首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP) was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1–2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.  相似文献   

2.
Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range.  相似文献   

3.
4.
Neuronal output requires a concerted balance between excitatory and inhibitory (I/E) input. Like other circuits, inhibitory synaptogenesis in the retina precedes excitatory synaptogenesis. How then do neurons attain their mature balance of I/E ratios despite temporal offset in synaptogenesis? To directly compare the development of glutamatergic and GABAergic synapses onto the same cell, we biolistically transfected retinal ganglion cells (RGCs) with PSD95CFP, a marker of glutamatergic postsynaptic sites, in transgenic Thy1­YFPγ2 mice in which GABAA receptors are fluorescently tagged. We mapped YFPγ2 and PSD95CFP puncta distributions on three RGC types at postnatal day P12, shortly before eye opening, and at P21 when robust light responses in RGCs are present. The mature IGABA/E ratios varied among ON-Sustained (S) A-type, OFF-S A-type, and bistratified direction selective (DS) RGCs. These ratios were attained at different rates, before eye-opening for ON-S and OFF-S A-type, and after eye-opening for DS RGCs. At both ages examined, the IGABA/E ratio was uniform across the arbors of the three RGC types. Furthermore, measurements of the distances between neighboring PSD95CFP and YFPγ2 puncta on RGC dendrites indicate that their local relationship is established early in development, and cannot be predicted by random organization. These close spatial associations between glutamatergic and GABAergic postsynaptic sites appear to represent local synaptic arrangements revealed by correlative light and EM reconstructions of a single RGC''s dendrites. Thus, although RGC types have different IGABA/E ratios and establish these ratios at separate rates, the local relationship between excitatory and inhibitory inputs appear similarly constrained across the RGC types studied.  相似文献   

5.

Background

Recent studies designed to identify the mechanism by which retinal horizontal cells communicate with cones have implicated two processes. According to one account, horizontal cell hyperpolarization induces an increase in pH within the synaptic cleft that activates the calcium current (Ca2+-current) in cones, enhancing transmitter release. An alternative account suggests that horizontal cell hyperpolarization increases the Ca2+-current to promote transmitter release through a hemichannel-mediated ephaptic mechanism.

Methodology/Principal Findings

To distinguish between these mechanisms, we interfered with the pH regulating systems in the retina and studied the effects on the feedback responses of cones and horizontal cells. We found that the pH buffers HEPES and Tris partially inhibit feedback responses in cones and horizontal cells and lead to intracellular acidification of neurons. Application of 25 mM acetate, which does not change the extracellular pH buffer capacity, does lead to both intracellular acidification and inhibition of feedback. Because intracellular acidification is known to inhibit hemichannels, the key experiment used to test the pH hypothesis, i.e. increasing the extracellular pH buffer capacity, does not discriminate between a pH-based feedback system and a hemichannel-mediated feedback system. To test the pH hypothesis in a manner independent of artificial pH-buffer systems, we studied the effect of interfering with the endogenous pH buffer, the bicarbonate/carbonic anhydrase system. Inhibition of carbonic anhydrase allowed for large changes in pH in the synaptic cleft of bipolar cell terminals and cone terminals, but the predicted enhancement of the cone feedback responses, according to the pH-hypothesis, was not observed. These experiments thus failed to support a proton mediated feedback mechanism. The alternative hypothesis, the hemichannel-mediated ephaptic feedback mechanism, was therefore studied experimentally, and its feasibility was buttressed by means of a quantitative computer model of the cone/horizontal cell synapse.

