首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is a recreational club drug with supposed neurotoxic effects selectively on the serotonin system. MDMA users consistently exhibit memory dysfunction but there is an ongoing debate if these deficits are induced mainly by alterations in the prefrontal or mediotemporal cortex, especially the hippocampus. Thus, we investigated the relation of verbal memory deficits with alterations of regional cerebral brain glucose metabolism (rMRGlu) in recreational MDMA users.

Methods

Brain glucose metabolism in rest was assessed using 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18FDG PET) in 19 male recreational users of MDMA and 19 male drug-naïve controls. 18FDG PET data were correlated with memory performance assessed with a German version of the Rey Auditory Verbal Learning Test.

Results

As previously shown, MDMA users showed significant impairment in verbal declarative memory performance. PET scans revealed significantly decreased rMRGlu in the bilateral dorsolateral prefrontal and inferior parietal cortex, bilateral thalamus, right hippocampus, right precuneus, right cerebellum, and pons (at the level of raphe nuclei) of MDMA users. Among MDMA users, learning and recall were positively correlated with rMRGlu predominantly in bilateral frontal and parietal brain regions, while recognition was additionally related to rMRGlu in the right mediotemporal and bihemispheric lateral temporal cortex. Moreover, cumulative lifetime dose of MDMA was negatively correlated with rMRGlu in the left dorsolateral and bilateral orbital and medial PFC, left inferior parietal and right lateral temporal cortex.

Conclusions

Verbal learning and recall deficits of recreational MDMA users are correlated with glucose hypometabolism in prefrontal and parietal cortex, while word recognition was additionally correlated with mediotemporal hypometabolism. We conclude that memory deficits of MDMA users arise from combined fronto-parieto-mediotemporal dysfunction.  相似文献   

2.

Objective

Studies have demonstrated verbal memory deficits associated with past year ecstasy use, although specific underlying components of these deficits are less understood. Further, prior research suggests potential gender differences in ecstasy-induced serotonergic changes. Therefore, the current study investigated whether gender moderated the relationship between ecstasy exposure and components of verbal memory after controlling for polydrug use and confounding variables.

Method

Data were collected from 65 polydrug users with a wide range of ecstasy exposure (ages 18–35; 48 ecstasy and 17 marijuana users; 0–2310 ecstasy tablets). Participants completed a verbal learning and memory task, psychological questionnaires, and a drug use interview.

Results

Increased past year ecstasy exposure predicted poorer short and long delayed free and cued recalls, retention, and recall discrimination. Male ecstasy users were more susceptible to dose-dependent deficits in retention than female users.

Conclusion

Past year ecstasy consumption was associated with verbal memory retrieval, retention, and discrimination deficits in a dose-dependent manner in a sample of healthy young adult polydrug users. Male ecstasy users were at particular risk for deficits in retention following a long delay. Gender difference may be reflective of different patterns of polydrug use as well as increased hippocampal sensitivity. Future research examining neuronal correlates of verbal memory deficits in ecstasy users are needed.  相似文献   

3.

Background

Manipulations of the early environment are linked to long-lasting alterations of emotionality and social capabilities. Denial of rewarding mother-pup interactions in early life of rats could serve as model for child neglect. Negative consequences for social competence in later life, accompanied by changes in the serotonergic system would be expected. In contrast, rewarding mother-pup contact should promote adequate social abilities.

Methodology/Principal Findings

Male Wistar rats trained in a T-maze during postnatal days 10–13 under denial (DER) or permission (RER) of maternal contact were tested for play behavior in adolescence and for coping with defeat in adulthood. We estimated serotonin (5-HT) levels in the brain under basal conditions and following defeat, as well as serotonin receptor 1A (5-HT1A) and serotonin transporter (SERT) expression. DER rats exhibited increased aggressive-like play behavior in adolescence (i.e. increased nape attacks, p<0.0001) and selected a proactive coping style during defeat in adulthood (higher sum of proactive behaviors: number of attacks, flights, rearings and defensive upright posture; p = 0.011, p<0.05 vs RER, non-handled-NH). In adulthood, they had lower 5-HT levels in both the prefrontal cortex (p<0.05 vs RER) and the amygdala (p<0.05 vs NH), increased 5-HT levels following defeat (PFC p<0.0001) and decreased serotonin turnover (amygdala p = 0.008). The number of 5-HT1A immunopositive cells in the CA1 hippocampal area was increased (p<0.05 DER, vs RER, NH); SERT levels in the amygdala were elevated (p<0.05 vs RER, NH), but were lower in the prefrontal cortex (p<0.05 vs NH).

