCRs. This is the simplest explanation out of several possibilities, one of which is formin-mediated mKate2-β-actin-deficient actin nucleation (17). Filament bunching at pinned TCRs can arise from consistent biophysical properties without assuming heterogeneity between the biochemistry of these receptors and other actin-associated proteins such as those at the cell edge, where locally high probe ratios are absent.Although TCRs are intentionally trapped as part of this experimental strategy, it is likely APCs can naturally impede TCR ligand mobilities under certain circumstances, and this has been shown to impact T-cell signaling (18,19). Actin architecture near cell surface proteins has been extensively studied in focal adhesions of fibroblasts (20), but the lack of stress fibers in T cells makes it unlikely that the two structures are similar. Thus, receptor-induced cytoskeletal enrichment at TCR clusters adds to the catalog of actin behaviors in situ, which is conveniently probed by techniques such as ratiometric dual-probe imaging in live cells. These techniques can be coupled to various spatial analysis algorithms to further extend their utility.  相似文献   

3.
4.
Excitatory synapses in the brain play key roles in learning and memory. The formation and functions of postsynaptic mushroom-shaped structures, dendritic spines, and possibly of presynaptic terminals, rely on actin cytoskeleton remodeling. However, the cytoskeletal architecture of synapses remains unknown hindering the understanding of synapse morphogenesis. Using platinum replica electron microscopy, we characterized the cytoskeletal organization and molecular composition of dendritic spines, their precursors, dendritic filopodia, and presynaptic boutons. A branched actin filament network containing Arp2/3 complex and capping protein was a dominant feature of spine heads and presynaptic boutons. Surprisingly, the spine necks and bases, as well as dendritic filopodia, also contained a network, rather than a bundle, of branched and linear actin filaments that was immunopositive for Arp2/3 complex, capping protein, and myosin II, but not fascin. Thus, a tight actin filament bundle is not necessary for structural support of elongated filopodia-like protrusions. Dynamically, dendritic filopodia emerged from densities in the dendritic shaft, which by electron microscopy contained branched actin network associated with dendritic microtubules. We propose that dendritic spine morphogenesis begins from an actin patch elongating into a dendritic filopodium, which tip subsequently expands via Arp2/3 complex-dependent nucleation and which length is modulated by myosin II-dependent contractility.  相似文献   

5.
Using transmission electron microscopy, immuno-electron microscopy, and biochemical techniques such as 2-D electrophoresis and immunoblotting, actin was found in all biological stages of the microsporidia Encephalitozoon hellem and Encephalitozoon cuniculi.  相似文献   

6.
The small size of dendritic spines belies the elaborate role they play in excitatory synaptic transmission and ultimately complex behaviors. The cytoskeletal architecture of the spine is predominately composed of actin filaments. These filaments, which at first glance might appear simple, are also surprisingly complex. They dynamically assemble into different structures and serve as a platform for orchestrating the elaborate responses of the spine during spinogenesis and experience-dependent plasticity. Multiple mutations associated with human neurodevelopmental and psychiatric disorders involve genes that encode regulators of the synaptic cytoskeleton. A major, unresolved question is how the disruption of specific actin filament structures leads to the onset and progression of complex synaptic and behavioral phenotypes. This review will cover established and emerging mechanisms of actin cytoskeletal remodeling and how this influences specific aspects of spine biology that are implicated in disease.  相似文献   

7.
8.
9.
Angiogenesis requires coordinated changes in cell shape of endothelial cells (ECs), orchestrated by the actin cytoskeleton. The mechanisms that regulate this rearrangement in vivo are poorly understood - largely because of the difficulty to visualize filamentous actin (F-actin) structures with sufficient resolution. Here, we use transgenic mice expressing Lifeact-EGFP to visualize F-actin in ECs. We show that in the retina, Lifeact-EGFP expression is largely restricted to ECs allowing detailed visualization of F-actin in ECs in situ. Lifeact-EGFP labels actin associated with cell-cell junctions, apical and basal membranes and highlights actin-based structures such as filopodia and stress fiber-like cytoplasmic bundles. We also show that in the skin and the skeletal muscle, Lifeact-EGFP is highly expressed in vascular mural cells (vMCs), enabling vMC imaging. In summary, our results indicate that the Lifeact-EGFP transgenic mouse in combination with the postnatal retinal angiogenic model constitutes an excellent system for vascular cell biology research. Our approach is ideally suited to address structural and mechanistic details of angiogenic processes, such as endothelial tip cell migration and fusion, EC polarization or lumen formation.  相似文献   