Conclusion

We conclude that the data presented in this paper offers further support for physiologically relevant ephaptic interactions in the retina.  相似文献   

6.
Electrical Interaction of Paired Ganglion Cells in the Leech   总被引:1,自引:0,他引:1       下载免费PDF全文
The two paired giant ganglion cells (PGC's) found in each ganglion of the leech central nervous system fire synchronously in response to certain sensory input. Polarizing current passed into either of these cells is seen to displace the membrane potentials of both cells, the voltage attenuation between the two somata ranging from 2 to 5 times. This attenuation factor remains unchanged when the direction of the polarizing current is reversed, and remains about the same when the other cell of the pair is directly polarized. When one of the PGC's is partially depolarized with outward current, a repetitive train of impulses is generated. Each spike is followed by a spike in the other cell. Occasionally, a small subspike potential is seen in place of a follower spike. This potential appears to differ in shape and time course from synaptic potentials elicited by afferent input to these cells, and appears rather to be an electrotonic potential derived from the prejunctional impulse in the stimulated PGC. It is proposed that transmission between these cells is electrical, being accomplished by a flow of local circuit current across a non-rectifying junction or connection to the spike-initiating region of the other PGC.  相似文献   

7.
8.
We developed a technique for long-lasting culturing of dissociated cells of the rat retina. Electrophysiological characteristics of cultured retinal ganglion cells were examined using a patch-clamp technique in the whole-cell configuration (current-clamp mode). Morphological and electrophysiological characteristics of cultured retinal ganglion cells corresponded to those obtained under conditions of an acute experiment on the cells of similar-age animals; this is indicative of the possibility of using cultured retinal cells in electrophysiological and pharmacological studies.  相似文献   

9.
Adenylate cyclase activity and the effects of various activators and inhibitors of this enzyme were measured in retinas from normal mice (C57BL/6J) and congenic animals with photoreceptor dystrophy. In normal retina, approximately 250 microM-ATP was required for half-maximal stimulation of the enzyme. Activity was supported by Mg2+ and Mn2+, but Ca2+ was ineffective. The enzyme was inhibited by EGTA and stimulated by 5'-guanylylimidodiphosphate (GPP(NH)P), dopamine, and NaF. The stimulatory effects of GPP(NH)P and dopamine were greater in the presence of EGTA. Examination of microdissected normal retinas revealed that the inner (neural) retina had adenylate cyclase activity four times that of the photoreceptor cell layers, and that EGTA inhibited activity in the inner retina, but had no effect in the outer retina. In dystrophic retinas basal enzyme activity was 60% higher than that in normal retina. The enzyme in this tissue was stimulated by EGTA, GPP(NH)P, and dopamine, and their effects were additive. These results indicate that adenylate cyclase activity in vertebrate retina is under complex regulation by substrate, divalent cations, guanine nucleotides, dopamine, and perhaps calmodulin. In addition, the data demonstrate that adenylate cyclase is not evenly distributed in the retina and that it is regulated differently in the inner and outer retina. Finally, the present results indicate that regulation of this enzyme in dystrophic retina may be qualitatively and quantitatively different from that in normal retina.  相似文献   

10.
11.
12.
Stress, unaccompanied by signs of post-traumatic stress disorder, is known to decrease grey matter volume (GMV) in the anterior cingulate cortex (ACC) and hippocampus but not the amygdala in humans. We sought to determine if this was the case in stressed mice using high-resolution magnetic resonance imaging (MRI) and to identify the cellular constituents of the grey matter that quantitatively give rise to such changes. Stressed mice showed grey matter losses of 10 and 15 % in the ACC and hippocampus, respectively but not in the amygdala or the retrosplenial granular area (RSG). Concurrently, no changes in the number or volumes of the somas of neurons, astrocytes or oligodendrocytes were detected. A loss of synaptic spine density of up to 60 % occurred on different-order dendrites in the ACC and hippocampus (CA1) but not in the amygdala or RSG. The loss of spines was accompanied by decreases in cumulative dendritic length of neurons of over 40 % in the ACC and hippocampus (CA1) giving rise to decreases in volume of dendrites of 2.6 mm3 for the former and 0.6 mm3 for the latter, with no change in the amygdala or RSG. These values are similar to the MRI-determined loss of GMV following stress of 3.0 and 0.8 mm3 in ACC and hippocampus, respectively, with no changes in the amygdala or RSG. This quantitative study is the first to relate GMV changes in the cortex measured with MRI to volume changes in cellular constituents of the grey matter.  相似文献   