Conclusions/Significance

Denial of expected maternal reward early in life negatively affects sociability and the serotonergic system in a complex manner. We propose that our animal model could contribute to the identification of the neurobiological correlates of early neglect effects on social behavior and coping with challenges, but also in parallel with the effects of a rewarding early-life environment.  相似文献   

4.

Background

Right ventricular dysfunction in COPD is common, even in the absence of pulmonary hypertension. The aim of the present study was to examine the effects of high intensity interval training (HIIT) on right ventricular (RV) function, as well as pulmonary blood vessel remodeling in a mouse model of COPD.

Methods

42 female A/JOlaHsd mice were randomized to exposure to either cigarette smoke or air for 6 hours/day, 5 days/week for 14 weeks. Mice from both groups were further randomized to sedentariness or HIIT for 4 weeks. Cardiac function was evaluated by echocardiography and muscularization of pulmonary vessel walls by immunohistochemistry.

Results

Smoke exposure induced RV systolic dysfunction demonstrated by reduced tricuspid annular plane systolic excursion. HIIT in smoke-exposed mice reversed RV dysfunction. There were no significant effects on the left ventricle of neither smoke exposure nor HIIT. Muscularization of the pulmonary vessels was reduced after exercise intervention, but no significant effects on muscularization were observed from smoke exposure.

Conclusions

RV function was reduced in mice exposed to cigarette smoke. No Increase in pulmonary vessel muscularization was observed in these mice, implying that other mechanisms caused the RV dysfunction. HIIT attenuated the RV dysfunction in the smoke exposed mice. Reduced muscularization of the pulmonary vessels due to HIIT suggests that exercise training not only affects the heart muscle, but also has important effects on the pulmonary vasculature.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0117-y) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background

The default mode network (DMN) has been linked to a number of mental disorders including schizophrenia. However, the abnormal connectivity of DMN in early onset schizophrenia (EOS) has been rarely reported.

Methods

Independent component analysis (ICA) was used to investigate functional connectivity (FC) of the DMN in 32 first-episode adolescents with EOS and 32 age and gender-matched healthy controls.

Results

Compared to healthy controls, patients with EOS showed increased FC between the medial frontal gyrus and other areas of the DMN. Partial correlation analyses showed that the FC of medial frontal gyrus significantly correlated with PANSS-positive symptoms (partial correlation coefficient  = 0.538, Bonferoni corrected P = 0.018).

Limitations

Although the sample size of participants was comparable with most fMRI studies to date, it was still relatively small. Pediatric brains were registered to the MNI adult brain template. However, possible age-specific differences in spatial normalization that arise from registering pediatric brains to the MNI adult brain template may have little effect on fMRI results.

Conclusion

This study provides evidence for functional abnormalities of DMN in first-episode EOS. These abnormalities could be a source of abnormal introspectively-oriented mental actives.  相似文献   

6.

Objective

To compare frontal sinus cranialization to obliteration for future prevention of secondary mucocele formation following open surgery for benign lesions of the frontal sinus.

Study Design

Retrospective case series.

Setting

Tertiary academic medical center.

Patients

Sixty-nine patients operated for benign frontal sinus pathology between 1994 and 2011.

Interventions

Open excision of benign frontal sinus pathology followed by either frontal obliteration (n = 41, 59%) or frontal cranialization (n = 28, 41%).

Main Outcome Measures

The prevalence of post-surgical complications and secondary mucocele formation were compiled.