10.
11.
12.
Reports on the polymeric state of actin in the red cell have been diverse. We have used phalloidin to stabilize the actin in erythrocyte ghosts prior to extraction in low ionic strength media. A mild proteolytic digestion and Sepharose 4B gel filtration enable an F-actin polymer to be isolated in pure form [1]. Detailed size analysis of this polymer in a range of experiments suggests that actin exists in the erythrocyte principally as a polymer of 100 nm length composed of 30 monomers in a double helical chain 15 monomers long with an estimated molecular weight of 1.3 × 106 daltons.  相似文献   

13.
The end-structure of afferent axons chronically severed in the rat sciatic nerve or dorsal column (DC) was visualized by centrifugal transport of horseradish peroxidase (HRP) or wheatgerm agglutinin conjugated to HRP (WGA:HRP) injected into the L4 or L5 dorsal root ganglion. Nerve regeneration was prevented and neuroma formation encouraged by tightly ligating the cut nerve end. For the first few weeks postoperative, the time during which afferents trapped in a nerve-end neuroma generate their most intense ectopic impulse barrage, the developing neuroma was dominated by swollen terminal end-bulbs. There was some axonal dying-back, retrograde fiber growth, and terminal sprouting, but little preterminal branching. The rich tangle of fine preterminal branches usually thought of in relation to nerve-end neuromas did not elaborate until several months postoperative, a time when the neuroma is relatively quiescent electrically. Afferents cut in the DC, which never develop dramatic ectopic electrical activity, showed morphological peculiarities similar to nerve-end neuromas during the early postoperative period, including retrograde fiber growth and minimal sprouting. They did not, however, go on to form luxuriant branches. These data provide preliminary clues as to the structure of the ectopic impulse-generating mechanism thought to underlie paresthesias and pain associated with peripheral nerve injury.  相似文献   

14.
15.
A central mechanism of virulence of extracellular bacterial pathogens is the injection into host cells of effector proteins that modify host cellular functions. HopW1 is an effector injected by the type III secretion system that increases the growth of the plant pathogen Pseudomonas syringae on the Columbia accession of Arabidopsis. When delivered by P. syringae into plant cells, HopW1 causes a reduction in the filamentous actin (F-actin) network and the inhibition of endocytosis, a known actin-dependent process. When directly produced in plants, HopW1 forms complexes with actin, disrupts the actin cytoskeleton and inhibits endocytosis as well as the trafficking of certain proteins to vacuoles. The C-terminal region of HopW1 can reduce the length of actin filaments and therefore solubilize F-actin in vitro. Thus, HopW1 acts by disrupting the actin cytoskeleton and the cell biological processes that depend on actin, which in turn are needed for restricting P. syringae growth in Arabidopsis.  相似文献   