13.
The mammalian retina has more diversity of neurons than scientists had once believed in order to establish complicated vision processing. In the monkey retina, morphological diversity of retinal ganglion cells (RGCs) besides dominant midget and parasol cells has been suggested. However, characteristic subtypes of RGCs in other species such as bistratified direction-selective ganglion cells (DSGC) have not yet been identified. Increasing interest has been shown in the common marmoset (Callithrix jacchus) monkey as a “super-model” of neuroscientific research. Here, we established organotypic tissue culture of the adult marmoset monkey retina with particle-mediated gene transfer of GFP to survey the morphological diversity of RGCs. We successfully incubated adult marmoset monkey retinas for 2 to 4 days ex vivo for transient expression of GFP. We morphologically examined 121 RGCs out of more than 3240 GFP-transfected cells in 5 retinas. Among them, we identified monostratified or broadly stratified ganglion cells (midget, parasol, sparse, recursive, thorny, and broad thorny ganglion cells), and bistratified ganglion cells (recursive, large, and small bistratified ganglion cells [blue-ON/yellow-OFF-like]). By this survey, we also found a candidate for bistratified DSGC whose dendrites were well cofasciculated with ChAT-positive starburst dendrites, costratified with ON and OFF ChAT bands, and had honeycomb-shaped dendritic arbors morphologically similar to those in rabbits. Our genetic engineering method provides a new approach to future investigation for morphological and functional diversity of RGCs in the monkey retina.  相似文献   

14.
15.
On models of motoneurons of the n. abducens nucleus with reconstructed dendritic arborizations having an active membrane, we investigated features of the relationships between passive transfer properties and dynamics of excitation states of asymmetrical dendrites during generation of complex periodical and stochastic impulse patterns (output neuronal codes). Various patterns were obtained by varying the intensity of tonic synaptic excitation homogeneously distributed over the dendrites. The electrical states of sites belonging to branches of the same dendrite or different dendrites were compared. For this comparison, branches were selected, which, according to the earlier performed cluster analysis, were assigned to the groups (electrotonic clusters) with a high and a low effectiveness of passive transfer of the somatopetal current. The selection took into account features of the dendritic structure of neurons of the exemined type. These were: (i) the presence of groups of the asymmetrical branches differing from each other according to their belonging to different clusters (high or low transfer effectiveness) in different dendrites, and (ii) the presence of branches belonging to different dendrites characterized by significantly different orientations in three-dimensional space of the brainstem within each electrical cluster. Comparative analysis showed that, in a given dendrite during generation of a complex periodical pattern, the asymmetrical branches belonging to high- or low-efficiency clusters were characterized by being in different states (high or low depolarization) in different phases of generation of repeated sequences of action potentials (APs). This relationship was consistent with those previously detected in neurons of other types and in other specimens of neurons of the above-mentioned type. During generation of such periodical spike patterns, the branches of different dendrites belonging to the same electrotonic cluster were in similar states. Similar relationships between the states of the branches of the same dendrite belonging to different clusters were also observed during generation of complex stochastic (non-periodical) impulse patterns. In the latter case, however, the essential feature was that the branches of different dendrites belonging to the same electrotonic cluster were often in opposite states. Thus, the number of combinations of discrete electrical states of asymmetrical parts of the dendritic arborization was much greater. Probably, it is precisely this circumstance that determined the quasi-stochastic nature of the output impulse pattern.  相似文献   

16.
Ultrastructural studies on oat coleoptile parenchyma cells (Avenasativa L. cv. Victory) reveal that severe plasmolysis eitherbreaks plasmodesmatal connections or leaves the protoplastsstill connected via strands of cytoplasm (Hechtian strands).Plasmolysis also induces the formation of callose around theplasmodesmata. The callose remains for several hours after recoveryof the cells to full turgor. Immediately following recovery of turgor, intercellular electricalcoupling cannot be detected. However, during the next 6 h, somedegree of coupling is restored. These results indicate that,while plasmolysis does not necessarily break all plasmodesmatalconnections, the treatment probably does disrupt them sufficientlyto interfere, at least temporarily, with symplastic transport.  相似文献   