Results

Pathologies included osteoma (n = 34, 49%), mucocele (n = 27, 39%), fibrous dysplasia (n = 6, 9%), and encephalocele (n = 2, 3%). Complications included skin infections (n = 6), postoperative cutaneous fistula (n = 1), telecanthus (n = 4), diplopia (n = 3), nasal deformity (n = 2) and epiphora (n = 1). None of the patients suffered from postoperative CSF leak, meningitis or pneumocephalus. Six patients, all of whom had previously undergone frontal sinus obliteration, required revision surgery due to secondary mucocele formation. Statistical analysis using non-inferiority test reveal that cranialization of the frontal sinus is non-inferior to obliteration for preventing secondary mucocele formation (P<0.0001).

Conclusion

Cranialization of the frontal sinus appears to be a good option for prevention of secondary mucocele development after open excision of benign frontal sinus lesions.  相似文献   

7.

Objective

Irritable bowel syndrome (IBS) is a common clinical gastrointestinal dysfunction disorders. 5-sertonon (5-hydroxytryptamine, 5-HT) is a very important neurotransmitter, which is involved in gastrointestinal motion and sensation. Solute carrier family 6 member 4 (SLC6A4) gene encode serotonin transporter (SERT) which function is to rapidly reuptake the most of 5-HT. Therefore, it is needed to explore the association between SLC6A4 gene polymorphisms and IBS.

Methods

119 patients and 238 healthy controls were administrated to detect the SLC6A4 gene polymorphisms including 5-HT-transporter-gene-linked polymorphic region (5-HTTLPR), variable number of tandem repeats (VNTRs) and three selected tag Single Nucleotide Polymorphisms (SNPs) rs1042173, rs3794808, rs2020936 by using polymerase chain reaction (PCR) and TaqMan® SNP Genotyping.

Results

There were significant difference for 5-HTTLPR between IBS and control groups (X2 = 106.168, P<0.0001). In control group, genotypes were mainly L/L (58.4%), however, the genotypes in IBS were S/S (37.8%). The significant difference was shown in D-IBS subjects when compared to the controls (X2 = 50.850, P<0.0001) for 5-HTTLPR. For STin2 VNTR, rs1042173, rs3794808, and rs2020936 polymorphisms, there were no any significant differences between IBS and control groups. There were no statistical significantly haplotypes for 5-HTTLPR, VNTRs and the three SNPs between IBS and controls.

Conclusion

The S allele in 5-HTTLPR was a susceptible allele with Chinese Han IBS, but other associations of VNTRs, three selected Tag SNPs and positive haplotype with IBS were not found. It is indicated that much research are needed to study the relationship between other polymorphisms in SLC6A4 gene and IBS.  相似文献   

8.

Background

Alcoholism is associated with abnormal anger processing. The purpose of this study was to investigate brain regions involved in the evaluation of angry facial expressions in patients with alcohol dependency.

Methods

Brain blood-oxygenation-level-dependent (BOLD) responses to angry faces were measured and compared between patients with alcohol dependency and controls.

Results

During intensity ratings of angry faces, significant differences in BOLD were observed between patients with alcohol dependency and controls. That is, patients who were alcohol-dependent showed significantly greater activation in several brain regions, including the dorsal anterior cingulate cortex (dACC) and medial prefrontal cortex (MPFC).

Conclusions

Following exposure to angry faces, abnormalities in dACC and MPFC activation in patients with alcohol dependency indicated possible inefficiencies or hypersensitivities in social cognitive processing.  相似文献   

9.

Background

Convergent studies suggest that morphological abnormalities of frontal-subcortical circuits which involved with emotional and cognitive processing may contribute to the pathophysiology of major depressive disorder (MDD). Antidepressant treatment which has been reported to reverse the functional abnormalities of frontal-subcortical circuits in MDD may have treating effects to related brain morphological abnormalities. In this study, we used voxel-based morphometry method to investigate whole brain structural abnormalities in single episode, medication-naïve MDD patients. Furthermore, we investigated the effects of an 8 weeks pharmacotherapy with fluoxetine.

Methods

28 single episode, medication-naïve MDD participants and 28 healthy controls (HC) acquired the baseline high-resolution structural magnetic resonance imaging (sMRI) scan. 24 MDD participants acquired a follow-up sMRI scan after 8 weeks antidepressant treatment. Gray matter volumetric (GMV) difference between groups was examined.