16.
17.
The microvascular endothelium plays an important role as a selectively permeable barrier to fluids and solutes. The adhesive junctions between endothelial cells regulate permeability of the endothelium, and many studies have indicated the important contribution of the actin cytoskeleton to determining junctional integrity1-5. A cortical actin belt is thought to be important for the maintenance of stable junctions1, 2, 4, 5. In contrast, actin stress fibers are thought to generate centripetal tension within endothelial cells that weakens junctions2-5. Much of this theory has been based on studies in which endothelial cells are treated with inflammatory mediators known to increase endothelial permeability, and then fixing the cells and labeling F-actin for microscopic observation. However, these studies provide a very limited understanding of the role of the actin cytoskeleton because images of fixed cells provide only snapshots in time with no information about the dynamics of actin structures5. Live-cell imaging allows incorporation of the dynamic nature of the actin cytoskeleton into the studies of the mechanisms determining endothelial barrier integrity. A major advantage of this method is that the impact of various inflammatory stimuli on actin structures in endothelial cells can be assessed in the same set of living cells before and after treatment, removing potential bias that may occur when observing fixed specimens. Human umbilical vein endothelial cells (HUVEC) are transfected with a GFP-β-actin plasmid and grown to confluence on glass coverslips. Time-lapse images of GFP-actin in confluent HUVEC are captured before and after the addition of inflammatory mediators that elicit time-dependent changes in endothelial barrier integrity. These studies enable visual observation of the fluid sequence of changes in the actin cytoskeleton that contribute to endothelial barrier disruption and restoration. Our results consistently show local, actin-rich lamellipodia formation and turnover in endothelial cells. The formation and movement of actin stress fibers can also be observed. An analysis of the frequency of formation and turnover of the local lamellipodia, before and after treatment with inflammatory stimuli can be documented by kymograph analyses. These studies provide important information on the dynamic nature of the actin cytoskeleton in endothelial cells that can used to discover previously unidentified molecular mechanisms important for the maintenance of endothelial barrier integrity.Download video file.(55M, mov)  相似文献   

18.
Here we describe the identification of a novel 37-kD actin monomer binding protein in budding yeast. This protein, which we named twinfilin, is composed of two cofilin-like regions. In our sequence database searches we also identified human, mouse, and Caenorhabditis elegans homologues of yeast twinfilin, suggesting that twinfilins form an evolutionarily conserved family of actin-binding proteins. Purified recombinant twinfilin prevents actin filament assembly by forming a 1:1 complex with actin monomers, and inhibits the nucleotide exchange reaction of actin monomers. Despite the sequence homology with the actin filament depolymerizing cofilin/actin-depolymerizing factor (ADF) proteins, our data suggests that twinfilin does not induce actin filament depolymerization. In yeast cells, a green fluorescent protein (GFP)–twinfilin fusion protein localizes primarily to cytoplasm, but also to cortical actin patches. Overexpression of the twinfilin gene (TWF1) results in depolarization of the cortical actin patches. A twf1 null mutation appears to result in increased assembly of cortical actin structures and is synthetically lethal with the yeast cofilin mutant cof1-22, shown previously to cause pronounced reduction in turnover of cortical actin filaments. Taken together, these results demonstrate that twinfilin is a novel, highly conserved actin monomer-sequestering protein involved in regulation of the cortical actin cytoskeleton.  相似文献   

19.
20.
The identification of molecular water transporters and the generation of transgenic mice lacking water transporting proteins has created a need for accurate methods to measure water permeability. This review is focused on methodology to characterize water permeability in living cells and complex multicellular tissues. The utility of various parameters defining water transport is critically evaluated, including osmotic water permeability (P f ), diffusional water permeability (P d ), Arrhenius activation energies (E a ), and solute reflection coefficients (σ p ). Measurements in cellular and complex tissues can be particularly challenging because of uncertainties in barrier geometry and surface area, heterogeneity in membrane transporting properties, and unstirred layer effects. Strategies to measure plasma membrane P f in cell layers are described involving light scattering, total internal reflection fluorescence microscopy, confocal microscopy, interferometry, spatial filtering microscopy, and volume-sensitive fluorescent indicators. Dye dilution and fluorescent indicator methods are reviewed for measurement of P f across cell and tissue barriers. Novel fluorescence and gravimetric methods are described to quantify microvascular and epithelial water permeabilities in intact organs, using as an example lungs from aquaporin knockout mice. Finally, new measurement strategies and applications are proposed, including high-throughput screening for identification of aquaporin inhibitors. Received: 3 August 1999/Revised: 22 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号