17.
Lateral inhibition at the first synapse in the retina is important for visual perception, enhancing image contrast, color discrimination, and light adaptation. Despite decades of research, the feedback signal from horizontal cells to photoreceptors that generates lateral inhibition remains uncertain. GABA, protons, or an ephaptic mechanism have all been suggested as the primary mediator of feedback. However, the complexity of the reciprocal cone to horizontal cell synapse has left the identity of the feedback signal an unsolved mystery.  相似文献   

18.
Ganglion cells are the output neurons of the retina and their activity reflects the integration of multiple synaptic inputs arising from specific neural circuits. Patch clamp techniques, in voltage clamp and current clamp configurations, are commonly used to study the physiological properties of neurons and to characterize their synaptic inputs. Although the application of these techniques is highly informative, they pose various limitations. For example, it is difficult to quantify how the precise interactions of excitatory and inhibitory inputs determine response output. To address this issue, we used a modified current clamp technique, dynamic clamp, also called conductance clamp 1, 2, 3 and examined the impact of excitatory and inhibitory synaptic inputs on neuronal excitability. This technique requires the injection of current into the cell and is dependent on the real-time feedback of its membrane potential at that time. The injected current is calculated from predetermined excitatory and inhibitory synaptic conductances, their reversal potentials and the cell''s instantaneous membrane potential. Details on the experimental procedures, patch clamping cells to achieve a whole-cell configuration and employment of the dynamic clamp technique are illustrated in this video article. Here, we show the responses of mouse retinal ganglion cells to various conductance waveforms obtained from physiological experiments in control conditions or in the presence of drugs. Furthermore, we show the use of artificial excitatory and inhibitory conductances generated using alpha functions to investigate the responses of the cells.  相似文献   

19.
Mathematical models of abducens motoneurons with reconstructed dendritic arborizations were investigated. The two types of models differed from each other in electrical properties of the dendrites, either passive (model group 1) or active and non-linear (model group 2). The relations between morphology of the dendrites, their electrical transfer characteristics, and formation of impulse patterns at the cell output were studied under conditions of tonic activation of glutamatergic (NMDA-type) excitatory synapses homogeneously distributed over the dendrites. For reconstructed dendritic arborizations, their morphometric characteristics (size, complexity, and metrical asymmetry) and electrical ones (somatopetal current transfer effectiveness function and sensitivity of the latter to variations of the homogeneous membrane conductivity) were computed. Changes in the membrane potential were also studied in different parts of the dendritic arborization during generation of various patterns of discharges of action potentials (APs) at the neuronal output under different intensities of synaptic activation; this allowed us to reveal “spatial signatures” of the above-mentioned temporal patterns. The output patterns and their “spatial signatures” changed in a certain manner with increase in the intensity of synaptic activation. A simple periodical discharge of low-frequency APs with constant interspike intervals was replaced by a complex periodical or nonperiodical (stochastic) bursting pattern, which then was replaced again by a simple rhythmic but high-frequency discharge. Simple periodical patterns were associated with generation of synchronous oscillatory dendritic depolarizations phase-shifted in metrically asymmetrical parts of the arborization. In the case of generation of complex periodical or stochastic patterns, depolarization processes in asymmetrical dendritic parts were asynchronous and differed from each other in their amplitude and duration. Such a structure-dependent repertoire of output discharge patterns was quite compatible with that observed earlier in examined simulated neocortical pyramidal and cerebellar Purkinje neurons. This fact is indicative of a possible similarity of the rules governing the formation of specific output patterns in neurons with active membrane properties of the dendrites based on intrinsic mophological/functional features of the dendritic arborization of a given neuron.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号