Results

Medication-naïve MDD had significantly decreased GMV in the right dorsolateral prefrontal cortex and left middle frontal gyrus as well as increased GMV in the left thalamus and right insula compared to HC (P<0.05, corrected). Moreover, treated MDD had significantly increased GMV in the left middle frontal gyrus and right orbitofrontal cortex compared to HC (P<0.05, corrected). No difference on GMV was detected between medication-naïve MDD group and treated MDD group.

Conclusions

This study of single episode, medication-naïve MDD subjects demonstrated structural abnormalities of frontal-subcortical circuitsin the early stage of MDD and the effects of 8 weeks successful antidepressant treatment, suggesting these abnormalities may play an important role in the neuropathophysiology of MDD at its onset.  相似文献   

10.

Objective

To explore the neural mechanisms of negative emotion regulation in patients with post-traumatic stress disorder (PTSD).

Methods

Twenty PTSD patients and 20 healthy subjects were recruited. Event-related functional magnetic resonance imaging (fMRI) was used to investigate the modification of emotional responses to negative stimuli. Participants were required to regulate their emotional reactions according to the auditory regulation instructions via headphones, to maintain, enhance or diminish responses to negative stimuli during fMRI scans.

Results

The PTSD group showed poorer modification performance than the control group when diminishing responses to negative stimuli. On fMRI, the PTSD group showed decreased activation in the inferior frontal cortex, inferior parietal lobule, insula and putamen, and increased activation in posterior cingulate cortex and amygdala during up-regulation of negative emotion. Similar decreased activation regions were found during down-regulation of negative emotion, but no increased activation was found.

Conclusion

Trauma exposure might impair the ability to down-regulate negative emotion. The present findings will improve our understanding of the neural mechanisms of emotion regulation underlying PTSD.  相似文献   

11.
The synthetic psychostimulant MDMA (±3,4-methylenedioxymethamphetamine, ecstasy) acts as an indirect serotonin, dopamine, and norepinephrine agonist and as a mechanism-based inhibitor of the cytochrome P-450 2D6 (CYP2D6). It has been suggested that women are more sensitive to MDMA effects than men but no clinical experimental studies have satisfactorily evaluated the factors contributing to such observations. There are no studies evaluating the influence of genetic polymorphism on the pharmacokinetics (CYP2D6; catechol-O-methyltransferase, COMT) and pharmacological effects of MDMA (serotonin transporter, 5-HTT; COMT). This clinical study was designed to evaluate the pharmacokinetics and physiological and subjective effects of MDMA considering gender and the genetic polymorphisms of CYP2D6, COMT, and 5-HTT. A total of 27 (12 women) healthy, recreational users of ecstasy were included (all extensive metabolizers for CYP2D6). A single oral weight-adjusted dose of MDMA was administered (1.4 mg/kg, range 75–100 mg) which was similar to recreational doses. None of the women were taking oral contraceptives and the experimental session was performed during the early follicular phase of their menstrual cycle. Principal findings show that subjects reached similar MDMA plasma concentrations, and experienced similar positive effects, irrespective of gender or CYP2D6 (not taking into consideration poor or ultra-rapid metabolizers) or COMT genotypes. However, HMMA plasma concentrations were linked to CYP2D6 genotype (higher with two functional alleles). Female subjects displayed more intense physiological (heart rate, and oral temperature) and negative effects (dizziness, sedation, depression, and psychotic symptoms). Genotypes of COMT val158met or 5-HTTLPR with high functionality (val/val or l/*) determined greater cardiovascular effects, and with low functionality (met/* or s/s) negative subjective effects (dizziness, anxiety, sedation). In conclusion, the contribution of MDMA pharmacokinetics following 1.4 mg/kg MDMA to the gender differences observed in drug effects appears to be negligible or even null. In contrast, 5-HTTLPR and COMT val158met genotypes play a major role.

Trial Registration

ClinicalTrials.gov NCT01447472  相似文献   

12.

Background

Glutathione (GSH), a major intracellular antioxidant, plays a role in NMDA receptor-mediated neurotransmission, which is involved in the pathophysiology of schizophrenia. In the present study, we aimed to investigate whether GSH levels are altered in the posterior medial frontal cortex of schizophrenic patients. Furthermore, we examined correlations between GSH levels and clinical variables in patients.

Methods and Findings

Twenty schizophrenia patients and 16 age- and gender-matched normal controls were enrolled to examine the levels of GSH in the posterior medial frontal cortex by using 3T SIGNA EXCITE 1H-MRS with the spectral editing technique, MEGA-PRESS. Clinical variables of patients were assessed by the Global Assessment of Functioning (GAF), Scale for the Assessment of Negative Symptoms (SANS), Brief Psychiatric Rating Scale (BPRS), Drug-Induced Extra-Pyramidal Symptoms Scale (DIEPSS), and five cognitive performance tests (Word Fluency Test, Stroop Test, Trail Making Test, Wisconsin Card Sorting Test and Digit Span Distractibility Test). Levels of GSH in the posterior medial frontal cortex of schizophrenic patients were not different from those of normal controls. However, we found a significant negative correlation between GSH levels and the severity of negative symptoms (SANS total score and negative symptom subscore on BPRS) in patients. There were no correlations between brain GSH levels and scores on any cognitive performance test except Trail Making Test part A.

Conclusion

These results suggest that GSH levels in the posterior medial frontal cortex may be related to negative symptoms in schizophrenic patients. Therefore, agents that increase GSH levels in the brain could be potential therapeutic drugs for negative symptoms in schizophrenia.  相似文献   

13.

Background

The formation of compulsive pattern of drug use is related to abnormal regional neural activity and functional reorganization in the heroin addicts’ brain, but the relationship between heroin-use-induced disrupted local neural activity and its functional organization pattern in resting-state is unknown.

Methodology/Principal Findings

With fMRI data acquired during resting state from 17 male heroin dependent individuals (HD) and 15 matched normal controls (NC), we analyzed the changes of amplitude of low frequency fluctuation (ALFF) in brain areas, and its relationship with history of heroin use. Then we investigated the addiction related alteration in functional connectivity of the brain regions with changed ALFF using seed-based correlation analysis. Compared with NC, the ALFF of HD was obviously decreased in the right caudate, right dorsal anterior cingulate cortex (dACC), right superior medial frontal cortex and increased in the bilateral cerebellum, left superior temporal gyrus and left superior occipital gyrus. Of the six regions, only the ALFF value of right caudate had a negative correlation with heroin use. Setting the six regions as “seeds”, we found the functional connectivity between the right caudate and dorsolateral prefrontal cortex (dlPFC) was reduced but that between the right caudate and cerebellum was enhanced. Besides, an abnormal lateral PFC-dACC connection was also observed in HD.

Conclusions

The observations of dysfunction of fronto-striatal and fronto-cerebellar circuit in HD implicate an altered balance between local neuronal assemblies activity and their integrated network organization pattern which may be involved in the process from voluntary to habitual and compulsive drug use.  相似文献   

14.

Background

To identify changes in brain activation patterns in bipolar disorder (BD) and unipolar depression (UD) patients.

Methodology/Principal Findings

Resting-state fMRI scans of 16 healthy controls, 17 BD and 16 UD patients were obtained. T-test of normalized regional homogeneity (ReHo) was performed in a voxel-by-voxel manner. A combined threshold of á = 0.05, minimum cluster volume of V = 10503 mm3 (389 voxels) were used to determine ReHo differences between groups. In UD group, fMRI revealed ReHo increases in the left middle occipital lobe, right inferior parietal lobule, right precuneus and left convolution; and ReHo decreases in the left parahippocampalgyrus, right precentralgyrus, left postcentralgyrus, left precentralgyrus and left cingulated. In BD group, ReHo increases in the right insular cortex, left middle frontal gyrus, left precuneus, left occipital lobe, left parietal, left superior frontal gyrus and left thalamus; and ReHo decreases in the right anterior lobe of cerebellum, pons, right precentralgyrus, left postcentralgyrus, left inferior frontal gyrus, and right cingulate. There were some overlaps in ReHo profiles between UD and BD groups, but a marked difference was seen in the thalamus of BD.

Conclusions/Significance

The resting-state fMRI and ReHo mapping are a promising tool to assist the detection of functional deficits and distinguish clinical and pathophysiological signs of BD and UD.  相似文献   

15.

Objective

Shortly after infection, HIV enters the brain and causes widespread inflammation and neuronal damage, which ultimately leads to neuropsychological impairments. Despite a large body of neuroscience and imaging studies, the pathophysiology of these HIV-associated neurocognitive disorders (HAND) remains unresolved. Previous neuroimaging studies have shown greater activation in HIV-infected patients during strenuous tasks in frontal and parietal cortices, and less activation in the primary sensory cortices during rest and sensory stimulation.

Methods

High-density magnetoencephalography (MEG) was utilized to evaluate the basic neurophysiology underlying attentive, visual processing in older HIV-infected adults and a matched non-infected control group. Unlike other neuroimaging methods, MEG is a direct measure of neural activity that is not tied to brain metabolism or hemodynamic responses. During MEG, participants fixated on a centrally-presented crosshair while intermittent visual stimulation appeared in their top-right visual-field quadrant. All MEG data was imaged in the time-frequency domain using beamforming.

Results

Uninfected controls had increased neuronal synchronization in the 6–12 Hz range within the right dorsolateral prefrontal cortex, right frontal eye-fields, and the posterior cingulate. Conversely, HIV-infected patients exhibited decreased synchrony in these same neural regions, and the magnitude of these decreases was correlated with neuropsychological performance in several cortical association regions.

Conclusions

MEG-based imaging holds potential as a noninvasive biomarker for HIV-related neuronal dysfunction, and may help identify patients who have or may develop HAND. Reduced synchronization of neural populations in the association cortices was strongly linked to cognitive dysfunction, and likely reflects the impact of HIV on neuronal and neuropsychological health.  相似文献   

16.

Introduction

Fast in-vivo high resolution diffusion tensor imaging (DTI) of the mouse brain has recently been shown to enable cohort studies by the combination of appropriate pulse sequences and cryogenically cooled resonators (CCR). The objective of this study was to apply this DTI approach at the group level to β-amyloid precursor protein (APP) transgenic mice.

Methods

Twelve mice (5 wild type, 7 APP transgenic tg2576) underwent DTI examination at 1562×250 µm3 spatial resolution with a CCR at ultrahigh field (11.7 T). Diffusion images were acquired along 30 gradient directions plus 5 references without diffusion encoding with a total acquisition time of 35 minutes. Fractional anisotropy (FA) maps were statistically compared by whole brain-based spatial statistics (WBSS) at the group level vs. wild type controls.

Results

FA-map comparison showed characteristic regional patterns of differences between the groups with localizations associated with Alzheimer’s disease in humans, such as the hippocampus, the entorhinal cortex, and the caudoputamen.

Conclusion

In this proof-of-principle study, regions associated with amyloid-β deposition could be identified by WBSS of FA maps in APP transgenic mice vs. wild type mice. Thus, DTI in the mouse brain acquired at 11.7 T by use of a CCR was demonstrated to be feasible for cohort studies.  相似文献   

17.

Background

Serotonin (5-HT) is a biogenic amine that also acts as a mitogen and a developmental signal early in rodent embryogenesis. Genetic and pharmacological disruption of 5-HT signaling causes various diseases and disorders via mediating central nervous system, cardiovascular system, and serious abnormalities on a growing embryo. Today, neither the effective modulators on 5-HT signaling pathways nor the genes affected by 5-HT signal are well known yet.

Methodology/Principal Findings

In an attempt to identify the genes altered by 5-HT signaling pathways, we analyzed the global gene expression via the Illumina array platform using the mouse WG-6 v2.0 Expression BeadChip containing 45,281 probe sets representing 30,854 genes in megakaryocytes isolated from mice infused with 5-HT or saline. We identified 723 differentially expressed genes of which 706 were induced and 17 were repressed by elevated plasma 5-HT.

Conclusions/Significance

Hierarchical gene clustering analysis was utilized to represent relations between groups and clusters. Using gene ontology mining tools and canonical pathway analyses, we identified multiple biological pathways that are regulated by 5-HT: (i) cytoskeletal remodeling, (ii) G-protein signaling, (iii) vesicular transport, and (iv) apoptosis and survival. Our data encompass the first extensive genome-wide based profiling in the progenitors of platelets in response to 5-HT elevation in vivo.  相似文献   

18.

Background

Cytogenetic studies have demonstrated that low levels of chronic radiation exposure can potentially increase the frequency of chromosomal aberrations and aneuploidy in somatic cells. Epidemiological studies have shown that health workers occupationally exposed to ionizing radiation bear an increased risk of hematological malignancies.

Objectives

To find the influence of occupational radiation exposure on semen characteristics, including genetic and epigenetic integrity of spermatozoa in a chronically exposed population.

Methods

This cross sectional study included 134 male volunteers of which 83 were occupationally exposed to ionizing radiation and 51 were non-exposed control subjects. Semen characteristics, sperm DNA fragmentation, aneuploidy and incidence of global hypermethylation in the spermatozoa were determined and compared between the non-exposed and the exposed group.

Results

Direct comparison of the semen characteristics between the non-exposed and the exposed population revealed significant differences in motility characteristics, viability, and morphological abnormalities (P<0.05–0.0001). Although, the level of sperm DNA fragmentation was significantly higher in the exposed group as compared to the non-exposed group (P<0.05–0.0001), the incidence of sperm aneuploidy was not statistically different between the two groups. However, a significant number of hypermethylated spermatozoa were observed in the exposed group in comparison to non-exposed group (P<0.05).

Conclusions

We provide the first evidence on the detrimental effects of occupational radiation exposure on functional, genetic and epigenetic integrity of sperm in health workers. However, further studies are required to confirm the potential detrimental effects of ionizing radiation in these subjects.  相似文献   

19.

Background

Human brain aging has received special attention in part because of the elevated risks of neurodegenerative disorders such as Alzheimer''s disease in seniors. Recent technological advances enable us to investigate whether similar mechanisms underlie aging and neurodegeneration, by quantifying the similarities and differences in their genome-wide gene expression profiles.

Principal Findings

We have developed a computational method for assessing an individual''s “physiological brain age” by comparing global mRNA expression datasets across a range of normal human brain samples. Application of this method to brains samples from select regions in two diseases – Alzheimer''s disease (AD, superior frontal gyrus), frontotemporal lobar degeneration (FTLD, in rostral aspect of frontal cortex ∼BA10) – showed that while control cohorts exhibited no significant difference between physiological and chronological ages, FTLD and AD exhibited prematurely aged expression profiles.

Conclusions

This study establishes a quantitative scale for measuring premature aging in neurodegenerative disease cohorts, and it identifies specific physiological mechanisms common to aging and some forms of neurodegeneration. In addition, accelerated expression profiles associated with AD and FTLD suggest some common mechanisms underlying the risk of developing these diseases.  相似文献   

20.

Background and Purpose

Recent data suggest that early symptoms may be related to cortex alterations in CADASIL (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a monogenic model of cerebral small vessel disease (SVD). The aim of this study was to investigate cortical alterations using both high-resolution T2* acquisitions obtained with 7 Tesla MRI and structural T1 images with 3 Tesla MRI in CADASIL patients with no or only mild symptomatology (modified Rankin’s scale ≤1 and Mini Mental State Examination (MMSE) ≥24).

Methods

Complete reconstructions of the cortex using 7 Tesla T2* acquisitions with 0.7 mm isotropic resolution were obtained in 11 patients (52.1±13.2 years, 36% male) and 24 controls (54.8±11.0 years, 42% male). Seven Tesla T2* within the cortex and cortical thickness and morphology obtained from 3 Tesla images were compared between CADASIL and control subjects using general linear models.

Results

MMSE, brain volume, cortical thickness and global sulcal morphology did not differ between groups. By contrast, T2* measured by 7 Tesla MRI was significantly increased in frontal, parietal, occipital and cingulate cortices in patients after correction for multiple testing. These changes were not related to white matter lesions, lacunes or microhemorrhages in patients having no brain atrophy compared to controls.

Conclusions

Seven Tesla MRI, by contrast to state of the art post-processing of 3 Tesla acquisitions, shows diffuse T2* alterations within the cortical mantle in CADASIL whose origin remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号